

NSTX Joint Conference Call Peter H. Titus, Thursday February 26 2009

First Phil's Joint: Coupled Electromagnic-Thermal Analysis Then a Stress Pass with an LDREAD of Lorentz Forces and Temperatures

B Field and Current Density Results

Thermal Results

Average Inner Leg Temp is Supposed to be 100C or 373 K

Structural Pass

Next, the Titus-Woolley-? Joint

- Jacking Ring

- Big Constant Tesion (Sort-of) Expansion Loop

Titus-Woolley-? Joint Electromagnetic-Thermal Analysis

Global Structural Modeling of the Titus-Woolley-? Joint

- This time the inner leg is at 100C temp and the outer leg is at 50C
- Integrated central column expansion is close to the electromagnetic thermal diffusion model

FEB 2: 19:53:

NODAL

STEP=: SUP =!

TIME-

Radial Compression from the Jacking Ring

In this run I used 1 mm interference. Ring stress and compression are too large I have run .5mm but have not post-processed it.

D-Wedging Effect is Minimal

Max Principal Stress In Bend. –No Internal Thermal Gradient Max is 118 MPa Max is 166 MPa

Jacking Ring Compression Helps Support Torsion

Ring height might be increased to improve torsional carrying capacity of the extension that connects with the umbrella structure hub

More "Worst" Torsional Shear Stresses

Conclusions:

Titus-Woolley-? Joint :

- Can Develop Needed Contact Pressures
- Expansion Loop Can Absorb Central Column Vertical Motion With Acceptable Stress
- Jacking Ring Compression Aids Torsional Shear Carrying Capacity
- No Mechanical Connections Penetrating the TF Inner Leg
- Jacking Ring Compression Supports in-Plane Shear Carrying Capacity
- OOP Support Lugs D Not Appear to be Needed