## NSTX Upgrade Flexible Strap Assy: Single Lamination EMAG Stress Analysis

### 1.0 Problem Description

To determine if the baseline NSTX flexible strap design is adequate to meet the NSTX Structural Design critieria, specifically, the fatique requirements of section l-4.2 for 3000 full power and 30,000 two-thirds full-power pulses without failure.

### 2.0 Given

The baseline laminated flexible strap assy design is shown in Figure 1. The outer lamination is assumed worst-case and will be analyzı below.


Modulus of rigidity

$$
-\quad \mathrm{G}:=\frac{\mathrm{E}}{2 \cdot(1+\nu)}=6.538 \times 10^{6} \mathrm{psi}
$$

### 3.0 Calculated EMAG Loads

3.1 Out-of-Plane Force Load (z-direction) - $\mathrm{F}_{\mathrm{op}}$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{op}}:=2 \cdot \mathrm{I}_{\mathrm{lam}} \cdot \mathrm{~B}_{\mathrm{pol}} \cdot \mathrm{R}=295 \cdot \mathrm{~N} \tag{1}
\end{equation*}
$$

$\mathrm{F}_{\mathrm{op}}=66.3 \mathrm{lbf}$
3.2 In-Plane Pressure Load (y-direction) - $\mathrm{p}_{\mathrm{ip}}$

$$
\begin{align*}
& \mathrm{F}_{\text {ip } / \mathrm{L}}:=\mathrm{I}_{\mathrm{lam}} \cdot \mathrm{~B}_{\text {tor }}  \tag{1}\\
& \mathrm{F}_{\text {ip } / \mathrm{L}}=3.421 \times 10^{3} \cdot \frac{\mathrm{~N}}{\mathrm{~m}} \\
& \mathrm{~F}_{\text {ip } / \mathrm{L}}=19.5 \cdot \frac{\mathrm{lbf}}{\mathrm{in}} \\
& \mathrm{p}_{\text {ip }}:=\frac{\left(\mathrm{F}_{\text {ip } / \mathrm{L}}\right)}{\mathrm{h}}
\end{align*}
$$



$$
\mathrm{p}_{\mathrm{ip}}=9.8 \mathrm{psi}
$$



### 4.0 Stress Analysis

### 4.1 Out-of-Plane Emag Load Stresses

The out-of-plane load results in out-of-plane bending, torsion, and direct shear.

This following is from Roark's Formulas for Stress and Strain, 7th Edition, Table 9.4, Formulas for Curved Beams of Compact Cross Section Loaded Normal to the Plane of Curvature, Case 4e: Uniformly distributed lateral load, both ends fixed.

Uniformly distributed lateral load


- Case 4e Right end fixed, left end fixed

Angle from left end to start of loading
Angle subtended by span of the beam
Length of beam

- $\quad \theta:=0 \cdot \mathrm{rad}$
$\phi:=\pi \cdot \mathrm{rad}$
$-\quad L_{N}:=R \cdot \phi=17.775 \cdot \mathrm{in}$

Distributed load (force/length)

$$
-\quad \mathrm{w}:=\frac{\mathrm{F}_{\mathrm{op}}}{\mathrm{~L}}=3.731 \cdot \frac{\mathrm{lbf}}{\mathrm{in}}
$$

Area moment of inertia about bending axis $\quad{\underset{N}{m}}^{1}:=\frac{d \cdot h^{3}}{12}=0.04 \cdot \mathrm{in}^{4}$

Torsional stiffness (rectanglular section)

$$
\begin{aligned}
& \mathrm{K}:=\mathrm{a} \cdot \mathrm{~b}^{3} \cdot\left[\frac{16}{3}-3.36 \cdot \frac{\mathrm{~b}}{\mathrm{a}} \cdot\left(1-\frac{\mathrm{b}^{4}}{12 \cdot \mathrm{a}^{4}}\right)\right]^{\mathrm{l}} \\
& \text { where: } \quad \mathrm{a}:=\frac{\mathrm{h}}{2} \quad \mathrm{~b}:=\frac{\mathrm{d}}{2} \\
& \mathrm{~K}=1.413 \times 10^{-4} \cdot \mathrm{in}^{4}
\end{aligned}
$$

$$
(a \gg b)
$$

# Solid rectangular section 



Table 9.4 Equation constants:

$$
\begin{aligned}
& \beta:=\frac{E \cdot I}{G \cdot K}=736.1 \\
& C_{1}:=\frac{1+\beta}{2} \cdot \phi \cdot \sin (\phi)-\beta \cdot(1-\cos (\phi))=-1.472 \times 10^{3} \\
& C_{2}:=\frac{1+\beta}{2} \cdot(\phi \cdot \cos (\phi)-\sin (\phi))=-1.158 \times 10^{3} \\
& C_{3}:=-\beta \cdot(\phi-\sin (\phi))-\frac{1+\beta}{2} \cdot(\phi \cdot \cos (\phi)-\sin (\phi))=-1.155 \times 10^{3} \\
& C_{4}:=\frac{1+\beta}{2} \cdot \phi \cdot \cos (\phi)+\frac{1-\beta}{2} \cdot \sin (\phi)=-1.158 \times 10^{3}
\end{aligned}
$$

$$
\begin{aligned}
& C_{5}:=-\frac{1+\beta}{2} \cdot \phi \cdot \sin (\phi)=-1.418 \times 10^{-13} \\
& C_{6}:=C_{1} \\
& C_{7}:=C_{5} \\
& C_{8}:=\frac{1-\beta}{2} \cdot \sin (\phi)-\frac{1+\beta}{2} \cdot \phi \cdot \cos (\phi)=1.158 \times 10^{3} \\
& C_{9}:=C_{2} \\
& C_{a 2}:=\frac{1+\beta}{2} \cdot[(\phi-\theta) \cdot \cos (\phi-\theta)-\sin (\phi-\theta)]=-1.158 \times 10^{3} \\
& C_{a 3}:=-\beta \cdot(\phi-\theta-\sin (\phi-\theta))-C_{a 2}=-1.155 \times 10^{3} \\
& C_{a 12}:=\frac{1+\beta}{2} \cdot[(\phi-\theta) \cdot \sin (\phi-\theta)-2+2 \cdot \cos (\phi-\theta)]=-1.474 \times 10^{3} \\
& C_{a 13}:=\beta \cdot\left[1-\cos (\phi-\theta)-\frac{(\phi-\theta)^{2}}{2}\right]-C_{a 12}=-686.1 \\
& C_{a 16}:=C_{a 3} \\
& C_{a 19}:=C_{a 12}
\end{aligned}
$$

4.1.1 Direct Shear Stress - $\tau_{\text {op_direct }}$

Direct shear force at end $A-V_{A}:=w \cdot R \cdot \frac{C_{a 13} \cdot\left(C_{4} \cdot C_{8}-C_{5} \cdot C_{7}\right)+C_{a 16} \cdot\left(C_{2} \cdot C_{7}-C_{1} \cdot C_{8}\right)+C_{a 19} \cdot\left(C_{1} \cdot C_{5}-C_{2} \cdot C_{4}\right)}{C_{1} \cdot\left(C_{5} \cdot C_{9}-C_{6} \cdot C_{8}\right)+C_{4} \cdot\left(C_{3} \cdot C_{8}-C_{2} \cdot C_{9}\right)+C_{7} \cdot\left(C_{2} \cdot C_{6}-C_{3} \cdot C_{5}\right)}$

$$
V_{A}=33.2 \mathrm{lbf}
$$

Direct shear force at end $B \quad-V_{B}:=V_{A}-w \cdot R \cdot(\phi-\theta)=-33.158 \mathrm{lbf}$

$$
\tau_{\text {op_direct }}:=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{~d} \cdot \mathrm{~h}}=276.3 \mathrm{psi}
$$

### 4.1.2 Bending Stress $-\sigma_{\text {op_bend }}$

Bending moment at end $A-M_{A}:=w \cdot R^{2} \cdot \frac{C_{a 13} \cdot\left(C_{5} \cdot C_{9}-C_{6} \cdot C_{8}\right)+C_{a 16} \cdot\left(C_{3} \cdot C_{8}-C_{2} \cdot C_{9}\right)+C_{a 19} \cdot\left(C_{2} \cdot C_{6}-C_{3} \cdot C_{5}\right)}{C_{1} \cdot\left(C_{5} \cdot C_{9}-C_{6} \cdot C_{8}\right)+C_{4} \cdot\left(C_{3} \cdot C_{8}-C_{2} \cdot C_{9}\right)+C_{7} \cdot\left(C_{2} \cdot C_{6}-C_{3} \cdot C_{5}\right)}$

$$
\mathrm{M}_{\mathrm{A}}=-119.4 \cdot \mathrm{in} \cdot \mathrm{lbf}
$$

Bending moment at end $B \quad-M_{B}:=-M_{A}=119.4 \cdot \mathrm{in} \cdot \mathrm{lbf}$

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{N}}:=\frac{\mathrm{h}}{2}=1 \cdot \mathrm{in} \\
& \sigma_{\text {op_bend }}:=\frac{\mathrm{M}_{\mathrm{A}} \cdot \mathrm{C}}{\mathrm{I}}=-2.986 \times 10^{3} \mathrm{psi}
\end{aligned}
$$

4.1.3 Torsional Stress - $\tau_{\text {op_tor }}$

Twisting moment at end $A-T_{A}:=w \cdot R^{2} \cdot \frac{C_{a 13} \cdot\left(C_{6} \cdot C_{7}-C_{4} \cdot C_{9}\right)+C_{a 16} \cdot\left(C_{1} \cdot C_{9}-C_{3} \cdot C_{7}\right)+C_{a 19} \cdot\left(C_{3} \cdot C_{4}-C_{1} \cdot C_{6}\right)}{C_{1} \cdot\left(C_{5} \cdot C_{9}-C_{6} \cdot C_{8}\right)+C_{4} \cdot\left(C_{3} \cdot C_{8}-C_{2} \cdot C_{9}\right)+C_{7} \cdot\left(C_{2} \cdot C_{6}-C_{3} \cdot C_{5}\right)}$

$$
\mathrm{T}_{\mathrm{A}}=35.5 \cdot \mathrm{in} \cdot \mathrm{lbf}
$$

Twisting moment at end $B \quad-T_{B}:=-T_{A}=-35.5 \cdot \mathrm{in} \cdot \mathrm{lbf}$

$$
\tau_{\text {op_tor }}:=\frac{3 \cdot T_{A}}{8 \cdot a \cdot b^{2}} \cdot\left[1+0.6095 \cdot \frac{b}{a}+0.8865 \cdot\left(\frac{b}{a}\right)^{2}-1.8023 \cdot\left(\frac{b}{a}\right)^{3}+0.9100 \cdot\left(\frac{b}{a}\right)^{4}\right]
$$

$$
\tau_{\text {op_tor }}=1.509 \times 10^{4} \mathrm{psi}
$$

4.1.4 Combined Equivalent von Mises Stress - $\sigma_{\mathrm{e} \_} \mathrm{op}$

$$
\sigma_{\text {e_op }}:=\left[\frac{1}{2} \cdot\left[\left(2 \cdot \sigma_{\text {op_bend }}\right)^{2}+6 \cdot\left(\tau_{\text {op_tor }}+\tau_{\text {op_direct }}\right)^{2}\right]\right]^{\cdot 5}=2.695 \times 10^{4} \mathrm{psi}
$$

### 4.1.5 ANSYS FEA Results

The results of an ANSYS FEA model of a single lamination with the out-of-plane Emag distributed force load only applied to the concave surface of the lamination and with fixed constraints on the straight legs is shown in Figure 2:

$$
\sigma_{\mathrm{e} \text { _op_ANSYS }}=2.917 \times 10^{4} \mathrm{psi}
$$

The in-plane Emag pressure load produces an in-plane tangential hoop stress, and an out-of-plane bending stress due to the offset/ joggle in the lamination.
4.2.1. Hoop stress - $\sigma_{\text {ip_hoop }}$

$$
\sigma_{\mathrm{ip} \text { _hoop }}:=\frac{\mathrm{p}_{\mathrm{ip}} \cdot \mathrm{R}}{\mathrm{~d}}=921.1 \mathrm{psi}
$$

### 4.2.2 Offset Bending Stress - $\sigma_{i p \_o f f s e t \_b e n d ~}$

Assume offset/ joggle can be modeled as a short straight beam with a uniform distributed over the length and fixed at both ends.

Offset length

$$
\mathrm{l}_{\text {offset }}:=.94 \cdot \text { in } \quad \mathrm{F}_{\mathrm{ip} / \mathrm{L}}=19.535 \cdot \frac{\mathrm{lbf}}{\mathrm{in}}
$$

In-plane Emag force

$$
-F_{i p}:=\left(F_{i p} / L\right) \cdot L=347.2 \mathrm{lbf}
$$

Effective offset distributed load $-w_{\text {offset }}:=\frac{F_{i p}}{l_{\text {offset }}}=369.4 \cdot \frac{\mathrm{lbf}}{\mathrm{in}}$

Bending moment

$$
\begin{aligned}
& M_{\text {offset }}:=\frac{w_{\text {offset }} \cdot l_{\text {offset }}{ }^{2}}{12}=27.2 \cdot \mathrm{in} \cdot \mathrm{lbf} \\
& \sigma_{\text {ip_offset_bend }}:=\frac{M_{\text {offset }} \cdot \mathrm{C}}{1}=680 \mathrm{psi}
\end{aligned}
$$

4.2.3 Combined Equivalent von Mises Stress - $\sigma_{e \_i p}$

$$
\sigma_{e_{\text {_ip }}}:=\left|\sigma_{i p \_h o o p}\right|+\left|\sigma_{i p \_o f f s e t \_b e n d ~}\right|=1.601 \times 10^{3} \mathrm{psi}
$$

### 4.2.4 ANSYS FEA Results

The results of an ANSYS FEA model of a single lamination with the in-plane Emag pressure load only applied to the concave surface of the lamination and with fixed constraints on the straight legs is shown in Figure 3:

$$
\sigma_{\mathrm{e} \text { _ip_ANSYS }}=5.989 \times 10^{3} \mathrm{psi}
$$

### 4.3 Thermal Displacement Stresses

The horizontal displacement is small and asumed to be negligible
The vertical thermal displacement results in in-plane bending and simple tension.
4.3.1 Vertical Thermal Displacement Bending Stress - $\sigma_{\text {therm_bend }}$

The following is from Roark's Formulas for Stress and Strain, 7th Edition, Table 9.3, Reaction and Deformation
Formulas for Circular Arches, Cases 5a and 11: Concentrated vertical loading, left end restrained against rotation only, right end fixed.


5a. Concentrated vertical load

11. Left end restrained against rotation only, right end fixed


Area properties:
From Table 9.1, Formulas for curved beams subject to bending in the plane of curvature, Ref. No. 1, Solid rectangular section

Radius of curvature

Height of rectangular section

Width of rectangular section

Half height

Moment of inertia about centriodal axis perpindicular to plane of curvature

Area

Distance from centroidal axis to neutral axis measured toward the center of curvature

Ratio of actual stress in extreme fiber on concave side to ficticious

- $R=5.658 \cdot \mathrm{in}$
_ $\quad d=0.06 \cdot i n$
$\underset{\sim}{b}:=h \quad b=2$ in
$\frac{R}{d}=94.3 \quad R / d>8$, consider as thin beam
$-\mathrm{c}:=\frac{\mathrm{d}}{2}=0.03 \cdot \mathrm{in}$
$-\quad I_{c}:=\frac{b \cdot d^{3}}{12}=3.6 \times 10^{-5} \cdot \mathrm{in}^{4}$

$$
-A:=b \cdot d=0.12 \cdot \mathrm{in}^{2}
$$

$-\quad \underset{\sim N}{h}:=\frac{I_{C}}{R \cdot A}=5.302 \times 10^{-5} \cdot$ in
$-k_{i}:=\frac{\sigma_{i}^{\text {I }}}{\sigma}$

## Solid rectangular section


stress calculated for straight beam

$$
\mathrm{k}_{\mathrm{i}}:=\left(\frac{1}{\frac{3 \cdot h}{c}}\right) \cdot\left(\frac{1-\frac{h}{c}}{\frac{R}{c}-1}\right)=1.004
$$

Ratio of actual stress in extreme fiber on convex side to ficticious stress calculated for straight beam
$-\mathrm{k}_{\mathrm{o}}:=\frac{\sigma_{\mathrm{o}}{ }^{\text {¹ }}}{\sigma}$

$$
\mathrm{k}_{\mathrm{o}}:=\left(\frac{1}{\frac{3 \cdot \mathrm{~h}}{\mathrm{c}}}\right) \cdot\left(\frac{1+\frac{\mathrm{h}}{\mathrm{c}}}{\frac{\mathrm{R}}{\mathrm{c}}+1}\right)=0.996
$$

Shape factor for rectagular section

$$
-\quad \mathrm{F}:=\frac{6}{5}=1.2
$$

Table 9.3 Equation constants:

$$
\begin{aligned}
& \alpha:=\frac{I_{C}}{A \cdot R^{2}}=9.371 \times 10^{-6} \\
& \beta:=\frac{\mathrm{F} \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{C}}}{\mathrm{G} \cdot \mathrm{~A} \cdot \mathrm{R}^{2}}=2.924 \times 10^{-5} \\
& \mathrm{k}_{1}:=1-\alpha+\beta=1 \\
& \mathrm{k}_{2}:=1-\alpha=1
\end{aligned}
$$

Half angle subtended by arch

Angle measured counterclockwise from the midspan of the arch to the start of the load

- $\quad \underset{\sim}{\theta}:=\frac{\pi}{2} \cdot \mathrm{rad}=1.571 \cdot \mathrm{rad}$
$\underset{\mathrm{m}}{\mathrm{s}}:=\sin (\theta)=1$
$\underset{\sim}{c}:=\cos (\theta) \quad c=0$
- $\quad \phi:=\frac{\pi}{2} \cdot \mathrm{rad}$

$$
\begin{aligned}
& {\underset{m}{N}}^{n}:=\sin (\phi) \quad n=1 \\
& \text { en }_{\mathrm{e}}:=\cos (\phi)=0 \\
& \mathrm{~B}_{\mathrm{HH}}:=2 \cdot \theta \cdot \mathrm{c}^{2}+\mathrm{k}_{1} \cdot(\theta-\mathrm{s} \cdot \mathrm{c})-\mathrm{k}_{2} \cdot 2 \cdot \mathrm{~s} \cdot \mathrm{c}=1.571 \\
& \mathrm{~B}_{\mathrm{HV}}:=-2 \cdot \theta \cdot \mathrm{~s} \cdot \mathrm{c}+\mathrm{k}_{2} \cdot 2 \cdot \mathrm{~s}^{2}=2 \\
& \mathrm{~B}_{\mathrm{VH}}:=\mathrm{B}_{\mathrm{HV}}=2 \\
& \mathrm{~B}_{\mathrm{HM}}:=-2 \cdot \theta \cdot \mathrm{c}+\mathrm{k}_{2} \cdot 2 \cdot \mathrm{~s}=2 \\
& \mathrm{~B}_{\mathrm{MH}}:=\mathrm{B}_{\mathrm{HM}}=2 \\
& B_{\mathrm{VV}}:=2 \cdot \theta \cdot \mathrm{~s}^{2}+\mathrm{k}_{1} \cdot(\theta+\mathrm{s} \cdot \mathrm{c})-\mathrm{k}_{2} \cdot 2 \cdot \mathrm{~s} \cdot \mathrm{c}=4.712 \\
& B_{\mathrm{VM}}:=2 \cdot \theta \cdot \mathrm{~s}=3.142 \\
& B_{M V}:=B_{\mathrm{VM}}=3.142
\end{aligned}
$$

$$
\mathrm{B}_{\mathrm{MM}}:=2 \cdot \theta=3.142
$$

Initial guess of concentrated load

- $\quad W:=-.645 \cdot \mathrm{lbf}$

Loading terms:

$$
\begin{aligned}
& L F_{H}:=W \cdot\left[-(\theta+\phi) \cdot c \cdot n+\frac{k_{1}}{2} \cdot\left(c^{2}-e^{2}\right)+k_{2} \cdot(1+s \cdot n-c \cdot e)\right]=-1.29 \mathrm{lbf} \\
& L F_{V}:=W \cdot\left[(\theta+\phi) \cdot s \cdot n+\frac{k_{1}}{2} \cdot(\theta+\phi+s \cdot c+n \cdot e)-k_{2} \cdot(2 \cdot s \cdot c-s \cdot e+c \cdot n)\right]=-3.04 \mathrm{lbf} \\
& L F_{M}:=W \cdot\left[(\theta+\phi) \cdot n+k_{2} \cdot(e-c)\right]=-2.026 \mathrm{lbf}
\end{aligned}
$$

Formulas for horizontal and vertical deflections, reaction moment, horizontal and vertical end reactions and angular rotation at the left edge

Angular rotation:

Horizontal reaction:

Vertical reaction:
$\psi_{A}:=0 \cdot$ in
$\mathrm{H}_{\mathrm{A}}:=0 \cdot \mathrm{lbf}$
$V_{\mathrm{mAn}_{\mathrm{A}}}=0 \cdot \mathrm{lbf}$

Because the above equal zero:

Reaction moment:

Horizontal deflection:
$M_{A M}:=R \cdot \frac{L F_{M}}{B_{M M}}=-3.6 \cdot i n \cdot \mathrm{lbf}$
$\delta_{H A}:=\frac{R^{3}}{E \cdot I_{C}} \cdot\left(B_{H M} \cdot \frac{M_{A}}{R}-L F_{H}\right)=0 \cdot$ in

Vertical deflection:

$$
\delta_{V A}:=\frac{R^{3}}{E \cdot I_{C}} \cdot\left(B V_{V M} \cdot \frac{M_{A}}{R}-L F_{V}\right)=0.3 \cdot \text { in } \quad \text { If } \delta_{V A}=\delta_{\text {vert }} \text {, initial } W \text { guess is correct }
$$

$$
M_{B_{v}}:=-M_{A}+2 \cdot R \cdot W=-3.649 \cdot \mathrm{in} \cdot \mathrm{lbf}
$$

$$
\sigma_{\text {therm_bend }}:=\frac{M_{B} \cdot \frac{d}{2}}{I_{C}}=-3.041 \times 10^{3} \mathrm{psi}
$$

4.3.2 Vertical Thermal Displacement Tension Stress - $\sigma_{\text {therm_tension }}$

$$
\sigma_{\text {therm_tension }}:=\frac{-\mathrm{W}}{\mathrm{~b} \cdot \mathrm{~d}}=5.375 \mathrm{psi}
$$

4.3.4 Combined Equivalent von Mises Stress $-\sigma_{e_{-} t h e r m}$

$$
\sigma_{\text {e_therm }}:=\left|\sigma_{\text {therm_bend }}\right|+\left|\sigma_{\text {therm_tension }}\right|=3.047 \times 10^{3} \mathrm{psi}
$$

### 4.3.5 ANSYS FEA Results

The results of an ANSYS FEA model of a single lamination with the thermal displacement loads only and with vertically guided constraight on the left end and fixed constraint on the right end is shown in Figure 4:

$$
\sigma_{\mathrm{e} \text { _therm_ANSYS }}=3.980 \times 10^{3} \mathrm{ps}
$$

4.4.1 Calculated Combined von Mises Stress
$\sigma_{\mathrm{e}_{-} \text {tot }}:=\sigma_{\mathrm{e}_{-} \text {op }}+\sigma_{\mathrm{e}_{-} \mathrm{ip}}+\sigma_{\mathrm{e}_{-} \text {therm }}=3.16 \times 10^{4} \mathrm{psi}$

### 4.4.2 ANSYS FEA Results

The results of an ANSYS FEA model of a single lamination with the combined Emag and thermal displacement loads with a vertically guided constraint on the left end and a fixed constraint on the right end is shown in Figure 5:
$\sigma_{\mathrm{e} \text { _tot_ANSYS }}=3.551 \times 10^{4} \mathrm{ps}$

$$
K:=a \cdot b^{3} \cdot\left[\frac{16}{3}-3.36 \cdot \frac{b}{a} \cdot\left(1-\frac{b^{4}}{12 \cdot a^{4}}\right)\right]
$$

