NSTX Upgrade Flexible Strap Assy: Single Lamination EMAG Stress Analysis

1.0 Problem Description

To determine if the baseline NSTX flexible strap design is adequate to meet the NSTX Structural Design critieria, specifically, the fatique requirements of section I-4.2 for 3000 full power and 30,000 two-thirds full-power pulses without failure.

2.0 Given

The baseline laminated flexible strap assy design is shown in Figure 1. The outer lamination is assumed worst-case and will be analyze below.

Number of laminations	-	n := 38	
Total Current	-	I := 130000·A	
Current per lamination	-	$I_{\text{lam}} := \frac{I}{n} = 3.421$	$\times 10^3 \cdot A$
Poloidal field flux density	-	B _{pol} := .3·T	
Toroidal field flux density	-	$B_{tor} := 1 \cdot T$	
Thermal displacements	-	$\delta_{vert} := .3 \cdot in$	$\delta_{\text{hor}} \coloneqq .018 \cdot \text{in}$
Outside radius	-	R ₀ := 5.688∙in	
Width	-	h := 2∙in	
Thickness	-	d := .06·in	
Radius of curvature	-	$\mathbb{R} := \mathbb{R}_0 - \frac{d}{2}$	R = 5.658 ⋅ in
Material:		Copper	
Elastic Modulus	-	E := 17 · 10 ⁶ · psi	

Poisson's ratio -
$$\nu := .3$$

Modulus of rigidity - $\underset{E}{G} := \frac{E}{2 \cdot (1 + \nu)} = 6.538 \times 10^6 \text{ psi}$

3.0 Calculated EMAG Loads

3.1 Out-of-Plane Force Load (z-direction) - $\rm F_{op}$

$$F_{op} := 2 \cdot I_{lam} \cdot B_{pol} \cdot R = 295 \cdot N$$
 [1]

 $F_{op} = 66.3 lbf$

3.2 In-Plane Pressure Load (y-direction) - p_{ip}

$$F_{ip /L} := I_{lam} \cdot B_{tor}$$

$$F_{ip /L} = 3.421 \times 10^{3} \cdot \frac{N}{m}$$

$$F_{ip /L} = 19.5 \cdot \frac{lbf}{in}$$

$$p_{ip} := \frac{(F_{ip /L})}{h}$$

$$p_{ip} = 9.8psi$$

4.0 Stress Analysis

4.1 Out-of-Plane Emag Load Stresses

The out-of-plane load results in out-of-plane bending, torsion, and direct shear.

This following is from *Roark's Formulas for Stress and Strain, 7th Edition,* Table 9.4, Formulas for Curved Beams of Compact Cross Section Loaded Normal to the Plane of Curvature, Case 4e: Uniformly distributed lateral load, both ends fixed.

Angle from left end to start of loading - $\theta := 0 \cdot rad$

Angle subtended by span of the beam -

 $\phi := \pi \cdot \mathsf{rad}$

Length of beam

L∷= R·φ = 17.775·in

Distributed load (force/length)

Area moment of inertia about bending axis -

Torsional stiffness (rectanglular section)

$$w := \frac{F_{op}}{L} = 3.731 \cdot \frac{lbf}{in}$$
$$\lim_{M \to \infty} \frac{d \cdot h^3}{12} = 0.04 \cdot in^4$$

 $K = 1.413 \times 10^{-4} \cdot in^4$

_

-

$$\begin{split} \mathsf{K} &:= a \cdot b^3 \cdot \left[\frac{16}{3} - 3.36 \cdot \frac{b}{a} \cdot \left(1 - \frac{b^4}{12 \cdot a^4} \right) \right]^{\bullet} \qquad (a \end{split}$$
 where: $a &:= \frac{h}{2} \qquad b := \frac{d}{2}$

Solid rectangular section

Table 9.4 Equation constants:

$$\beta := \frac{E \cdot I}{G \cdot K} = 736.1$$

$$C_1 := \frac{1 + \beta}{2} \cdot \phi \cdot \sin(\phi) - \beta \cdot (1 - \cos(\phi)) = -1.472 \times 10^3$$

$$C_2 := \frac{1 + \beta}{2} \cdot (\phi \cdot \cos(\phi) - \sin(\phi)) = -1.158 \times 10^3$$

$$C_3 := -\beta \cdot (\phi - \sin(\phi)) - \frac{1 + \beta}{2} \cdot (\phi \cdot \cos(\phi) - \sin(\phi)) = -1.155 \times 10^3$$

$$C_4 := \frac{1 + \beta}{2} \cdot \phi \cdot \cos(\phi) + \frac{1 - \beta}{2} \cdot \sin(\phi) = -1.158 \times 10^3$$

$$\begin{split} & C_{5} := -\frac{1+\beta}{2} \cdot \varphi \cdot \sin(\varphi) = -1.418 \times 10^{-13} \\ & C_{6} := C_{1} \\ & C_{7} := C_{5} \\ & C_{8} := \frac{1-\beta}{2} \cdot \sin(\varphi) - \frac{1+\beta}{2} \cdot \varphi \cdot \cos(\varphi) = 1.158 \times 10^{3} \\ & C_{9} := C_{2} \\ & C_{a2} := \frac{1+\beta}{2} \cdot [(\varphi - \theta) \cdot \cos(\varphi - \theta) - \sin(\varphi - \theta)] = -1.158 \times 10^{3} \\ & C_{a3} := -\beta \cdot (\varphi - \theta - \sin(\varphi - \theta)) - C_{a2} = -1.155 \times 10^{3} \\ & C_{a12} := \frac{1+\beta}{2} \cdot [(\varphi - \theta) \cdot \sin(\varphi - \theta) - 2 + 2 \cdot \cos(\varphi - \theta)] = -1.474 \times 10^{3} \\ & C_{a13} := \beta \cdot \left[1 - \cos(\varphi - \theta) - \frac{(\varphi - \theta)^{2}}{2} \right] - C_{a12} = -686.1 \\ & C_{a16} := C_{a3} \\ & C_{a19} := C_{a12} \end{split}$$

4.1.1 Direct Shear Stress - τ_{op} _direct

 $\text{Direct shear force at end } A \quad - \quad V_A := w \cdot R \cdot \frac{C_{a13} \cdot \left(C_4 \cdot C_8 - C_5 \cdot C_7\right) + C_{a16} \cdot \left(C_2 \cdot C_7 - C_1 \cdot C_8\right) + C_{a19} \cdot \left(C_1 \cdot C_5 - C_2 \cdot C_4\right)}{C_1 \cdot \left(C_5 \cdot C_9 - C_6 \cdot C_8\right) + C_4 \cdot \left(C_3 \cdot C_8 - C_2 \cdot C_9\right) + C_7 \cdot \left(C_2 \cdot C_6 - C_3 \cdot C_5\right)}$

$$V_A = 33.2 \, \text{lbf}$$

Direct shear force at end B $- V_B := V_A - w \cdot R \cdot (\varphi - \theta) = -33.158 \text{ lbf}$

$$\tau_{op_direct} := \frac{V_A}{d \cdot h} = 276.3 \, \text{psi}$$

4.1.2 Bending Stress - σ_{op_bend}

$$\text{Bending moment at end A} \quad - \ \text{M}_{\text{A}} \coloneqq \text{w} \cdot \text{R}^{2} \cdot \frac{\text{C}_{a13} \cdot \left(\text{C}_{5} \cdot \text{C}_{9} - \text{C}_{6} \cdot \text{C}_{8}\right) + \text{C}_{a16} \cdot \left(\text{C}_{3} \cdot \text{C}_{8} - \text{C}_{2} \cdot \text{C}_{9}\right) + \text{C}_{a19} \cdot \left(\text{C}_{2} \cdot \text{C}_{6} - \text{C}_{3} \cdot \text{C}_{5}\right)}{\text{C}_{1} \cdot \left(\text{C}_{5} \cdot \text{C}_{9} - \text{C}_{6} \cdot \text{C}_{8}\right) + \text{C}_{4} \cdot \left(\text{C}_{3} \cdot \text{C}_{8} - \text{C}_{2} \cdot \text{C}_{9}\right) + \text{C}_{7} \cdot \left(\text{C}_{2} \cdot \text{C}_{6} - \text{C}_{3} \cdot \text{C}_{5}\right)}$$

$$M_A = -119.4 \cdot in \cdot lbf$$

Bending moment at end B $- M_B := -M_A = 119.4 \cdot in \cdot lbf$

$$c_{x} := \frac{h}{2} = 1 \cdot in$$

$$\sigma_{\text{op_bend}} \coloneqq \frac{M_{\text{A}} \cdot c}{I} = -2.986 \times 10^3 \text{ psi}$$

4.1.3 Torsional Stress - τ_{op_tor}

 $\text{Twisting moment at end A} \quad - \quad \text{T}_{A} := \text{w} \cdot \text{R}^{2} \cdot \frac{\text{C}_{a13} \cdot \left(\text{C}_{6} \cdot \text{C}_{7} - \text{C}_{4} \cdot \text{C}_{9}\right) + \text{C}_{a16} \cdot \left(\text{C}_{1} \cdot \text{C}_{9} - \text{C}_{3} \cdot \text{C}_{7}\right) + \text{C}_{a19} \cdot \left(\text{C}_{3} \cdot \text{C}_{4} - \text{C}_{1} \cdot \text{C}_{6}\right)}{\text{C}_{1} \cdot \left(\text{C}_{5} \cdot \text{C}_{9} - \text{C}_{6} \cdot \text{C}_{8}\right) + \text{C}_{4} \cdot \left(\text{C}_{3} \cdot \text{C}_{8} - \text{C}_{2} \cdot \text{C}_{9}\right) + \text{C}_{7} \cdot \left(\text{C}_{2} \cdot \text{C}_{6} - \text{C}_{3} \cdot \text{C}_{5}\right)}$

$$T_A = 35.5 \cdot in \cdot lbf$$

Twisting moment at end B - $T_B := -T_A = -35.5 \cdot in \cdot lbf$

$$\tau_{\text{op_tor}} \coloneqq \frac{3 \cdot T_{\text{A}}}{8 \cdot a \cdot b^2} \cdot \left[1 + 0.6095 \cdot \frac{b}{a} + 0.8865 \cdot \left(\frac{b}{a}\right)^2 - 1.8023 \cdot \left(\frac{b}{a}\right)^3 + 0.9100 \cdot \left(\frac{b}{a}\right)^4 \right]$$

$$\tau_{op_tor} = 1.509 \times 10^4 \, \text{psi}$$

4.1.4 Combined Equivalent von Mises Stress - $\sigma_{e op}$

$$\sigma_{e_op} := \left[\frac{1}{2} \cdot \left[\left(2 \cdot \sigma_{op_bend}\right)^2 + 6 \cdot \left(\tau_{op_tor} + \tau_{op_direct}\right)^2\right]\right]^{.5} = 2.695 \times 10^4 \text{ psi}$$

4.1.5 ANSYS FEA Results

The results of an ANSYS FEA model of a single lamination with the out-of-plane Emag distributed force load only applied to the concave surface of the lamination and with fixed constraints on the straight legs is shown in Figure 2:

$$\sigma_{e_{op}ANSYS}$$
 = 2.917 x 10⁴ psi

4.2 In-Plane Emag Load Stresses

The in-plane Emag pressure load produces an in-plane tangential hoop stress, and an out-of-plane bending stress due to the offset/ joggle in the lamination.

4.2.1. Hoop stress - $\sigma_{ip hoop}$

4.2.2 Offset Bending Stress - $\sigma_{ip offset bend}$

Assume offset/ joggle can be modeled as a short straight beam with a uniform distributed over the length and fixed at both ends.

4.2.3 Combined Equivalent von Mises Stress - σ_{e} ip

 $\sigma_{e_{ip}} \coloneqq |\sigma_{ip_{hoop}}| + |\sigma_{ip_{offset_{bend}}}| = 1.601 \times 10^3 \text{ psi}$

4.2.4 ANSYS FEA Results

The results of an ANSYS FEA model of a single lamination with the in-plane Emag pressure load only applied to the concave surface of the lamination and with fixed constraints on the straight legs is shown in Figure 3:

σ_{e ip ANSYS} = 5.989 x 10³ psi

4.3 Thermal Displacement Stresses

The horizontal displacement is small and asumed to be negligible

The vertical thermal displacement results in in-plane bending and simple tension.

4.3.1 Vertical Thermal Displacement Bending Stress - σ_{therm_bend}

The following is from *Roark's Formulas for Stress and Strain, 7th Edition,* Table 9.3, Reaction and Deformation Formulas for Circular Arches, Cases 5a and 11: Concentrated vertical loading, left end restrained against rotation only, right end fixed...

Area properties:

From Table 9.1, Formulas for curved beams subject to bending in the plane of curvature, Ref. No. 1, Solid rectangular section

Radius of curvature-R = 5.658 · inHeight of rectangular section-
$$d = 0.06 \cdot in$$
Width of rectangular section- $b_{c} := h$ $b = 2 in$ $\frac{R}{d} = 94.3$ R/d > 8, consider as thin beamHalf height- $c_{c} := \frac{d}{2} = 0.03 \cdot in$ Moment of inertia about centriodal
axis perpindicular to plane of curvature- $l_{c} := \frac{b \cdot d^{3}}{12} = 3.6 \times 10^{-5} \cdot in^{4}$ Area- $A_{c} := b \cdot d = 0.12 \cdot in^{2}$ Distance from centroidal axis to
neutral axis measured toward the
center of curvature- $h_{c} := \frac{l_{c}}{R \cdot A} = 5.302 \times 10^{-5} \cdot in$ Ratio of actual stress in extreme
fiber on concave side to ficticious- $k_{i} := \frac{\sigma_{i}^{-1}}{\sigma}$

Solid rectangular section

	┝╾╹		
		¢	ţ
₽		¢	d L

stress calculated for straight beam

$$k_{j} := \left(\frac{1}{\frac{3 \cdot h}{c}}\right) \cdot \left(\frac{1 - \frac{h}{c}}{\frac{R}{c} - 1}\right) = 1.004$$

/

Ratio of actual stress in extreme fiber on convex side to ficticious stress calculated for straight beam

$$k_{0} := \left(\frac{1}{\frac{3 \cdot h}{c}}\right) \cdot \left(\frac{1 + \frac{h}{c}}{\frac{R}{c} + 1}\right) = 0.996$$
$$F := \frac{6}{c} = 1.2$$

- $F_{m} := \frac{6}{5} = 1.2$

 $\mathbf{k}_{\mathbf{O}} := \frac{\sigma_{\mathbf{O}}}{\sigma}$

Table 9.3 Equation constants:

$$\alpha := \frac{l_c}{A \cdot R^2} = 9.371 \times 10^{-6}$$

$$\beta := \frac{F \cdot E \cdot I_c}{G \cdot A \cdot R^2} = 2.924 \times 10^{-5}$$

$$k_1 := 1 - \alpha + \beta = 1$$

 $k_2 := 1 - \alpha = 1$

Half angle subtended by arch

-

-

Angle measured counterclockwise from the midspan of the arch to the start of the load

$$\begin{split} & \bigoplus_{n} := \frac{\pi}{2} \cdot rad = 1.571 \cdot rad \\ & \bigotimes_{n} := \sin(\theta) = 1 \\ & \bigoplus_{n} := \cos(\theta) \qquad c = 0 \\ & \bigoplus_{n} := \frac{\pi}{2} \cdot rad \\ & \bigoplus_{n} := \sin(\varphi) \qquad n = 1 \\ & \bigoplus_{n} := \cos(\varphi) = 0 \\ & B_{HH} := 2 \cdot \theta \cdot c^{2} + k_{1} \cdot (\theta - s \cdot c) - k_{2} \cdot 2 \cdot s \cdot c = 1.571 \\ & B_{HV} := -2 \cdot \theta \cdot s \cdot c + k_{2} \cdot 2 \cdot s^{2} = 2 \\ & B_{VH} := B_{HV} = 2 \\ & B_{HM} := -2 \cdot \theta \cdot c + k_{2} \cdot 2 \cdot s = 2 \\ & B_{MH} := B_{HM} = 2 \\ & B_{VV} := 2 \cdot \theta \cdot s^{2} + k_{1} \cdot (\theta + s \cdot c) - k_{2} \cdot 2 \cdot s \cdot c = 4.712 \\ & B_{VM} := 2 \cdot \theta \cdot s = 3.142 \\ & B_{MV} := B_{VM} = 3.142 \end{split}$$

$$\mathsf{B}_{\mathsf{M}\mathsf{M}} := 2 \cdot \theta = 3.142$$

- ₩.:= -.645·lbf

Initial guess of concentrated load

Loading terms:

$$\begin{split} \mathsf{LF}_{H} &:= \mathsf{W} \cdot \left[-(\theta + \varphi) \cdot \mathbf{c} \cdot \mathbf{n} + \frac{\mathsf{k}_{1}}{2} \cdot \left(\mathbf{c}^{2} - \mathbf{e}^{2} \right) + \mathsf{k}_{2} \cdot (1 + \mathbf{s} \cdot \mathbf{n} - \mathbf{c} \cdot \mathbf{e}) \right] = -1.29 \, \mathsf{lbf} \\ \mathsf{LF}_{V} &:= \mathsf{W} \cdot \left[(\theta + \varphi) \cdot \mathbf{s} \cdot \mathbf{n} + \frac{\mathsf{k}_{1}}{2} \cdot (\theta + \varphi + \mathbf{s} \cdot \mathbf{c} + \mathbf{n} \cdot \mathbf{e}) - \mathsf{k}_{2} \cdot (2 \cdot \mathbf{s} \cdot \mathbf{c} - \mathbf{s} \cdot \mathbf{e} + \mathbf{c} \cdot \mathbf{n}) \right] = -3.04 \, \mathsf{lbf} \\ \mathsf{LF}_{M} &:= \mathsf{W} \cdot \left[(\theta + \varphi) \cdot \mathbf{n} + \mathsf{k}_{2} \cdot (\mathbf{e} - \mathbf{c}) \right] = -2.026 \, \mathsf{lbf} \end{split}$$

Formulas for horizontal and vertical deflections, reaction moment, horizontal and vertical end reactions and angular rotation at the left edge

Angular rotation:	$\psi_{A} := 0 \cdot in$
-------------------	--------------------------

Horizontal reaction:

Vertical reaction:

Because the above equal zero:

Reaction moment:

$$M_{Av} := R \cdot \frac{LF_M}{B_{MM}} = -3.6 \cdot \text{in} \cdot \text{lbf}$$
$$\delta_{HA} := \frac{R^3}{E \cdot I_c} \cdot \left(B_{HM} \cdot \frac{M_A}{R} - LF_H \right) = 0 \cdot \text{in}$$

Horizontal deflection:

 $H_A := 0 \cdot Ibf$

,VA, := 0·lbf

Vertical deflection:

$$\delta_{VA} := \frac{R^3}{E \cdot I_c} \cdot \left(B_{VM} \cdot \frac{M_A}{R} - LF_V \right) = 0.3 \cdot \text{in}$$

If $\delta_{VA} = \delta_{vert}$, initial W guess is correct

$$M_{B_v} := -M_A + 2 \cdot R \cdot W = -3.649 \cdot in \cdot lbf$$

$$\sigma_{\text{therm_bend}} := \frac{M_{\text{B}} \cdot \frac{\text{d}}{2}}{I_{\text{C}}} = -3.041 \times 10^{3} \text{ psi}$$

4.3.2 Vertical Thermal Displacement Tension Stress - $\sigma_{therm_tension}$

$$\sigma_{\text{therm_tension}} \coloneqq \frac{-W}{b \cdot d} = 5.375 \text{ psi}$$

4.3.4 Combined Equivalent von Mises Stress - σ_{e_therm}

 $\sigma_{e_{therm}} := |\sigma_{therm_{bend}}| + |\sigma_{therm_{tension}}| = 3.047 \times 10^3 \text{ psi}$

4.3.5 ANSYS FEA Results

The results of an ANSYS FEA model of a single lamination with the thermal displacement loads only and with vertically guided constraight on the left end and fixed constraint on the right end is shown in Figure 4:

 $\sigma_{e \text{ therm ANSYS}}$ = 3.980 x 10³ ps

4.4 Combined Emag and Thermal Displacement Stress

4.4.1 Calculated Combined von Mises Stress

 $\sigma_{e_{tot}} := \sigma_{e_{op}} + \sigma_{e_{ip}} + \sigma_{e_{therm}} = 3.16 \times 10^4 \text{ psi}$

4.4.2 ANSYS FEA Results

The results of an ANSYS FEA model of a single lamination with the combined Emag and thermal displacement loads with a vertically guided constraint on the left end and a fixed constraint on the right end is shown in Figure 5:

 $\sigma_{e \text{ tot ANSYS}} = 3.551 \text{ x} 10^4 \text{ ps}$

$$K_{\text{MA}} := a \cdot b^3 \cdot \left[\frac{16}{3} - 3.36 \cdot \frac{b}{a} \cdot \left(1 - \frac{b^4}{12 \cdot a^4} \right) \right]$$