
NSTX Upgrade Flexible Strap Assy:

Single Lamination EMAG Stress Analysis

1.0 Problem Description

To determine if the baseline NSTX flexible strap design is adequate to meet the NSTX Structural Design critieria,
specifically, the fatique requirements of section I-4.2 for 3000 full power and 30,000 two-thirds full-power pulses without
failure.

2.0 Given

The baseline laminated flexible strap assy design is shown in Figure 1. The outer lamination is assumed worst-case and will be analyzed
below.

Number of laminations         - n 38:=

Total Current                         - I 130000 A⋅:=

Current per lamination         - Ilam
I

n
3.421 10

3× A⋅=:=

Poloidal field flux density     -  Bpol .3 T⋅:=

Toroidal field flux density     - Btor 1 T⋅:=

Thermal displacements       - δvert .3 in⋅:= δhor .018 in⋅:=

Outside radius                      - Ro 5.688 in⋅:=

Width                                     - h 2 in⋅:=

Thickness                              - d .06 in⋅:=

Radius of curvature              - R Ro
d

2
−:= R 5.658 in⋅=

Material: Copper

      Elastic Modulus              - E 17 10
6⋅ psi⋅:=



      Poisson's ratio               - ν .3:=

Modulus of rigidity          - G
E

2 1 ν+( )⋅
6.538 10

6× psi=:=

3.0 Calculated EMAG Loads

R 

Fop 

Bpol 

I
+
 

 

3.1 Out-of-Plane Force Load (z-direction)  -  Fop

Fop 2 Ilam⋅ Bpol⋅ R⋅ 295 N⋅=:= [1]

Fop 66.3 lbf=

3.2 In-Plane Pressure Load (y-direction)  -  pip

Fip /L Ilam Btor⋅:= [1]

 

pip 

Btor 

I
+
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d 

 

Fip /L 3.421 10
3×

N

m
⋅=

Fip /L 19.5
lbf

in
⋅=

pip

Fip /L( )
h

:=

pip 9.8psi=



4.0 Stress Analysis

4.1 Out-of-Plane Emag Load Stresses

The out-of-plane load results in out-of-plane bending, torsion, and direct shear.

This following is from  Roark's Formulas for Stress and Strain, 7th Edition, Table 9.4, Formulas
for Curved Beams of Compact Cross Section Loaded Normal to the Plane of Curvature, Case 4e:
Uniformly distributed lateral load, both ends fixed.

Uniformly distributed lateral

load
• Case 4e  Right end fixed, left end

fixed

Angle from left end to start of loading               - θ 0 rad⋅:=

Angle subtended by span of the beam       - ϕ π rad⋅:=

Length of beam                                                   - L R ϕ⋅ 17.775 in⋅=:=



Distributed load (force/length)                           - w
Fop

L
3.731

lbf

in
⋅=:=

Area moment of inertia about bending axis     - I
d h

3⋅

12
0.04 in

4⋅=:=

Torsional stiffness (rectanglular section)          -       K a b
3⋅

16

3
3.36

b

a
⋅ 1

b
4

12 a
4⋅

−








⋅−








⋅:= (a >> b)

Solid rectangular section
where: a

h

2
:= b

d

2
:=

K 1.413 10
4−× in

4⋅=

Table 9.4 Equation constants:

β
E I⋅

G K⋅
736.1=:=

C1
1 β+

2
ϕ⋅ sin ϕ( )⋅ β 1 cos ϕ( )−( )⋅− 1.472− 10

3×=:=

C2
1 β+

2
ϕ cos ϕ( )⋅ sin ϕ( )−( )⋅ 1.158− 10

3×=:=

C3 β− ϕ sin ϕ( )−( )⋅
1 β+

2
ϕ cos ϕ( )⋅ sin ϕ( )−( )⋅− 1.155− 10

3×=:=

C4
1 β+

2
ϕ⋅ cos ϕ( )⋅

1 β−

2
sin ϕ( )⋅+ 1.158− 10

3×=:=



C5
1 β+

2
− ϕ⋅ sin ϕ( )⋅ 1.418− 10

13−×=:=

C6 C1:=

C7 C5:=

C8
1 β−

2
sin ϕ( )⋅

1 β+

2
ϕ⋅ cos ϕ( )⋅− 1.158 10

3×=:=

C9 C2:=

Ca2
1 β+

2
ϕ θ−( ) cos ϕ θ−( )⋅ sin ϕ θ−( )−[ ]⋅ 1.158− 10

3×=:=

Ca3 β− ϕ θ− sin ϕ θ−( )−( )⋅ Ca2− 1.155− 10
3×=:=

Ca12
1 β+

2
ϕ θ−( ) sin ϕ θ−( )⋅ 2− 2 cos ϕ θ−( )⋅+[ ]⋅ 1.474− 10

3×=:=

Ca13 β 1 cos ϕ θ−( )−
ϕ θ−( )

2

2
−









⋅ Ca12− 686.1−=:=

Ca16 Ca3:=

Ca19 Ca12:=

4.1.1 Direct Shear Stress - τop_direct

Direct shear force at end  A     - VA w R⋅
Ca13 C4 C8⋅ C5 C7⋅−( )⋅ Ca16 C2 C7⋅ C1 C8⋅−( )⋅+ Ca19 C1 C5⋅ C2 C4⋅−( )⋅+

C1 C5 C9⋅ C6 C8⋅−( )⋅ C4 C3 C8⋅ C2 C9⋅−( )⋅+ C7 C2 C6⋅ C3 C5⋅−( )⋅+
⋅:=

VA 33.2 lbf=



Direct shear force at end  B      - VB VA w R⋅ ϕ θ−( )⋅− 33.158− lbf=:=

τop_direct

VA

d h⋅
276.3psi=:=

4.1.2 Bending Stress - σop_bend

Bending moment at end A    - MA w R
2⋅

Ca13 C5 C9⋅ C6 C8⋅−( )⋅ Ca16 C3 C8⋅ C2 C9⋅−( )⋅+ Ca19 C2 C6⋅ C3 C5⋅−( )⋅+

C1 C5 C9⋅ C6 C8⋅−( )⋅ C4 C3 C8⋅ C2 C9⋅−( )⋅+ C7 C2 C6⋅ C3 C5⋅−( )⋅+
⋅:=

MA 119.4− in lbf⋅⋅=

Bending moment at end B    - MB MA− 119.4 in lbf⋅⋅=:=

c
h

2
1 in⋅=:=

σop_bend

MA c⋅

I
2.986− 10

3× psi=:=

4.1.3 Torsional Stress - τop_tor

( ) ( ) ( )



Twisting moment at end A    - TA w R
2⋅

Ca13 C6 C7⋅ C4 C9⋅−( )⋅ Ca16 C1 C9⋅ C3 C7⋅−( )⋅+ Ca19 C3 C4⋅ C1 C6⋅−( )⋅+

C1 C5 C9⋅ C6 C8⋅−( )⋅ C4 C3 C8⋅ C2 C9⋅−( )⋅+ C7 C2 C6⋅ C3 C5⋅−( )⋅+
⋅:=

TA 35.5 in lbf⋅⋅=

Twisting moment at end B    - TB TA− 35.5− in lbf⋅⋅=:=

τop_tor

3 TA⋅

8 a⋅ b
2⋅

1 0.6095
b

a
⋅+ 0.8865

b

a






2

⋅ 1.8023
b

a






3

⋅−+ 0.9100
b

a






4

⋅+








⋅:=

τop_tor 1.509 10
4× psi=

4.1.4 Combined Equivalent von Mises Stress - σe_op

σe_op
1

2
2 σop_bend⋅( )2 6 τop_tor τop_direct+( )2⋅+



⋅





.5

2.695 10
4× psi=:=

4.1.5 ANSYS FEA Results

The results of an ANSYS FEA model of a single lamination with the out-of-plane Emag distributed force load
only applied to the concave surface of the lamination and with fixed constraints on the straight legs is shown
in Figure 2: 

σe_op_ANSYS = 2.917 x 104 psi

4.2 In-Plane Emag Load Stresses  



The in-plane Emag pressure load produces an in-plane tangential hoop stress, and an out-of-plane bending stress due to the offset/
joggle in the lamination.

4.2.1. Hoop stress  -  σ ip_hoop

σip_hoop

pip R⋅

d
921.1psi=:=

4.2.2 Offset Bending Stress  -  σ ip_offset_bend 

Assume offset/ joggle can be modeled as a short straight beam with a uniform distributed over the length and fixed at both ends.

Offset length                                   - loffset .94 in⋅:=
Fip /L 19.535

lbf

in
⋅=

In-plane Emag force                      - Fip Fip /L( ) L⋅ 347.2 lbf=:=

Effective offset distributed load    - woffset

Fip

loffset

369.4
lbf

in
⋅=:=

Bending moment                            -
Moffset

woffset loffset
2⋅

12
27.2 in lbf⋅⋅=:=

σip_offset_bend

Moffset c⋅

I
680psi=:=

4.2.3 Combined Equivalent von Mises Stress - σe_ip

σe_ip σip_hoop σip_offset_bend+ 1.601 10
3× psi=:=



The following is from  Roark's Formulas for Stress and Strain, 7th Edition, Table 9.3, Reaction and Deformation
Formulas for Circular Arches, Cases 5a and 11: Concentrated vertical loading, left end restrained against rotation only, right end fixed..

4.2.4 ANSYS FEA Results

The results of an ANSYS FEA model of a single lamination with the in-plane Emag pressure load only
applied to the concave surface of the lamination and with fixed constraints on the straight legs is shown in
Figure 3: 

σe_ip_ANSYS = 5.989 x 103 psi

4.3 Thermal Displacement Stresses

The horizontal displacement is small and asumed to be negligible 

The vertical thermal displacement results in in-plane bending and simple tension.

4.3.1 Vertical Thermal Displacement Bending Stress  -  σtherm_bend

11.  Left end restrained against rotation only, right
end fixed

5a. Concentrated

vertical load



Area properties:

From Table 9.1, Formulas for curved beams subject to bending in the plane of curvature,
Ref. No. 1, Solid rectangular section

Radius of curvature                                     -  R 5.658 in⋅=

d 0.06 in⋅=Height of rectangular section                     -

b h:= b 2 in= Solid rectangular section
Width of rectangular section                      -  

R

d
94.3= R/d > 8, consider as thin beam

Half height                                                     -  c
d

2
0.03 in⋅=:=

Moment of inertia about centriodal            -
axis perpindicular to plane of curvature

Ic
b d

3⋅

12
3.6 10

5−× in
4⋅=:=

Area                                                              -  A b d⋅ 0.12 in
2⋅=:=

Distance from centroidal axis to               -
neutral axis measured toward the
center of curvature

h
Ic

R A⋅
5.302 10

5−× in⋅=:=

Ratio of actual stress in extreme               -
fiber on concave side to ficticious

ki

σi

σ
:=



fiber on concave side to ficticious
stress calculated for straight beam

ki
1

3 h⋅

c









1
h

c
−

R

c
1−













⋅ 1.004=:=

Ratio of actual stress in extreme               -
fiber on convex side to ficticious
stress calculated for straight beam

ko

σo

σ
:=

ko
1

3 h⋅

c









1
h

c
+

R

c
1+













⋅ 0.996=:=

Shape factor for rectagular section        - F
6

5
1.2=:=

Table 9.3 Equation constants:

α
Ic

A R
2⋅

9.371 10
6−×=:=

β
F E⋅ Ic⋅

G A⋅ R
2⋅

2.924 10
5−×=:=

k1 1 α− β+ 1=:=

k2 1 α− 1=:=



Half angle subtended by arch                -  θ
π

2
rad⋅ 1.571 rad⋅=:=

s sin θ( ) 1=:=

c cos θ( ):= c 0=

Angle measured counterclockwise       -  
from the midspan of the arch to the
start of the load

ϕ
π

2
rad⋅:=

n sin ϕ( ):= n 1=

e cos ϕ( ) 0=:=

BHH 2 θ⋅ c
2⋅ k1 θ s c⋅−( )⋅+ k2 2⋅ s⋅ c⋅− 1.571=:=

BHV 2− θ⋅ s⋅ c⋅ k2 2⋅ s
2⋅+ 2=:=

BVH BHV 2=:=

BHM 2− θ⋅ c⋅ k2 2⋅ s⋅+ 2=:=

BMH BHM 2=:=

BVV 2 θ⋅ s
2⋅ k1 θ s c⋅+( )⋅+ k2 2⋅ s⋅ c⋅− 4.712=:=

BVM 2 θ⋅ s⋅ 3.142=:=

BMV BVM 3.142=:=



BMM 2 θ⋅ 3.142=:=

Initial guess of concentrated load               - W .645− lbf⋅:=

Loading terms:
LFH W θ ϕ+( )− c⋅ n⋅

k1

2
c

2
e

2−( )⋅+ k2 1 s n⋅+ c e⋅−( )⋅+








⋅ 1.29− lbf=:=

LFV W θ ϕ+( ) s⋅ n⋅
k1

2
θ ϕ+ s c⋅+ n e⋅+( )⋅+ k2 2 s⋅ c⋅ s e⋅− c n⋅+( )⋅−









⋅ 3.04− lbf=:=

LFM W θ ϕ+( ) n⋅ k2 e c−( )⋅+ ⋅ 2.026− lbf=:=

Formulas for horizontal and vertical deflections,
reaction moment, horizontal and vertical end
reactions and angular rotation at the left edge

ψA 0 in⋅:=Angular rotation:

HA 0 lbf⋅:=Horizontal reaction:

VA 0 lbf⋅:=
Vertical reaction:

Because the above equal zero:

MA R
LFM

BMM

⋅ 3.6− in lbf⋅⋅=:=Reaction moment:

Horizontal deflection: δHA
R

3

E Ic⋅
BHM

MA

R
⋅ LFH−









⋅ 0 in⋅=:=



δVA
R

3

E Ic⋅
BVM

MA

R
⋅ LFV−









⋅ 0.3 in⋅=:= If δVA = δvert, initial W guess is correct
Vertical deflection:

MB MA− 2 R⋅ W⋅+ 3.649− in lbf⋅⋅=:=

σtherm_bend

MB
d

2
⋅

Ic

3.041− 10
3× psi=:=

4.3.2 Vertical Thermal Displacement Tension Stress  -  σ therm_tension

σtherm_tension
W−

b d⋅
5.375psi=:=

4.3.4 Combined Equivalent von Mises Stress - σe_therm

σe_therm σtherm_bend σtherm_tension+ 3.047 10
3× psi=:=

4.3.5 ANSYS FEA Results

The results of an ANSYS FEA model of a single lamination with the thermal displacement loads only and with
vertically guided constraight on the left end and fixed constraint on the right end is shown in Figure 4: 

σe_therm_ANSYS = 3.980 x 103 psi

4.4   Combined Emag and Thermal Displacement Stress



4.4.1 Calculated Combined von Mises Stress σe_tot σe_op σe_ip+ σe_therm+ 3.16 10
4× psi=:=

4.4.2 ANSYS FEA Results

The results of an ANSYS FEA model of a single lamination with the combined Emag and thermal
displacement loads with a vertically guided constraint on the left end and a fixed constraint on the right end is
shown in Figure 5: 

σe_tot_ANSYS = 3.551 x 104 psi







K a b
3⋅

16

3
3.36

b

a
⋅ 1

b
4

12 a
4⋅

−








⋅−








⋅:=


