NSTX Centerstack Scope

L. Dudek

NSTX Upgrade
Readiness For Operations Review
PPPL
December 9-11, 2014
Outline

- General Requirements
- WBS Elements / Cost Accounts
 - Vacuum Vessel & Coil Support Structures
 - Magnets
 - PFCs
 - Power
 - Bakeout
 - I&C
- Solutions to Remaining Challenges
 - Aquapour
 - OH Cooling Wave
- Remaining Tasks and PTPs
- Readiness to Operate
- Instrumentation
- Maintenance Inspection Plan
- FMEA
- Summary
NSTXU Centerstack General Requirements

• Requirements defined in GRD: **NSTX-CSU-RQMTS-GRD**
 – Replacement of the Center Stack Core
 – Modification of the NSTX to meet extended performance parameters at higher fields, higher current and longer pulse length
 – Modify as necessary the Supporting Subsystems and Equipment to meet extended performance parameters
 – Design Point Spreadsheet - Provides specific detailed parameters including 96 operational scenarios to be used when performing analysis in the evaluations above and for designing the upgrade components
 • Physics operations parameters
 • Physical dimensions of the Centerstack Radial Build
 • TF, OH, and PF Coil Design Parameters (Diameters, Conductor sizes, Insulation dimensions, No. Turns, Coolant Flows, Voltages, Currents, etc)
 • Coil and Plasma Waveforms
 • PF/OH Coil Forces
 • PFC Heat Loads
 • Force Influence Matrices
 • Circuit Impedances
 • Pulse Spectrum
GRD: Replacement of the Centerstack Core

- Changes to the Central Core:
 - Toroidal Field (TF) inner leg bundle including flags, hubs, and flexible connectors
 - Ohmic Heating (OH) coil
 - Poloidal Field (PF) coils PF1A Upper, PF1A Lower, and PF1B
 - Microtherm thermal insulation
 - Center Stack Casing (CSC)
 - Plasma Facing Components (PFC) associated with CS Casing including the Inboard Divertor (IBD)
 - TF, OH, PF1A Upper (PF1AU), PF1A Lower (PF1AL), and PF1B Lower (PF1BL) coil electrical leads
 - CS and Supply piping for heating and cooling of CS Casing and IBD
 - Pedestal which supports Center Stack Assembly from floor
GRD: NSTXU Extended Performance

• New Performance Parameters
 • Plasma Current (I_p): 2 MA, 5 sec flat top
 • Toroidal Field (B_t): 1.0 T at $R_0=0.9344m$
 • Total Pulses: 20,000 per Pulse spectrum Table 24
 • T_{Pulse}: 5.0 sec, T_{Rep}: 2400 sec

• Structural Improvements to meet the higher field, higher current and longer pulse length
 – TF outer leg supports
 – PF coil supports
 – Vacuum vessel if required (VV)
 – Internal hardware including Passive Plates and Outboard Divertor
GRD: Modification to Supporting Subsystems and Equipment

• Evaluate and modify as required the following for compatibility with higher field, current and longer pulse length
 – Internal hardware including Passive Plate supports and Inboard Divertor
 – Auxiliary Systems
 • Vacuum Pumping Systems
 • Cooling water Systems
 • Gas Injection Systems
 • Bakeout System
 – Diagnostic Systems
 – Electrical Power Systems
 – I&C Systems

• Electrical Systems Upgrades required to meet new coil power requirements
 – Power Systems
 – CS Bakeout system
 – I&C systems

• Center Stack Diagnostics Sensors relocated to the new Centerstack assembly

• Auxiliary Systems
 – Cooling water system mods
 – CS and Supply piping for inboard gas injection
Cost Accounts

<table>
<thead>
<tr>
<th>WBS</th>
<th>CAM</th>
<th>Budget</th>
<th>Actuals</th>
<th>Earned</th>
<th>SPI</th>
<th>CPI</th>
<th>% Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 CSU Analytical Support</td>
<td>CLOSED</td>
<td>$705</td>
<td>$686</td>
<td>$705</td>
<td>1.00</td>
<td>1.03</td>
<td>100%</td>
</tr>
<tr>
<td>1001 CS Plasma Facing Components</td>
<td>Tresemer</td>
<td>$2,110</td>
<td>$1,933</td>
<td>$2,108</td>
<td>1.00</td>
<td>1.09</td>
<td>100%</td>
</tr>
<tr>
<td>1002 Passive Plate Analysis & Upgrade</td>
<td>CLOSED</td>
<td>$925</td>
<td>$697</td>
<td>$925</td>
<td>1.00</td>
<td>1.33</td>
<td>100%</td>
</tr>
<tr>
<td>1200 Structures & Supports</td>
<td>CLOSED</td>
<td>$3,805</td>
<td>$4,505</td>
<td>$3,805</td>
<td>1.00</td>
<td>0.84</td>
<td>100%</td>
</tr>
<tr>
<td>1300 Center Stack</td>
<td>CLOSED</td>
<td>$2,986</td>
<td>$3,473</td>
<td>$2,986</td>
<td>1.00</td>
<td>0.86</td>
<td>100%</td>
</tr>
<tr>
<td>1301 Outer TF Coils</td>
<td>CLOSED</td>
<td>$471</td>
<td>$477</td>
<td>$471</td>
<td>1.00</td>
<td>0.99</td>
<td>100%</td>
</tr>
<tr>
<td>1302 Center Stack Assembly</td>
<td>Raftopoulos</td>
<td>$909</td>
<td>$971</td>
<td>$854</td>
<td>0.94</td>
<td>0.88</td>
<td>94%</td>
</tr>
<tr>
<td>1303 TF Joint Test Stand & Test</td>
<td>CLOSED</td>
<td>$353</td>
<td>$225</td>
<td>$353</td>
<td>1.00</td>
<td>1.57</td>
<td>100%</td>
</tr>
<tr>
<td>1304 Inner TF Bundle</td>
<td>CLOSED</td>
<td>$4,045</td>
<td>$4,146</td>
<td>$4,045</td>
<td>1.00</td>
<td>0.98</td>
<td>100%</td>
</tr>
<tr>
<td>1305 Ohmic Heating Coil</td>
<td>CLOSED</td>
<td>$6,611</td>
<td>$11,112</td>
<td>$6,611</td>
<td>1.00</td>
<td>0.59</td>
<td>100%</td>
</tr>
<tr>
<td>1306 Inner PF Coils</td>
<td>CLOSED</td>
<td>$944</td>
<td>$1,077</td>
<td>$944</td>
<td>1.00</td>
<td>0.88</td>
<td>100%</td>
</tr>
<tr>
<td>1307 CS Casing Assembly</td>
<td>Raftopoulos</td>
<td>$1,384</td>
<td>$1,687</td>
<td>$1,384</td>
<td>1.00</td>
<td>0.82</td>
<td>100%</td>
</tr>
<tr>
<td>1310 CSU Magnets Systems</td>
<td>CLOSED</td>
<td>$442</td>
<td>$442</td>
<td>$442</td>
<td>1.00</td>
<td>1.00</td>
<td>100%</td>
</tr>
<tr>
<td>3200 Water Cooling System Mods</td>
<td>Atnafu</td>
<td>$420</td>
<td>$278</td>
<td>$260</td>
<td>0.62</td>
<td>0.93</td>
<td>62%</td>
</tr>
<tr>
<td>3300 Bakeout System Mods CSU</td>
<td>Raki</td>
<td>$160</td>
<td>$154</td>
<td>$136</td>
<td>0.85</td>
<td>0.88</td>
<td>85%</td>
</tr>
<tr>
<td>3400 Gas Delivery System Mods</td>
<td>Blanchard</td>
<td>$102</td>
<td>$87</td>
<td>$92</td>
<td>0.90</td>
<td>1.06</td>
<td>90%</td>
</tr>
<tr>
<td>4100 Center Stack Diagnostics</td>
<td>CLOSED</td>
<td>$836</td>
<td>$840</td>
<td>$836</td>
<td>1.00</td>
<td>0.99</td>
<td>100%</td>
</tr>
<tr>
<td>4500 MPTS VV Modification</td>
<td>CLOSED</td>
<td>$1,137</td>
<td>$1,595</td>
<td>$1,137</td>
<td>1.00</td>
<td>0.71</td>
<td>100%</td>
</tr>
<tr>
<td>5000 CSU Power Systems</td>
<td>Raki</td>
<td>$5,735</td>
<td>$4,277</td>
<td>$5,399</td>
<td>0.94</td>
<td>1.26</td>
<td>94%</td>
</tr>
<tr>
<td>5200 DCPS*</td>
<td>Stevenson</td>
<td>$2,692</td>
<td>$4,113</td>
<td>$2,671</td>
<td>0.99</td>
<td>0.65</td>
<td>99%</td>
</tr>
<tr>
<td>5501 Coil Bus Runs</td>
<td>Atnafu</td>
<td>$2,051</td>
<td>$2,076</td>
<td>$1,678</td>
<td>0.82</td>
<td>0.81</td>
<td>82%</td>
</tr>
<tr>
<td>6100 Control Sys Data Acquisition</td>
<td>Sichta</td>
<td>$1,216</td>
<td>$964</td>
<td>$889</td>
<td>0.73</td>
<td>0.92</td>
<td>71%</td>
</tr>
</tbody>
</table>

*CAM Tim Stevenson to give detailed talk about the Digital Coil Protection System (DCPS)
General Arrangement

- Umbrella Structure
- Centerstack Assembly
- Major Centerstack Components
- Vacuum Vessel
- TF Flex Bus and Support Structure
- Outer TF Coils
Overview of VV and Coil Supports (Smith)

- Install New Pedestal.
 - NSTXU-CALC-12-09-00
 - NSTXU-CALC-10-01-02

- Install New Upper Lid.
 - NSTXU-CALC-12-08-00
 - NSTXU-CALC-10-01-02

- Add Extensions & Anchors to Supports

- Modify support to provide clearance for connecting rod.
 - NSTXU-CALC-12-10-01

- Install additional (upper & lower) PF2 Clamp.
 - NSTXU-CALC-12-04-00

- Install New Upper & Lower Umbrella Leg/Foot/Slide.

- Install New Upper & Lower Umbrella Arch Reinforcements.
 - NSTXU-CALC-12-06-00

- Dome ribs reinforcement
 - NSTXU-CALC-12-02-00

- Install New Pf4/5 Support.
 - NSTXU-CALC-12-04-00

- Replace existing Pf4/5 Support Column.
 - NSTXU-CALC-12-04-00

- Replace existing Upper & Lower Pf4/5 clamp hardware.
 - NSTXU-CALC-12-04-00

- Install New Lower Lid.
 - NSTXU-CALC-12-08-00
 - NSTXU-CALC-10-01-02

- Install New TF Outer Leg (TFOL) Support.
 - NSTXU-CALC-132-04-00

- Install new TF-VV Clevis.
 - NSTXU-CALC-132-09-00
 (Titus/Zhang)

- Install new TFOL Connecting Rods & Rod Ends.
 - NSTXU-CALC-132-04-01

- Modify support to provide clearance for connecting rod.
 - NSTXU-CALC-12-10-01

- Add Extensions & Anchors to Supports
 - NSTXU-CALC-10-01-02

Monday, December 8, 14
The Umbrella Structure & Outer Leg Supports Have Been Strengthened To Handle 4X Larger Forces of the Upgrade

- Upper & Lower Al Block External-Internal Reinforcements.
- NSTXU-CALC-12-06-00 Upgrade TF to Umbrella Structure Aluminum Block Connection (Titus), (Smith)
- NSTXU-CALC-132-04-00 - Analysis of TF Outer Leg, (Zhang), (Titus)
Umbrella Lid Reinforcements

- Umbrella Replacement Leg and sliding foot
- NSTXU-CALC-12-07-00
 Umbrella Reinforcement Details
 (Titus)
The New Central Core (Chrzanowski, Raftopoulos)

- Design, Build and Install New CS Assembly including:
 - New TF Hub Assembly
 - New TF Stub and Flex Assemblies
 - New Inner TF Bundle
 - New Ohmic Heating Coil
 - New Inconel Casing & Insulation
 - New PFC Tiles
 - New Poloidal Field 1a, b & c Coils
 - New Ceramic Break

- R&D Activities to support above work
 - TF electrical joint testing
 - OH braze joint testing
 - Stir Welding Tests
PF1 Coils

- **PF1A Upper and Lower**
 - NSTXU-CALC-133-11-00 OH & PF1 Electromagnetic Stability Analysis
 - NSTXU-CALC-133-01-01 Structural Analysis of the PF1 Coils, leads and Supports

- **PF1B Upper and Lower**
 - NSTXU-CALC-133-11-00 OH & PF1 Electromagnetic Stability Analysis
 - NSTXU-CALC-133-01-01 Structural Analysis of the PF1 Coils, leads and Supports

- **PF1C Upper and Lower**
 - NSTXU-CALC-133-11-00 OH & PF1 Electromagnetic Stability Analysis
 - NSTXU-CALC-133-01-01 Structural Analysis of the PF1 Coils, leads and Supports, Rev 1
 - NSTXU-CALC-133-15-0 Analysis of the PF1C mandrel/Case CHI Gap thermal response including thermal shield design
PFC’s (Tresemer)

- New PCHERS Passive Plate (not installed)
- NSTXU CALC 12-01-01 PP and Vessel Disruption (Titus et al. / Zhai)
- NSTXU CALC 12-03-00 OPERA 2D Disruption (Hatcher/Titus)
- PFC Tiles Installed
 - NSTXU CALC 11-03-00 Tiles Brooks
 - NSTXU CALC 11-02-00 General Tile (Boales/Brooks)
 - NSTXU CALC 11-01-00 PFC First Wall Heat Balance (Brooks/Zhang)
- CS Casing and Bellows Assy
 - NSTXU CALC 133-05-00 CS Casing Halo (Brooks/Titus)
 - NSTXU CALC 132-11-00 CS Casing Stresses (Titus/Unassigned)
 - NSTXU-CALC-133-03-00 Center Stack Casing Disruption Inductive and Halo Current Loads P. Titus Myatt, Brooks
 - NSTXU-CALC-133-1 0-00 Center Stack Casing Bellows Peter Rogoff I. Zatz
- NSTXU CALC 40-01-00 Diagnostics Review (Boales/Zhai)
TF Bundle, OH and Extensions

- TF Lead Extensions
- TF Lead Finger Supports
- NSTXU-CALC-132-14-00 TF Strap Assembly Fingers

- TF Bundle and Conductors
 - 1.1.0 NSTXU-CALC-132-03-00 Torque Egs for Design Point (Woolley/Titus)
 - NSTXU CALC 132-10-00 TF Cooldown FCOOL (Zolfaghari/Kalish)
 - NSTXU CALC 132-05-00 TF Coupled EM-Thermal (Zhang)
 - NSTXU-CALC-132-08-00 Determination of shear Forces Between the TF conductors and Insulation and the G-10 Insulating Crown. A. Zolfaghari T. Willard
 - NSTXU-CALC-132-07-00 Maximum Torsional Shear Stress P. Titus R. Woolley

- CS Casing
 - NSTXU CALC 133-05-00 CS Casing Halo (Brooks/Titus)

- NSTXU CALC 132-08-00 TF Collar Pin/Shear (Zolfaghari)

- TF Flex Joints Fabrication
 - NSTXU CALC 132-06-00 TF Flex Joint (Willard)

- OH Preload Assembly
 - NSTXU CALC 133-04-00 OH Preload Belleviles (Rogoff/Zatz)

- OH Coil Assembly
 - Thermal Stresses on OH-TF Coils NSTXU-CALC-133-02-00
 - NSTXU-CALC-133-06-00 OH Coolant Hole Optimization A. Zolfaghari
 - NSTXU-CALC-133-08-00 OH Stress Analyses A. Zolfaghari
 - NSTXU-CALC-133-09-00 OH Fatigue and Fracture Mechanics P. Titus I. Zatz
 - NSTXU-CALC-133-11-00 OH & PF1 Electromagnetic Stability Analysis P. H. M. Fan Titus / Zolfaghari

- NSTXU CALC 133-07-00 OH Coax (Mardenfeld)
Decision to Use Aquapour

- The Conceptual Design of the TF/OH assembly utilized an OH coil wound directly onto the TF Bundle.
- During the PDR held in June 2010 the upgrade project noted that a gap of ~0.015” inches should be maintained between the OH and TF to ensure that thermal growth during operations would not be an issue.
- A variety of methods to achieve this were explored and a 0.10” thick Aquapour layer was selected as the approach to be taken.
- Aquapour is a plaster-like substance for use in epoxy molds that is easily moldable and hard once cured. It can be quickly removed with water once potting is complete.
- An R&D program was initiated to understand how to use the material. The test program lasted several months and demonstrated the ability to install, wind on, and remove the Aquapour material.
- The risk of not being able to remove the Aquapour was identified early on and was added to the risk registry along with the mitigation plan to run with it, if necessary.
Aquapour Experience

• The Aquapour layer was successfully formed on the TF Bundle as planned during fabrication, and the OH Coil was wound with no issues.
• Electrical tests indicated both the TF Bundle and OH VPI were of high quality
• Once the OH solenoid had been VPI’d and the outer OH surface cleaned attempts at removing the Aquapour commenced.
• It was soon discovered that epoxy from the VPI had migrated into the Aquapour fill. The depth of infiltration is unknown.
• For nearly 2 weeks unsuccessful attempts to remove the Aquapour were made using various methods including hand tools and electrically heating the OH coil
• Decision was made to run with the Aquapour in place
• A peer review of external and internal reviewers was held to elicit help with the mitigation plans.
• Additional analysis ("NSTX Upgrade OH-TF Aquapour Interaction" NSTXU-CALC-133-16) and another look at the Physics program has revealed that the Physics Program is mostly unaffected by the presence of the Aquapour (S. Gerhardt to present details)
The goal is to achieve the same stress as experienced in NSTX.
The OH Cooling Wave

• The copper/glass bond may delaminate due to the stresses predicted in the analysis.
• Delamination alone would not cause the coil to fail but repeated mechanical motion during pulses may cause a short.
• Solution: A water heating system is being designed to provide a more gentle cooling cycle by starting the cooling with hot water and gradually cooling to 12c over 300s.
• In addition a series of tests are being performed by the resin manufacturer to determine if the coil will delaminate and eventually fail electrically.
OH Cooling Wave and Gradient in Conductor

Cooling with Constant 12 C Water

Gradient Stress Limit 1.3 C/m

Ramped Water Inlet from 100 to 12 C in 300s

With the ramped water inlet temperature stresses return to the original NSTX levels
• Inline heater on the high pressure side provides water temp matched to coil temperature after pulse
• Temperature ramps down over 5 mins to cool coil gently
• Detailed design is underway
• Installation planned to be ready for initial operations in March.

• The bypass line will help reduce the transit time.
OH Coil Insulation Strain-Controlled Tests and Elevated Temperature Creep Tests

• Tests are being performed by the resin Mfr, CTD, include:
 – Two 3x4 copper turn specimens for strain-controlled testing of NSTX-U OH coil insulation.
 • To determine if turn-to-turn delamination will occur by OH coil cooled from its peak of 100 C by 12 C water
 • For qualification of possible future frictional interactions with the TF
 • Electrical tests to be performed to see effect of mechanical strain on the electrical insulation
 – Two 10-layer stacks of copper insulated like the OH turns for elevated temperature creep tests.
 • The purpose of this test is to determine if creep will occur at 110 C and 120 C
 • This test is being performed to determine if the operating temperature of the OH coil can be increased to accommodate preheating of the OH coil so that it is mechanically decoupled from the TF coil with the Aquapour remaining in place between the OH and TF
 • The goal is to demonstrate that preload will not be lost at a rate that is difficult to overcome with the adjustments in the preload mechanism
Installed the completed Center Stack Assembly into the Vacuum Vessel (October 2014)
Documented Structural Analysis of PF1, TF, and OH bus bars: NSTXU-CALC-55-01-00 Bus Bar Analysis A. Khodak H Zhang

Monday, December 8, 14
Electrical Power System (Raki)

- **Upgrade Requirements**
 - TF: 129.8 kA, 1kV, ESW 7.08 sec every 2400 sec (7.05kA rms);
 - OH: 24kA, ESW 1.474 sec every 2400 sec; 6kV
 - PF1a: Eliminate Ripple reduction reactors

- **Tasks Summary**
 - Redesigned TF Circuit increasing parallel branches from Four TO Eight branches
 - Provided two +/- 0 to 155A fiber optic DCCT for TF
 - Increased the number of parallel cables feeding TF from Five TO Eight.
 - Redesigned the Power Cable Termination Structure to have higher size bus for TF
 - Redesigned OH Power Loop using the old PLT TF coils as the current limiting reactors.
 - Redesigned the Hardwired Control system for TF & OH using PLC
 - Redesigned PF1a circuit eliminating the ripple reduction reactors.
 - Designed and installed a new TF turn to turn fault detection system.

- **Calculations Supporting Tasks**
 - NSTXU-CALC-53-01-00 Modification of the TF Coil Power System PSCAD Model
 - NSTXU-CALC-53-02-00 Modification of the OH Coil Power System PSCAD Model
 - NSTXU-CALC-53-03-00 TF Cabling from the Transition Area to NSTXU Test Cell
 - NSTXU-CALC-53-04-00 TF Cabling from the Rectifiers to SDS
 - NSTXU-CALC-53-05-00 Current Unbalance in the Eight Parallel Branches

- **Status**
 - Design and installation completed
 - Testing is in progress.
 - PTP-ECS-70 -ECS HCS Upgrade Preliminary Test procedure - Zhao
 - PTP-ECS-71 - ECS HCS OH Upgrade Preliminary Test procedure - Zhao
• Requirement
 – To provide a low voltage power supply and related cabling to pass current to the CS Casing to heat to 350C

• Progress
 – Work is 85% complete
 ✔️ Power supply has been purchased and is in place ready for use
 ✔️ Dummy load is fabricated and available for use
 ❏ Only remaining work is to checkout the power supply with the dummy load.
Central I&C (Sichta)

• Requirement
 – ~4x longer pulse length drives upgrades for data acquisition, networking, and real-time controls.

• Progress

☑ Plasma Control algorithms for NSTX-U are in good shape. The physics requirements for PCS have undergone several revisions.

☑ The engineering specification for Power Supply Real-time Control (PSRTC) software was approved in Nov. Most of the programming has been completed, and unit and system testing are underway.

☐ Digital Coil Protection System software will (also) run on the computer performing the Power Supply Real-time Control (PSRTC) software; this will complement the DCPS system operating at D-Site. The “FCC DCPS” software remains to be integrated into the software framework. This was ECP'd into 6100.

☐ Postponement of (Transrex rectifier) Fault Detector project has spurred a small ECP to purchase (15) additional CAMAC memory modules.
Diagnostics (Kaita)

- Replace Centerstack Diagnostics
 - ✓ Rogowski Coils
 - ✓ Mirnov Coils
 - ✓ Flux Loops
 - ✓ Langmuir Probes
 - ✓ Thermocouples

- Evaluate Diagnostics
 - ✓ NSTXU CALC 40-01-00 Diagnostics Review (Boales/Zhai)
Auxiliary Systems

• Gas Injection Systems (Blanchard)
 - Relocate existing center stack gas injection system to the new center stack
 - Pre-Ops Test Procedure: PTP-NSTX-GIS-008 - Fueling Gas Delivery System Pre-Op Testing - (Blanchard)

• Coil Cooling water modifications (Atnafu)
 - Increase in cooling water pressure by upgrading the pump for the OH coil to provide 600 psig (up from 400 psig)
 - Upgrade the existing cooling water system to cool the outer TF coil legs separately from the inner
 - Added 8 flow control valves to OH Coil Cooling system to equalize water passage transit times
 - OH Water Heater requirement to reduce the cooling wave effect
 - Calculations supporting design
 - NSTXU-CALC-133-06-00 OH Coolant Hole Optimization A. Zolfaghari
 - Pre-Ops Test Procedures
 - PTP-WS-08 - NSTX De-Ionized Water/ System Testing - (Kalish/Herskowitz)
Remaining Tasks and PTP's

- Complete PF, TF, OH and CHI Bus Bar installations
- Complete connections of the Water Cooling system
- Install the TF Flex Connections to the Outer TF Legs
- Complete design of OH Water Heating System and Install & Comission
- Complete (16) PTPs:

<table>
<thead>
<tr>
<th>System</th>
<th>Title / System</th>
<th>Author</th>
<th>Status</th>
<th>Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Vessel and Support Structure</td>
<td>NSTX-OP-G-05 - Procedure to vent vacuum spaces behind TIV's</td>
<td>Blanchard</td>
<td>Okay</td>
<td>12/19/14 Current</td>
</tr>
<tr>
<td></td>
<td>NSTX-OP-G-151 - Daily Hi-Pot Test of the NSTX Inner/Outer Vacuum Vessel</td>
<td>Winston</td>
<td>Okay</td>
<td>In-use Current</td>
</tr>
<tr>
<td></td>
<td>NSTX-OP-G-165 - Venting, Purging and Safing NSTX Vacuum Vessel for Entry</td>
<td>Winston</td>
<td>Okay</td>
<td>In-use Current</td>
</tr>
<tr>
<td></td>
<td>NSTX-OP-G-170 - Venting and pumping down NSTX for calibrations and diagnostics</td>
<td>Blanchard</td>
<td>Review/Sign-Off</td>
<td>12/19/14</td>
</tr>
<tr>
<td>Plasma Facing Components</td>
<td>NSTX-OP-G-155 - NSTX Boronization using TMB</td>
<td>Blanchard</td>
<td>Revision Required (new system)</td>
<td>3/1/15</td>
</tr>
<tr>
<td></td>
<td>NSTX-OP-G-157 - TMB GDC Daily</td>
<td>Blanchard</td>
<td>Revision Required (new system)</td>
<td>3/1/15</td>
</tr>
<tr>
<td>TVPS</td>
<td>NSTX-OP-G-158 - TVPS Start-Up after an outage</td>
<td>Blanchard</td>
<td>In review</td>
<td>11/1/14</td>
</tr>
<tr>
<td>Gas Delivery Systems</td>
<td>PTP-NSTX-GIS-008 - Fueling Gas Delivery System Pre-Op Testing</td>
<td>Blanchard</td>
<td>In review</td>
<td>12/19/14</td>
</tr>
<tr>
<td>Cooling Systems</td>
<td>PTP-WS-08 - NSTX De-Ionized Water/ System Testing</td>
<td>Kalish/Herskowitz</td>
<td>Revision Required</td>
<td>11/1/14</td>
</tr>
<tr>
<td>Coil Systems</td>
<td>PTP-NSTX-CL-28 - HiPot of NSTX Coil Sys from SDS in FCPC</td>
<td>Ramakrishnan</td>
<td>Revision Required</td>
<td>12/19/14</td>
</tr>
<tr>
<td></td>
<td>PTP-CL-NSTX-26 - NSTX Coil System Preoperational Tests</td>
<td>Chrzanowski</td>
<td>Okay</td>
<td>11/1/14 Current</td>
</tr>
<tr>
<td></td>
<td>D-NSTX-OP-G-141 - Changing Polarities on NSTX Coil Systems</td>
<td>Baker</td>
<td>Okay</td>
<td>In-use Current</td>
</tr>
<tr>
<td>MPTS</td>
<td>NSTX-OP-G-142 - MPTS Personnel Safety Interlock Test Procedure</td>
<td>Camp</td>
<td>Review/Sign-Off</td>
<td>12/19/14</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>NSTX-OP-G-05 - Procedure to vent vacuum spaces behind TIV's</td>
<td>Blanchard</td>
<td>Okay</td>
<td>12/19/14 Current</td>
</tr>
</tbody>
</table>
Centerstack Upgrade is Ready for Operations

- The centerstack design is supported by:
 - 67 independently checked calculations
 - 26 Project level reviews by 69 independent external reviewers from 22 institutions
 - Over two dozen additional internal Design and Peer reviews (per eng-033).
 - Chits documented in comprehensive log and independently tracked by QA for closeout
 - Design, fabrication, and installation was conducted using
 - Written specifications, statement of works and procedures
 - Material Certifications for critical components
 - Material Testing performed for critical components and processes
 - Flex connectors, Friction Stir Welding, E-Beam welding, High strength fasteners
 - All welds were 100% visually inspected, in some cases for critical areas like conductors welds were radiographed, UT inspected and / or Dye Penetrant inspected
 - All of the work has been performed Safely with an excellent safety record.
NSTX-U Instrumentation

• **Motivations:**
 – Monitoring
 • CHI Gap thermal loads
 • OH Preload system.
 – Trust but Verify
 • FEA is robust, conservative and comprehensive, however the global stiffness matrix is complex and assumptions that went into the FEA model should be validated.
 • Design & Analysis imposed requirements upon installations that should be verified.
 • Quantify impacts of NSTX-U as-built deviations from CAD/FEA models.
 • Enhance inspection program by providing service history of highly stressed components.
 • Provide data to validate DCPS algorithms
Working Group Developed List of Instrumentation Over the Past Year

• **Needed for CD4**
 - ✔ OH preload monitoring (Installed)

• **Not needed for CD4**
 - CHI Gap thermal loads (PF-1C thermocouples installed)
 - Umbrella lid strains (validate global model)
 - Halo currents in CS tiles (“Shunt” tile installed)
 - Passive Plate Accelerometers
 - In-vessel (already installed)
 - Ex-vessel
 - PF4/5 coil displacement
 - Outer TF Strut loads (validate global model)
 - J-K Cap twist displacement (validate global model)
 - TF Outer leg bending stress
 - CS Case halo loads at top flange (Bumpers installed)
 - TF flex strap displacement
NSTX-U Inspection Plan

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Inspection Procedure</th>
<th>Annually</th>
<th>After 5,000 shots</th>
<th>After 10,000 shots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PF 4-5 Support Bracket to VV Welds</td>
<td>Visual inspection for cracks or other signs of fatigue</td>
<td></td>
<td>Inspect for Cracks</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PF 4-5 Support Bracket Studs</td>
<td>Visual inspection for cracks or other signs of fatigue</td>
<td></td>
<td>Inspect for Cracks</td>
<td>Replace studs with new hardware</td>
</tr>
<tr>
<td>3</td>
<td>Umbrella feet bolts</td>
<td>Inspect bolts for torque, report any loose bolts. Retorque as required.</td>
<td></td>
<td>Torque, Looseness</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Vacuum Vessel Dome Rib welds below the Umbrella Feet</td>
<td>Visual inspection for cracks or other signs of fatigue</td>
<td></td>
<td>Inspect for Cracks</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TF Flex Connectors</td>
<td>Resistance Check and Verify Fastener Torques or Separate and Inspect surfaces</td>
<td></td>
<td>Resistance Check and Verify Fastener Torques</td>
<td>Separate and Inspect surfaces</td>
</tr>
<tr>
<td>6</td>
<td>Passive Plates, biscuit clearances and arcing</td>
<td>Inspect biscuit clearances and arcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Inspect Clevis Pin Connections for signs of Fatigue</td>
<td>Inspect Clevis around Pin Connection for cracks</td>
<td></td>
<td>Inspect for Cracks</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>OTF Leg Reworked (Mechanical) Flag Joints</td>
<td>Pass a current through joints and measure voltage drop. Check the torque on the bolts, or look at the compression of the Bellevilles at each inspection. Visual inspection.</td>
<td></td>
<td>Annually and Major outage</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>OTF Leg Flags Braze Joints</td>
<td>UT inspection.</td>
<td></td>
<td>Annually or Major outage</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PF, CHI, TF Buss Joints</td>
<td>Inspect and / separate - inspect</td>
<td></td>
<td>Joint resistance and verify fastener torques</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TF-VV Clevis Weld: Inspect clevis’s adjacent to VV Support Legs</td>
<td>Visual inspection of welds for cracks and fatigue.</td>
<td></td>
<td>Inspect for cracks</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Socket Head Capscrews connecting SS TF Bundle end plate to insulating ring</td>
<td>Inspect for torque and looseness</td>
<td></td>
<td>Inspect for torque, looseness</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PF 1A, PF 1B, and TF bus Bars max stress locations per Kodiak calc (details to be provided by Neway)</td>
<td>Inspect for signs of fatigue</td>
<td></td>
<td>Inspect for cracks</td>
<td></td>
</tr>
</tbody>
</table>
FMEA and Mitigation plans

- Comprehensive FMEA has been developed (NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-9):

<table>
<thead>
<tr>
<th>System</th>
<th>Total Failure Modes</th>
<th>Major Category*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>VV & Structures</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Magnets</td>
<td>41</td>
<td>29</td>
</tr>
<tr>
<td>Vacuum Pumping System</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Water Cooling System</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Bakeout</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>Gas Fueling System</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Power System</td>
<td>49</td>
<td>6</td>
</tr>
<tr>
<td>I & C</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Totals</td>
<td>296</td>
<td>52</td>
</tr>
</tbody>
</table>

Major Category: Time to correct/repair 1 < 12 month and Cost $100k < $5000K
<table>
<thead>
<tr>
<th>Failure Mode</th>
<th>Effect</th>
<th>Detection/Recovery</th>
<th>Mitigation Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner / Outer PF, Inner / Outer TF: Delamination/ debonding of turn-to-turn insulation</td>
<td>Possible motion of conductors under load, abrasion, eventual electrical failure</td>
<td>None/Shutdown and repair or replace</td>
<td>Copper for inner TF, OH available. OTF spare available.</td>
</tr>
<tr>
<td>Electrical failure of groundwall insulation at single location</td>
<td>If non-CHI ops, or CHI ops and outer VV grounded, small leakage current to ground (limited by high resistance grounding), and redistribution of voltage to ground. If CHI ops and outer VV energized by CHI PS, small leakage current between CHI and affected PF circuit.</td>
<td>Power supply system ground fault detector. / Shutdown, repair if possible, or replace.</td>
<td>Copper for inner TF, OH available. OTF spare available.</td>
</tr>
<tr>
<td>Electrical failure of turn-to-turn insulation</td>
<td>Fault current flow in shorted turns, opposite to direction of normal current flow to oppose flux produced by non-shorted turns, large internal repulsive forces between shorted and non-shorted turns, arcing, burning, and melting in region of failure, possible destruction of coil.</td>
<td>Magnetic diagnostics, unusual electrical impedance and response to power supply excitation. / Shutdown, repair if possible, or replace.</td>
<td>Copper for inner TF, OH available. OTF spare available.</td>
</tr>
<tr>
<td>Loss of contact pressure leading to excess electrical contact resistance and/or open circuit condition under load at coil terminals or coil leads</td>
<td>Excess joint resistance and heating, arcing, melting, if lead(s) become physically disconnected, could be displaced from normal point of connection, possible diversion of current into other metallic path(s), possible destruction of coil.</td>
<td>Maintenance (bolt torque), inspection (temperature stickers), test (joint resistance measurement); Magnetic diagnostics, unusual electrical impedance and response to power supply excitation. / Shutdown, repair if possible, or replace.</td>
<td>Copper for inner TF, OH available. OTF spare available.</td>
</tr>
<tr>
<td>TF Flexes- Inner to Outer TF coil- laminates begin to develop cracks</td>
<td>If crack propagates through entire laminate- Outer laminate in particular- the laminate could short to the umbrella lid or adjacent TF flexes</td>
<td>During visual maintenance inspections / Replace</td>
<td>Spares on hand</td>
</tr>
<tr>
<td>Loss of contact pressure on flexible joints connecting inner TF Bundle to outer legs</td>
<td>Excess joint resistance and heating, possibly contact surface melting, arcing, could lead to open circuit condition</td>
<td>Maintenance (bolt torque), inspection (temperature stickers), test (joint resistance measurement) / Shutdown and repair</td>
<td>Spares on hand</td>
</tr>
</tbody>
</table>
Summary: FMEA and Mitigation Plans for Major Events

<table>
<thead>
<tr>
<th>System</th>
<th>Types of Failures</th>
<th>Mitigation Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC</td>
<td>Damage due to CHI disruptions</td>
<td>Spare tiles and tile mounts on hand</td>
</tr>
<tr>
<td>VV & Structures</td>
<td>Misalignments, buckling</td>
<td>Preventative measures including inspections, instrumentation</td>
</tr>
<tr>
<td>Magnets</td>
<td>Electrical shorts or mechanical damage</td>
<td>Repair or replace using spare raw materials on hand</td>
</tr>
<tr>
<td>Bakeout</td>
<td>Failure to shutdown power supply</td>
<td>Manual backup potable water cooling option available to prevent coil damage</td>
</tr>
<tr>
<td>Power System</td>
<td>Failure to detect overloads, overcurrents, and shutdown</td>
<td>Multiple levels of redundancy provided, Troubleshoot and repair</td>
</tr>
<tr>
<td>I & C</td>
<td>SDS interlock switch indicates SAFE when in UNSAFE condition</td>
<td>Overall SLD “Safe” status not achieved, since SLD”Safe” status not issued if air supply still available / Troubleshoot and repair</td>
</tr>
</tbody>
</table>
Summary

• Project design and fabrication was based on the General Requirements Document
• Each element of the design has been verified through analysis to demonstrate it meets the General Requirements and the operating scenarios
• Specifications, SOWs and Material certifications and inspections ensure the fabrication and manufacture of the parts meet the design
• In areas where the design margins are below the criteria for full lifetime pulses maintenance and inspection plans are being used to track the performance of the design
• Plans are in place to achieve full power parameter in 2-3 years of operations
Thank You for Your Attention