
NSTX-U

Loads and Error Fields Due to Coil Winding Patterns

and Alignment Tolerances

NSTXU-CALC-131-08-00

March 18 2018

Prepared By:

Peter Titus, Engineering Analyst

	Reviewed By:
Content in Table 4.0-3 and 4.0-4	
	Arthur Brooks Engineering Analysis
	Division
Content in Table 4.0-3 and 4.0-4	
	Stefan Gerhardt, Integration RE

PPPL Calculation Form

Calculation #	NSTXU-CALC-12-01-01	Revision # <u>00</u>	WP #, <u>1672</u>
			(ENG-032)

Purpose of Calculation: (Define why the calculation is being performed.)

The purpose of this calculation is to evaluate loads on the PF and other coils due to winding patterns and position errors. These loads are summarized in the Inner PF Requirements Document [2], and the purpose of this report is to document the calculations that support the tabulated values in Ref [2]. Secondarily, error fields are calculated for a selected number of coils and errors to compare with a more exhaustive assessment in CALC NSTXU 11-09-00 prepared by Art Brooks

References

These are included in the body of the calculation, in section 6.3

Assumptions (Identify all assumptions made as part of this calculation.) At this writing, the PF position errors are assumed to be 5mm lateral position error and .57 degrees rotation of the coil with respect to the toroidal field. The actual position errors and resulting loads will be a function of the tile heat flux "enhancement" accommodated in the tile design and what the coil and coil support designers can achieve. Forces and moments computed in this calculation can be assumed to be linearly varying with respect to position errors

Calculation (Calculation is either documented here or attached)

These are included in the body of the following document

Conclusion (Specify whether or not the purpose of the calculation was accomplished.)

Cognizant Engineer's printed name, signature, and date

I have reviewed this calculation and, to my professional satisfaction, it is properly performed and correct.

Checker's printed name, signature, and date

2.0 Table of Contents

Title Pa	-				1.0
ENG-33					2.0
	of Contents n Status Table				2.0 3.0
	ve Summary				5.0 4.0
Executi	Net Loads with a 5mm Translation		4.1		4.0
	Net Loads due to a .5degree Rotation			4.2	
	Net Loads of Helical Winding in a TF Field			4.3	
	120 degree transition Loads	4.4			
	PF1b Epoxy Temperature Limits				4.5
	PF 4 and 5 Column Connections				4.6
	TF Truss Connections				4.7
	Bay J, K Cap Insulation				4.8
Input to	Digital Coil Protection System				5.0
Design					5.0
Design	Criteria				6.1
	References				6.2
Models			_		7.0
	Part 1 Loads on Coils Du	ue to Position	Errors		
OH					8.0
	Moment Due to 5mm Translation in x				8.1
	Force Due to .57deg Rotation About x				8.2
PF1a					9.0
	Moment Due to 5mm Translation in X	D			9.1
	PF1a Axisymmetric Winding, Force due .57deg				9.2
	PF1a Stacked 50 Degree Transitions Load Intera	action with the TF F	ield		9.3
	Pf1A Helix Loads Interaction with the TF Field	the the DE Earld (EC)51)		9.4
PF1b	PF1a Loads due to 5mm translation with respect	t to the PF Field (EC	<i>Į</i> 51)		9.5
PFID	18 Degree Opposed Transitions				$\begin{array}{c} 10.0\\ 10.1 \end{array}$
	180 Degree Stacked Transitions				10.1
	Helix Wound No Translation				10.2
	Helix Wound 5mm Translation				10.5
	Circular Wound, 5mm Translation				10.5
	Circular Wound 5.7 degree Rotation				10.6
PF1c					11.0
	Pf1c Helix Loads Interaction with the TF Field				11.4
PF1a B	ne				
FI IA D	Error at the Inner Horizontal Divertor				12.1
PF1b B					12.1
	Error at the Inner Horizontal Divertor				13.1
PF1c B					
DEC	Error at the Inner Horizontal Divertor				14.1
PF2					
PF3					
	Part 2 Field Errors Due t	o Coil Positio	n Errors		

1819.0Field Error due to 1 mm shift in x19.1

TF

OH

Field error due to rotation	
Field Error Due to Growth and Shrinkage of the OH Coil	
PF1a Shift	20.1
PF1a Tilt	20.2
PF1a Lead	20.3
PF1b Shift	21.1
PF1b Tilt	21.2
PF1c Shift	22.1
PF1c Tilt	22.2
PF1c Lead	22.3
Possible Field Correction Coils	23.0
Appendix A Emails Jan 29 2018 from A. Brooks checking the TF Field Interaction Loads	

Appendix B True Basic Code to Develop Winding Patterns

3.0 Revision Status Table

Rev 0	Initial Issue
-------	---------------

4.0 Executive Summary

NSTX Upgrade is a large spherical tokamak being built, and operated at Princeton Plasma Physics Laboratory. In this calculation a number of load interactions with the toroidal fields and misaligned poloidal fields are investigated. The purpose of this calculation is to evaluate loads on the PF and other coils due to winding patterns and position errors. These loads are summarized in the Inner PF Requirements Document [2], and the purpose of this report is to document the calculations that support the values in table 2.2.-1in the requirements document in Ref [2]. Secondarily, error fields are calculated for a selected number of coils and errors to compare with a more exhaustive assessment in CALC NSTXU 11-09-00 prepared by Art Brooks

There are many physics issues and issues with respect to plasma facing components that are effected by coil position errors. These are addressed elsewhere. Coil and coil support designs are effected by the coil position error loads. In this report, loads are calculated for arbitrarily selected shifts and rotations. The project has an extensive metrology program and assessments of manufacturing tolerances that ultimately

Engineering Motivations:

Net Loads on coils

Magnetic-Structural Stability, Strength, stiffness and accuracy of slings

PF4/5 ovality - Accept n=1, Assess effects of stuck slides? Vertical Motion/Bending?

PF2,3 Position errors if slides stick

TF One Turn – Where is it and what effect does it have? This is not included in the currents in the 96 equilibria. It occurs in the lead extension area. Locally, an additional PF coil-like current may affect coil loading. The TF toroidal current is one turn at 130ka vs 400 ka in pf1b

Coil	nr	nz	r	Z	dr	dz
OH	4	222	.2421	0	.0694	4.2605
PF1a	4	15.25	.32334	1.5906	.06985	.4634
PF1b	2	10	.39217	1.8042	.039624	.1814
PF1c	2	8	.555	1.8136	.051816	.1664

 Table 4.0-1 Coil Data

Part 1 Loads on Coils Due to Position Errors

Lateral shifts of coils with respect to the toroidal field produce a moment about an axis parallel to the shift vector.

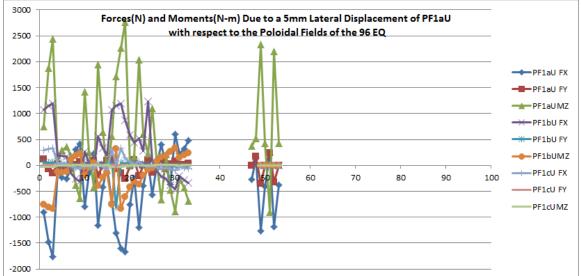
At this writing, the PF position errors are assumed to be 5mm lateral position error and .57 degrees rotation of the coil with respect to the toroidal field. The actual position errors and resulting loads will be a function of the tile heat flux "enhancement" accommodated in the tile design and what the coil and coil support designers can achieve. Forces and moments computed in this calculation can be assumed to be linearly varying with respect to position errors

Table 4.0-2 Moments for a net lateral translation of 5mm (x direction) with respect to the TF centerline, Perfect Axisymmetric Winding, Newton Meter (Input to [2] Table 2.2.1)

	Table 2.2.1)						
Coil	file	Mx (N-m)	Calculation				
			Section				
ОН	осоі	235422.9	8.0				
PF1a	atra	20037	9.0				
PF1b	btra	6290.14	10.5				
PF1c	ctra	5030.7	11.0				

	Newton, Newton Meter (Input to [2] Table 2.2.2)							
Coil	file	fx	Calculation Section					
OH	осоі	468345	8.0					
PF1a	arot	39893	9.0					
PF1b	brot	12507	10.6					
PF1c	crot	10012.9	11.0					

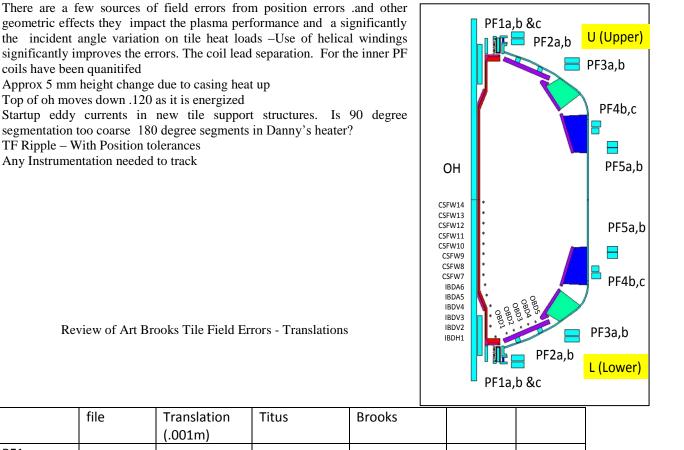
Table 4.0-3 .57deg Rotation about x, Perfect Circular Winding in a TF Field ,Newton, Newton Meter(Input to [2] Table 2.2.2)


Table 4.0-4	No Translation, No Rotation, Helical Winding in TF Field, Newton,
	Newton Meter (Excluding the Leads)

	retroit (Literaung the Leads)								
Coil	file	fx	fy	fz	Mx	My	Mz	Sect	
PF1a	acoi	880	-2849.9	144.66	-606	0	-991	9.4	
		1107	3039	-245				9.4	
PF1b	bcoi	-29.9	-995.64	3.71	-37.83	0	-342.1	10.3	
PF1c	ссоі	-7.7	798	-31	42	.172	450	11.4	

Table 4.0-5	5mm Translation, No Rotation, Helical	Winding in TF Field , Newton,
	Newton Meter	

Coil	file	fx	fy	fz	Mx	My	Mz	Sect
PF1a	acoi							
PF1b	bcoi	-29.604	-987.3	3.63	4962.7	0	-344.26	10.4
PF1c	ссоі							

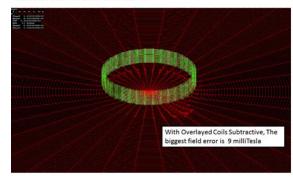

Comparing magnitudes of forces resulting from just the helical winding geometry to those from shifts and tilts, the helical winding effect is at least an order of magnitude lower. This is the rational for using circularly swept conductors in the load assessments for the coil and sling support

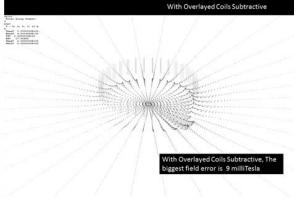
Net Forces and Moments for Shifts with Respect to the Poloidal Field

In the figure above the blue line with a diamond labeled PF1aU FX ranges from -1750 to 500 N compared with 39893N in table 4.0-3 for a 5.9 degree rotation. The interaction with the PF field is significant, but doesn't have the same potential for loads as interactions with the TF field.

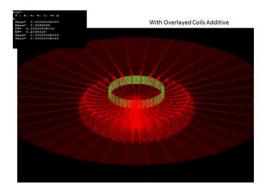
Part 2 Field Errors Due to Coil Position Errors

Review of Art Brooks Tile Field Errors - Translations


coils have been quanitifed


	file	Translation	Titus	Brooks	
		(.001m)			
PF1au	aerr				
IBDH1	aerr	Peak	-1.7366e-3 T		
			-17.366		
			Gauss		
			(-13.8Gauss)		
IBDH1		Middle	9.88 Gauss	8.18 Gauss	
IBDV2				29.39Gauss	
PF1b	berr	Middle			
IBDH1	berr	Middle	3.066 Gauss	3.65 Gauss	
IBDH1		Peak (Inner	22.37Gauss		
		Rad)			
PF1c	cerr				
IBDH1		Middle	9.4e-4	8.58gauss	
			9.4 gauss		
		Outer Edge	1.7e-3		
			17 gauss		
ОН		.007 Vertical	.9906e-3		
			9.9 Gauss		

Review of Art Brooks Tile Field Errors - Rotations


	File	Rotation	Titus	Brooks	Section
		(Rad)	(Gauss)	Gauss)	
TF IBDH	Ter2	.001 Peak	22.91	22	18.0
TF IBDH	Ter2	.001 Mid	19.55	18.5	18.0
TFIBDV	Ter2.txt	.001 OD	16.86	17	18.0
PF1au		.001			
IBDH1		Peak	.9 Gauss		
IBDH1		Middle	.09 Gauss	.05	
IBDV2				29.39Gauss	
ОН		.007vert	.9906e-3		
PF1b		Middle	3.9		
PF1b		Peak (Inner Rad)	5.32		
PF1c Lead			1.37 MilliT		
			13.7 Gauss		
IBDH1		Middle	6.684Gauss	4.06	
IBDH1		Outer Edge	5.14		
PF1a Lead			2.1milli T		
			21 Gauss		

Two PF1b coils are overlayed – One with stacked 180 degree transitions, and the other an "ideal" coil with only circular current vectors

Because of the net loads developed in PF1a due to the TF field, Mike Kalish is investigating the use of a spiral wound layout to minimize lateral loading. PF1b has lower loads because it is shorter and a bit further away from the TF. Mike wants some freedom to keep the most efficient winding pattern he can. The only concern I had was that the transitions might produce a field error close to the X point. I overlayed an "ideal" conductor layout and a coil with stacked 180 degree transitions and differenced the field they produce. The biggest variation I got was 9 milli-Tesla on a surface .2m below the coil centerline. Do you think this will be OK?-Peter

We have stick models of PF1aL and PF1cU courtesy of Wenping and Jiarong estimates of the fields due to these were run and the field errors obtained are t 1.3 for the PF1c and 2.1 milliTesla from PF1bl

5.0 Digital Coil Protection System.

There is no input to the DCPS planned

6.0 Design Input

6.1 Criteria

Loads will be provided to the design and analysis engineers for evaluation as to the acceptability with respect to criteria for the supports and coils.

Effects of field errors will be incorporated into the tile assessments of resulting heat flux changes in accordance with calculation #

6.2 References

[1] NSTX-U Design Point Spreadsheet, <u>NSTXU-CALC-10-03-00</u> C. Neumeyer, <u>http://w3.pppl.gov/~neumeyer/NSTX_CSU/Design_Point.html</u>

[2] "Inner-PF Coil Interfaces to Coil Support Designs and Cooling Systems" NSTX-U-RQMT-RD-012-00 S. Gerhardt March 2018

[5] "Stress Analysis of ATJ Center Stack Tiles and Fasteners" NSTXU-CALC-11-03-01 Revision 1 by Art Brooks

[6] Global Thermal Analysis of Center Stack Heat Balance,NSTXU-CALC-11-01-00 A. Brooks June 1, 2011

[7] NSTX Upgrade General Requirements Document, NSTX_CSU-RQMTS-GRD Revision 6, P. Titus, August 3 2015, Original issue by C. Neumeyer, March 30, 2009

[8] Inductive and Resistive Halo Current s in the NSTX Centerstack, A.Brooks, Calc # NSTX-103-05-00

[9] Inner PF Coils (1a, 1b & 1c), Center Stack Upgrade NSTXU-CALC-133-01-01 March 30, 2012 Rev 0/1 by Len Myatt.

[10] Inner PF Coils (1a, 1b & 1c), Center Stack Upgrade NSTXU-CALC-133-01-02 May, 2014 Rev 2 by Len Myatt. Rev 2 by A Zolfaghari and A Brooks

[11] NSTX Integrated Machine Bakeout Operations, D-NSTX-OP-G-156, Rev 4 Mark Cropper

[12] Microtherm Thermal Insulation Solutions, Product Performance Data, www.microtherm Inc 3269 Regal Drive Alcoa, Tennessee 37701 T. (+1) (865) 681 0155 F. (+1)

(865) 681 0016 E. sales@microtherm.us

[13] CHI Bus Bar Analysis NSTXU-CALC-54-0 P. Titus, November 21 2013

[14] On Wed, Oct 22, 2014 at 10:31 AM, William Blanchard <wblancha@pppl.gov> wrote: All,

The majority of leaks are on the inside of the can in the 10-7 t-l/sec range. We recommend these be sealed with leak sealer (good to 450 C). There appears to be one leak on the outside corner that will have line of sight to the plasma. S. Vinson is localizing and measuring the leak rate. If it is in the 10-7 range, we recommend using leak sealer for that leak also. Bill Blanchard Joseph Winston

[15] Viton Seal Properties http://www.row-inc.com/techspecs.html

[16] NSTX Integrated Machine Bakeout Operations, D-NSTX-OP-G-156. M. Cropper, Rev 4 August 28 2015

[17] Analysis of Existing & Upgrade PF4/5 Coils & Supports – With Alternating Columns, NSTXU-CALC-12-05-00, Prepared By: Peter Titus, Reviewed by Irv Zatz, Cognizant Engineer: Mark Smith WBS 1.1.2

7.0 Models

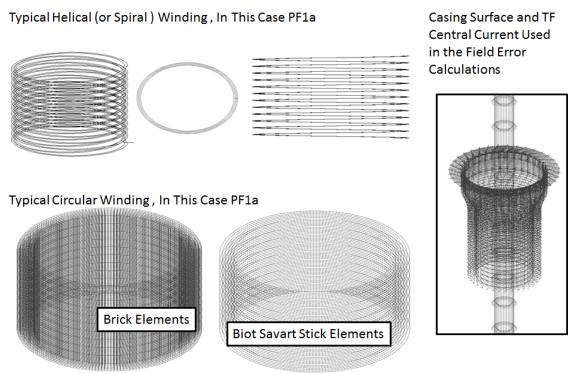
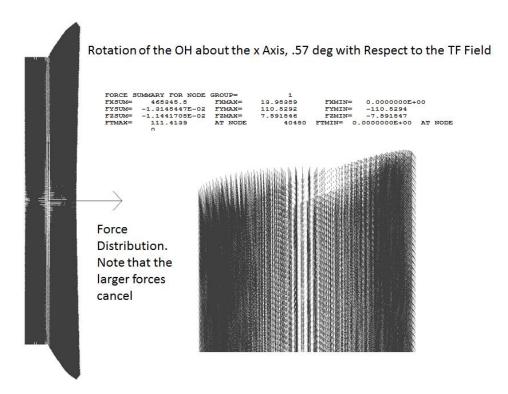


Figure 7.01 Biot Savart Stick Elements Used for PF1a Analyses Helical or spiral winding patterns were first generated with a Treoie Basic Code (Appendix B)

7.2 Model and Analysis Used for Net Forces and Moments for Shifts with Respect to the Poloidal Field

! NSTX coil 3D Coil Shift analysis			
pfcb		rscale	srel
33	srel	1,1,1,.25	5,5
1,.2344,.0021,.01,4.3419,2,20	3,1	rscale	snel
2 , .2461 , .0067 , .01 , 4.2803 ,2,20	srel	2,1,2,.25	5,5
3 , .2577 , .0022 , .01 , 4.2538 ,2,20	4,1	rscale	gtrans
4 , .2693 ,0021 , .01 , 4.1745 ,2,20	divi	3,1,3,.25	5,.005,0,0,0
5,.3184957,1.5906,.069664565,.50439,8,20	1,1,4,1	rscale	srel
6,.3886730,1.8042,.033800,.1749101,8,8	snal Statestics Fully married	4,1,4,.25	6,5
7 , .56 , 1.8252 , .042 , .1206 ,8,8		snal	srel
8,.7992,1.8526,.1627,.068,8,8	merge	1	7,5
9,.7992,1.9335,.1627,.068,4,4	1,.0001	merge	snel
10, 1.4829, 1.5696, .1631, .034,4,4	redu	1,.0001	5,5
11, 1.4945, 1.5356, .1864, .034,4,4		redu	field
12 , 1.4829 , 1.6505 , .1631 , .034 ,4,4		todr	5
13 , 1.4945 , 1.6165 , .1864 , .034 ,4,4	irdt	36,0,10	mfor
14, 1.795, .8711, .0922, .034,4,4	2	seal	5,1,1,1,1,2,2,2,2
15, 1.8065, .9051, .1153, .034,4,4	pfcu	1	repla
16,1.7946,.8072,.0915,.068,4,4	33,4,4,1.1	egrp	erro
17, 1.795,8711, .0922, .034,4,4	1, 2.8782515, -5.3039999, 0.0000000, 2.8782515, -	8	supe
18, 1.8065,9051, .1153, .034, 4,4	2, 2.878252 , -5.304000 , 0.0000000E+00, 2.878252	ngrp	nomi,-1,-1
19, 1.7946,8072, .0915, .068, 4,4	3, 2.878252 , -5.304000 , 0.0000000E+00, 2.878252	8	pice
20, 2.0118, .6489, .1359, .0685, 4,4	4, 2.878252 , -5.304000 , 0.0000000E+00, 2.878252	rcur	fsum
21, 2.0118, .5751, .1359, .0685,4,4	5,0.4023682,-0.4165696,-0.3884800,-0.3743345	1,1,2,3,4,5,6,7,8	5
22, 2.0118,6489, .1359, .0685, 4,4	6,-4.8787646E-02, 0.2617024 , 0.3022432 , 0.3247257	redu	repla
23, 2.0118,5751, .1359, .0685, 4,4	7, 5.2048396E-02, 0.2275660 , 0.2661020 , 0.2874393	snal	se18
24, 1.4829, -1.5696, .1631, .034, 4,4	8, 0.1581762 ,-2.5680201E-02, 4.0668599E-02, 7.6548636E-02	1	srel
25, 1.4945, -1.5356, .1864, .034, 4,4	9, 0.1581762 ,-2.5680201E-02, 4.0668599E-02, 7.6548636E-02	merge	5,5
26 , 1.4829 ,-1.6505 , .1631 , .034 ,4,4	10 , -5.6940049E-02 , -7.3950097E-02 , -6.1753996E-02 , -5.5138741E-02	1,.00001	srel
27 , 1.4945 ,-1.6165 , .1864 , .034 ,4,4	11, -6.5074340E-02, -8.4514394E-02, -7.0575997E-02, -6.3015707E-02	redu	6,6
28,.7992,-1.8526,.1627,.068,8,8	12 , -5.6940049E-02 , -7.3950097E-02 , -6.1753996E-02 , -5.5138741E-02	repla	srel
29,.7992,-1.9335,.1627,.068,8,8	13,-6.5074340E-02,-8.4514394E-02,-7.0575997E-02,-6.3015707E-02	vect	7,7
30 , .56 ,-1.8252 , .042 , .1206 ,8,8	14,-9.3489857E-03, 1.4226000E-02, 1.3928001E-02, 1.3776924E-02	!exit	snel
31,.3886730,-1.8042,.033800,.1749101,8,8	15,-9.3489857E-03, 1.4226000E-02, 1.3928001E-02, 1.3776924E-02	!read	5,5
32,.3184957,-1.5906,.069664565,.50439,8,20	16,-2.1035219E-02, 3.2008499E-02, 3.1338003E-02, 3.0998079E-02	grid	snel
33,.9344,0,.5696,1,6,8	17,-9.3489857E-03, 1.4226000E-02, 1.3928001E-02, 1.3776924E-02	srel	6,6
zero	18,-1.1686232E-02, 1.7782500E-02, 1.7410001E-02, 1.7221155E-02	5,5	snel
egrp	19,-1.8697971E-02, 2.8452000E-02, 2.7856002E-02, 2.7553849E-02	srel	7,7
0	20,-0.2518167 ,-0.3049860 ,-0.2950068 ,-0.2896084	6,5	fsum
ngrp	21,-0.2518167,-0.3049860,-0.2950068,-0.2896084	srel	5
0	22,-0.2518167,-0.3049860,-0.2950068,-0.2896084	7,5	fsum
gpla	23,-0.2518167,-0.3049860,-0.2950068,-0.2896084	snel	6
.1,.05,40,-2.5,.05,100	24 , -6.5074340E-02 , -8.4514394E-02 , -7.0575997E-02 , -6.3015707E-02	5,5	fsum
grpmat	25, -5.6940049E-02, -7.3950097E-02, -6.1753996E-02, -5.5138741E-02	field	7
0,10	26,-5.6940049E-02,-7.3950097E-02,-6.1753996E-02,-5.5138741E-02	5	exit
repla	27 , -6.5074340E-02 , -8.4514394E-02 , -7.0575997E-02 , -6.3015707E-02	mfor	
grid	28, 0.1581762 ,-2.5680201E-02, 4.0668599E-02, 7.6548636E-02	5,1,1,1,1,2,2,2,2	
Zero	29, 0.1581762 ,-2.5680201E-02, 4.0668599E-02, 7.6548636E-02	repla	
seal	30, 5.2048396E-02, 0.2275660 , 0.2661020 , 0.2874393	nomi	
0	31,-4.8787646E-02, 0.2617024 , 0.3022432 , 0.3247257	zero	
srel	32,0.4023682,-0.4165696,-0.3884800,-0.3743345	read	
1,1	33, 2.0000000E+00, 2.0000000E+00, 2.0000000E+00, 2.0000000E+00	vect	
srel			
2,1			


Figure 7.2-1 Input Listing and generated model for Computing Loads due to shifts with Respect to the Poloidal Field

8.0 OH Loads due to Position Errors8.1 Moment due to 5mm shift

Image: State of the contract of the

Moments on the OH with a 5mm Translation

8.2 Forces on the OH Due to Rotation

NTER ngrp nu	mber										117	98	N = 2	2652	.2 Lbs	;	
um NTER node ga	oup for Force	Summation															
XSUM= 100 YSUM= 117 ZSUM= 100 TMAX= 115	98.84 FY 5.2983 F2	MAX= 1: MAX= 1:	0 1.96737 10.5290 591846 1759	FXMIN FYMIN FZMIN FTMIN=	0.0	000000 000000 43747 0002+0	E+00	NODE									
XSUM= 0.11	CENTER, XC=	0.000000	E+00 YC=	0.00000	005+00	8C= 0	.00000	002+00									
ZSUM= -0.83										5							1
TOT= 0.823	9968			# <030 <0 3 50											101001094040		
				<) e ((1 2 5)											: :::::::::::::::::::::::::::::::::::::		
															:1:31:00000		
															: \$: :5 t i5 00:0		
				x +>>0 <1 = 5:													
				A COMPLETE DE	un 11 163										1 ST 15 1 15-941		
	r po de l r po de l					计计计计计计计计计		• • • • • • • • • • • • • • • • • • •	i iiii i iiiii i iiiii i iiiii i iiiii i iiiii i iiiiii i iiiii i iiiii i iiiiii i iiiii i iiiii						11000000000000000000000000000000000000		p atri atti ngti atti ngti atti ngti atti ngti atti ngti atti ngti atti ngti atti ngti atti ngti atti ngti atti
	fsum ENTER noc	ie grou	p for I	orce S	Summat	sion											
	FORCE SU							D									
	FXSUM= FYSUM=	71596		FXM2 FYM2			06.0			FXMIN		-38.0					
	FZSUM=	-1.439		FZM			05.3			FZMIN		-110					
	FTMAX=	1403.	676	AT 1	IODE		14	4366	FTI	AIN=	0.0	00000	00E+00	AT	NODE		
	MOMENTS A MXSUM= MYSUM=	-3.072			.000	0000	E+00	YC=	0.0	00000	00E+	00 Z(c= 0.	00000	00E+00		

Self field and force analysis with 24 kA to check that the top layer of conductor will be held down if there is a rotation of the coil. -186885N Offsets 11798 N due to a rotation of the coil.

Waters & State State and and share and the state stat
- アンド・アンド (1) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
and a second state of the
,
a second a second state of the second se

9.0 PF1a 9.1 Moment Due to 5mm Translation in X

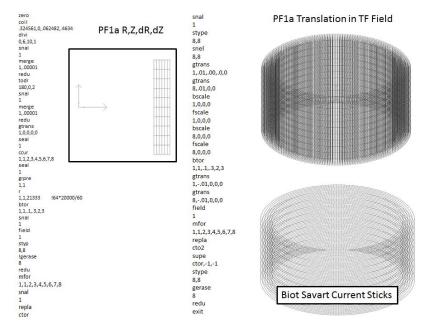
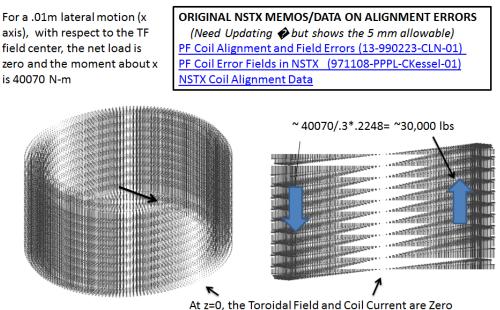
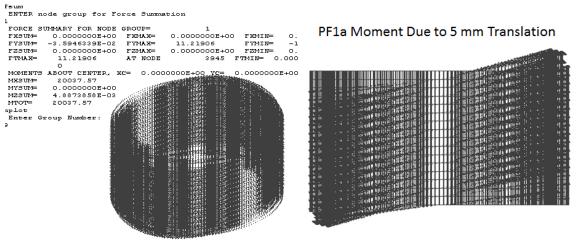




Figure 9.1-1 PF1a Shift With Respect to the TF Field, NTFTM Input Listing

Loads On PF1a Resulting from a Shift With Respect to the TF Field

At z=0, the Toroidal Field and Coil Current are Z Thus the Forces are Zero

9.2 PF1a Axisymmetric Winding, Force due .57deg Rotation About x in the NSTX 1/r TF Field

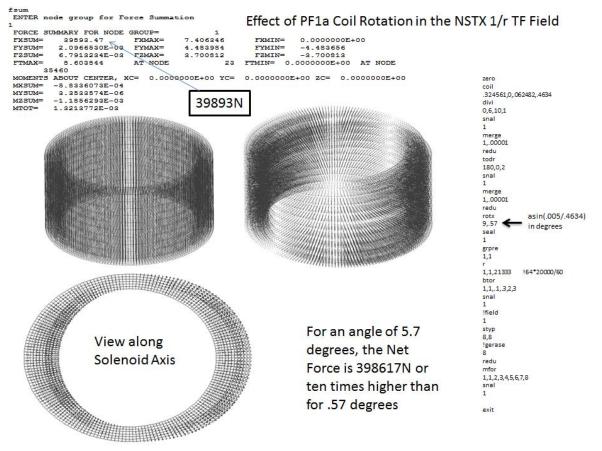


Figure 9.2.1 PF1a Coil Rotation about x in a Toroidal Field

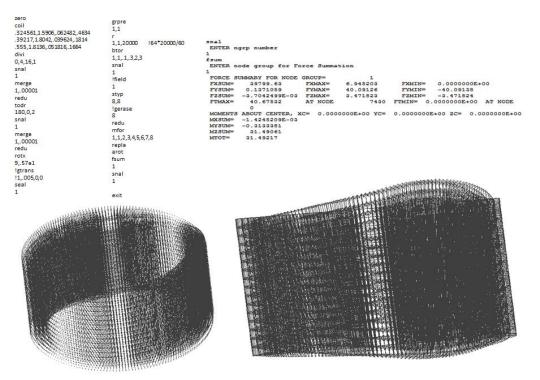


Figure 9.2-2 PF1a Coil Rotation about x in a Toroidal Field. The plots have a 5.7 degree Rotation so that it can be seen

9.3 PF1a Stacked 50 Degree Worst Transitions Load Interaction with the TF Field

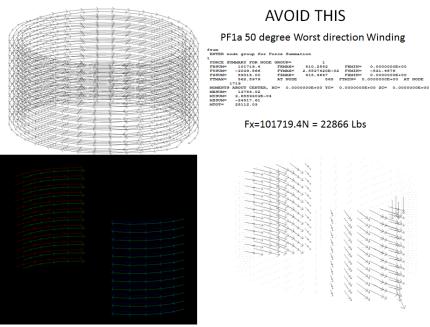


Figure 9.3 Loads from a "Bad" Transition LAYOUT

9.4 Pf1A Helix Loads Interaction with the TF Field

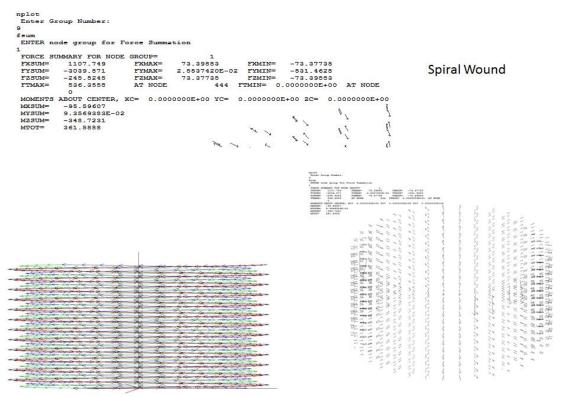
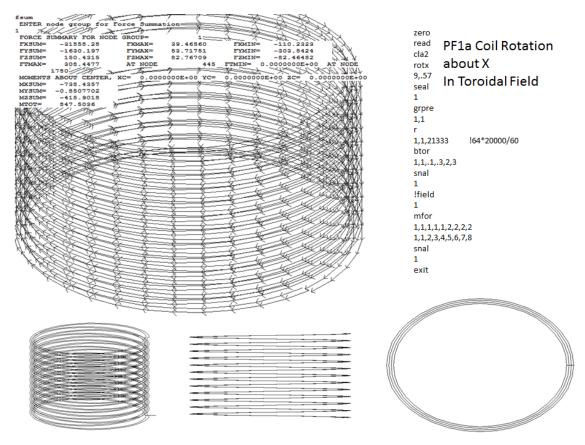
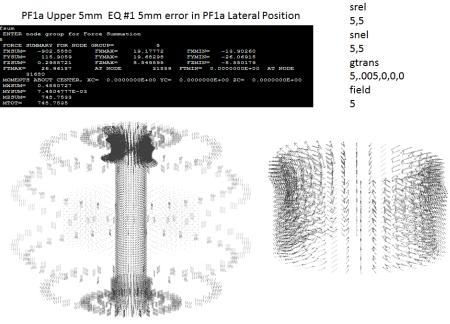
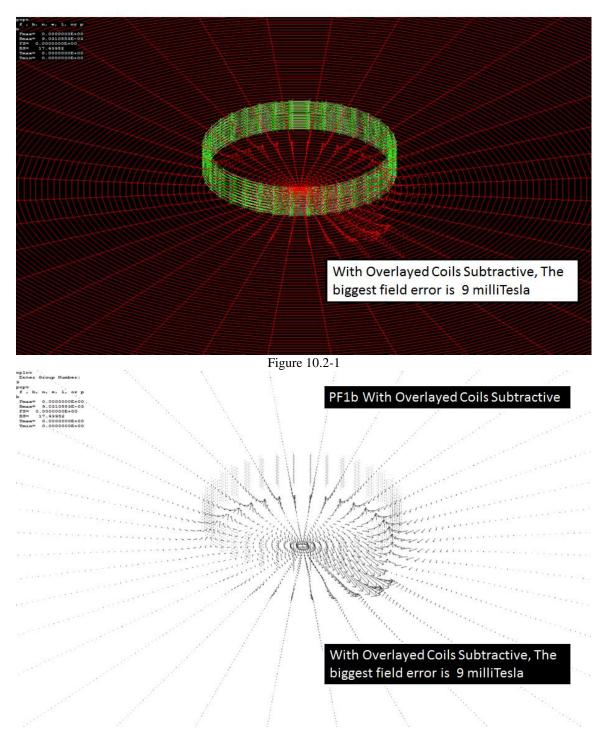
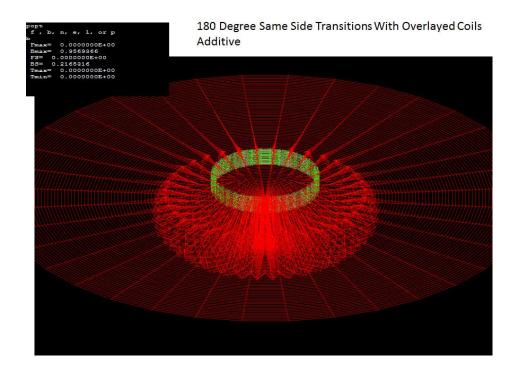



Figure 9.4-1 Loads resulting from a Helically Wound PF1a Coil in a TF Field

The net loads for the helically wound coil are FX=1107N, Fy=3039N and Fz=-245N. Compared with the 50 degree transitions, that yielded 101719 N the helical winding is attractive from a net load standpoint. Field quality much better for the helical winding. The helical winding was chosen for the design of the coils because of both the net load effect on the sling supports and the better field quality.

9.5 PF1a Loads due to 5mm translation with respect to the Poloidal Field (EQ51)


Figure 9.5-1 PF1aU Interaction with the PF Field

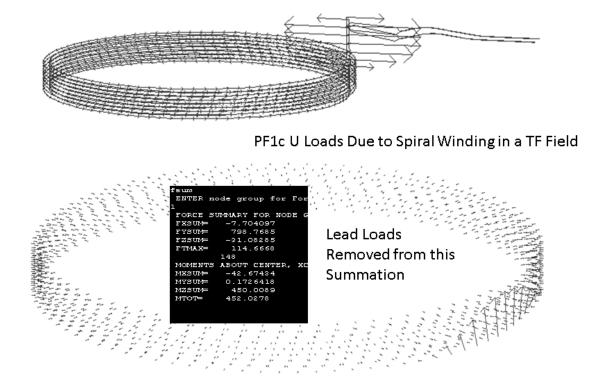
The Net Load Due to the interaction with the PF field is -902.6N

10.0 PF1b10.1 PF1b 180 Degree Opposite Side10.2 PF1b Error Field Stacked 180 Degree Transitions

Two PF1b coils are overlayed – One with stacked 180 degree transitions, and the other an "ideal" coil with only circular current vectors

10.3 Helix in a TF field - No Translation

snal										
ENTER no	arb unmper									
1										
fsum		~								
ENTER NO	ode group for F	orce Summa	tion							
FORCE SI	MMARY FOR NODE	GROUPE	,							
FXSUM	-29.94617	F XMAX=	32.71221	F MMIN=	-32.71221					
FYSUM=	-995.6403	F YMAX=	1.9177303E-02		-497.8349		6-6-	/		
F23UM=	3.716924	F2MAX=	32.71221	FZMIN=	-32.71221		8 8-	-X		
F TTAX=	498.8778	AT NODE	288 1	TMIN= 0.0	000000E+00	AT NODE	<u>xx</u> ==	- (- · · · · · · · · · · · · · · · · ·		
	0		L.K. in	*** >>_		<u></u>	<u>X-X</u> -	Q 21-1	275	read
	ABOUT CENTER,	xc= 0.000	0000E+00 YC= 0	.0000000E+	00 ZC= 0.0	000002+00	<u> </u>	-0	2 A Day	
MKS UM	37.83236		Warter	64-55			{	- X	(Profiles	bcoi
MYSUM= M2SUM=	5.5305399E-02 -342.0762		Ox Ox	44-			<u> </u>	A		
MTOT=	344.1619		KKS	22-45				XXX		snal
11101-	544.1015			Jan the	-5	<u> </u>	<u>è à </u>	X	AD SECTION	ondi
							1 1			1
				and the second s		>		\rightarrow		-
					_ (_ ~)} =	- <u>*</u>	X		!rotx
			DOC	->>	- C - 7	<u> </u>	8	-X=->	TTO AN	
			A Carton	->>				X	TTOM	!9,5.7
			10000	++		<u> </u>		-X-X-3	THE A	
			1 said	the state		<u> </u>	\$		1757	lgtrans
			- Carples	the liter			8 - 5-	-2-2-2	2-7-	:gu ans
				\rightarrow	- <u>X</u>	<u> </u>	<u>×</u> <u>×</u>	-0-52		1,.005,0,0
						9— <u> </u>	7_7			:1,.005,0,0

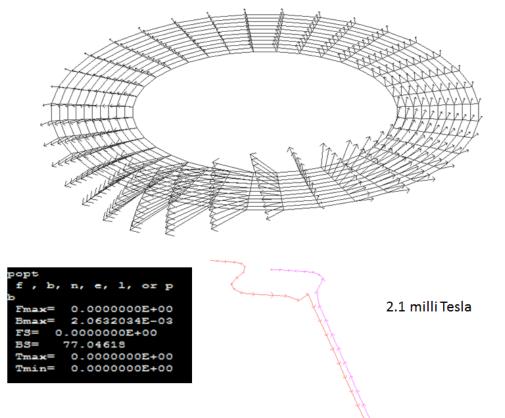

10.4 PF1b Helically Wound in a TF Field 5mm Translation

f≊um ENTER node group for F	orce Summation						
1		-					
FORCE SUMMARY FOR NODE		1					
FXSUM -29.60434	FXMAX= 33.13		-32.29926				
FYSUM -987.2693	FYMAX= 44.72		-491.8287				
FZSUM= 3.636203	FZMAX= 32.70		-32.70695				
FTMAX= 492.8625	AT NODE	288 FTMIN= 0	.0000000E+00	AT NODE			
0			. 1/			/	
MOMENTS ABOUT CENTER,	XC= 0.000000E+0	yc= 0.0000000	E+00 ZC= 0.00	00000 <u>0</u> <u>e+00</u> &	X		
MXSUM= 4962.674		to the second second	(<u> </u>			
MYSUM= 5.3673241E-02		Let interes	2	5 5 5		- A - A - A	~
MZSUM= -344.2641	read 🏑	E-I-	7 _4				100
MTOT= 4974.601	icau (xt	it it is a start			~		10/1
	bcoi 🗖	States) Jand	$\langle - \overline{\Sigma} \rangle$	2 X &	<u>X</u>	-the try	202
	ncoi 🦓	the state of the s	4	<u> </u>			×150
	snal 🖾		1	<u> </u>			Str.A
	siiai 🖂		Q	$ \leftarrow = \langle - \rangle$			
	1 0×0			<u> </u>	>===\$		
	⊥ K.¥			<u> </u>			KIKI -
	Iroty K			2——			**
	!rotx 🏹	Carlo and	<u></u>	<u>>−−-></u> >	===		AA
		the share	· · · · · · · · · · · · · · · · · · ·	<u> </u>			SM.
	- 19,5.7 🔍	the start	·	<u> </u>			2/3
	atrone	1 Samet	*=			=	25
	gtrans			~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X		
	1 005 0 0		1 (?	>			
	1,.005,0,0	-		\$ <u> </u>			
			- /	/ // /			

10.5 PF1b Circular Winding in a TF Field 5mm Translation

10.6 PF1b Circular Winding in a TF Field 5.7 degree Rotation

11.0 PF1c 11.4 Loads on PF1c with a Helical Winding



11.0PF11 with 180 Degree Transitions

Note: Legend refers to point locations in sketch, not actual tile rows

12.0 PF1a Bus12.1 PF1aL Error at the Inner Horizontal Divertor13.0 PF1b Bus13.1 Error at the Inner Horizontal Divertor

PF1aL Fields Due to The Lead Geometry on Lower Horizontal Divertor Plane

Figure 13.1-1 PF1aL Fields Due to The Lead Geometry on Lower Horizontal Divertor Plane 14.0 PF1c Bus

18.0 TF Error – Misalignment of the divertor flange with respect to the TF field

If the TF itself is misaligned with respect to the divertor flange, then the field lines will not intersect the divertor tiles uniformly around the circumference of the inner divertor. In this analysis the TF field is computed on the surface of the divertor flange with it tilted and nominally orthogonal to the TF axis. The two results are subtracted to calculate and plot only the deviation.

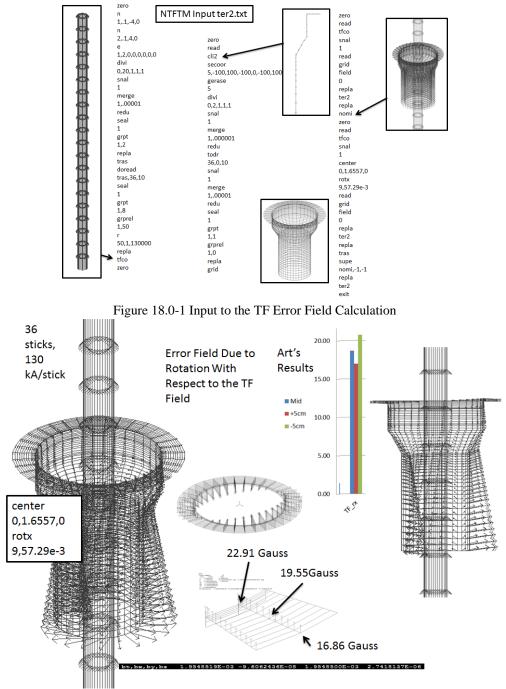


Figure 18.0-2 Results of rotation of the Casing with Respect to the TF Field by 1 milli-radian

19.0 OH

- **19.1** Field Error due to 1 mm shift in x
- 19.2 Field error due to rotation

19.3 Field Error Due to Growth and Shrinkage of the OH Coil

The top of the OH and field moves downward by .3 inches during a typical shot. This will move the field lines near the divertor area and change the incident angle. As of Rev 0 of this calculation, the field errors from this have not been quantified.

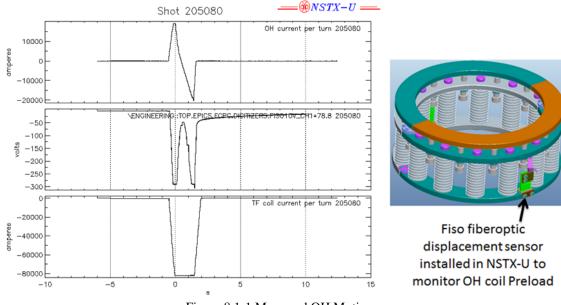
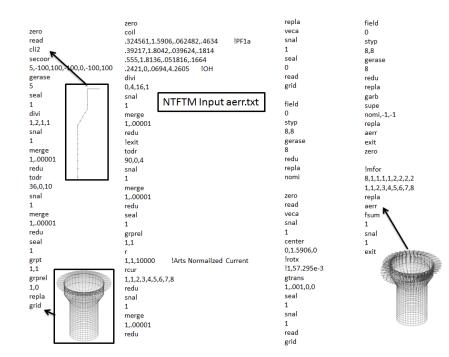
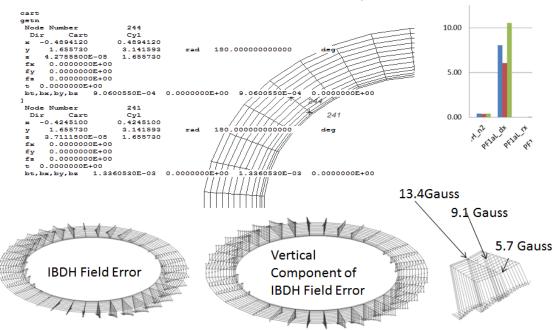
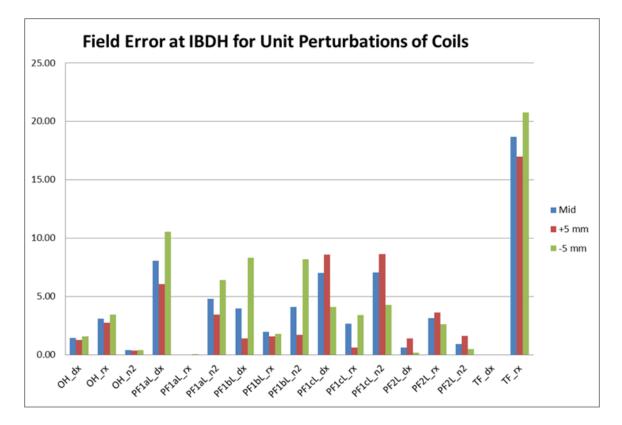
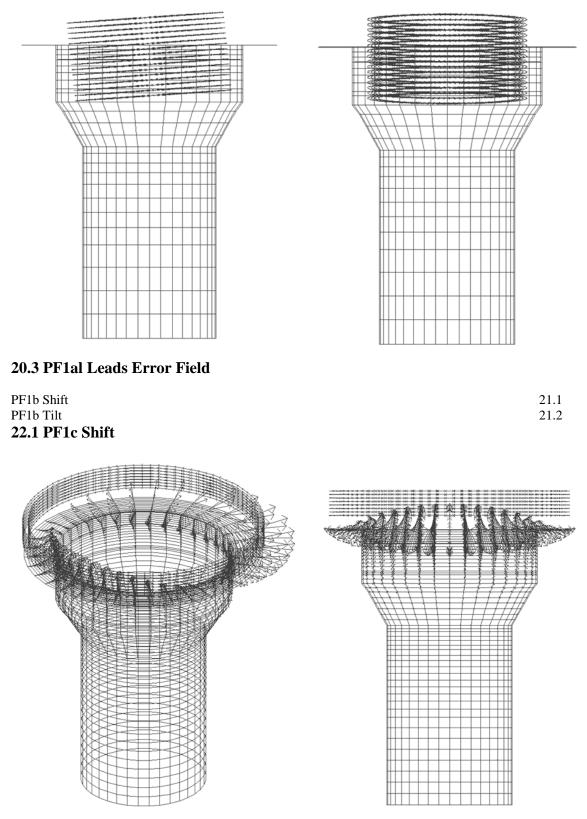
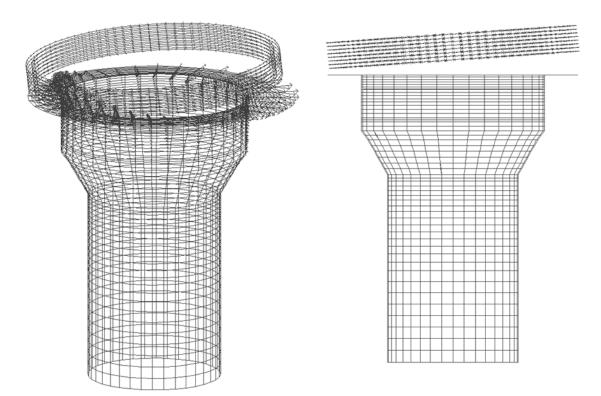





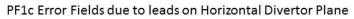
Figure 8.1-1 Measured OH Motions

20.1 Error due to PF1a Shift





Field Error Due to Translation of PF1a by 1mm


20.2 Error due to PF1a Tilt

22.2 PF1c Tilt

22.3 Field Error Due to the PF1cU Leads

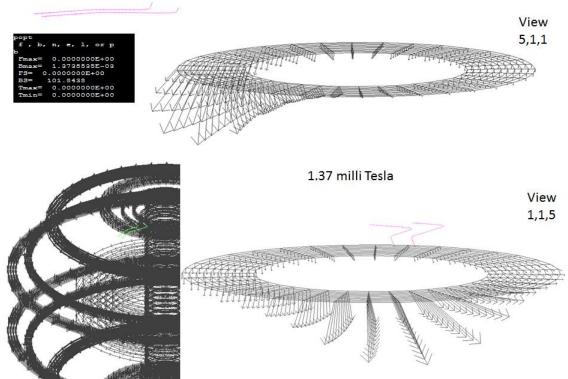
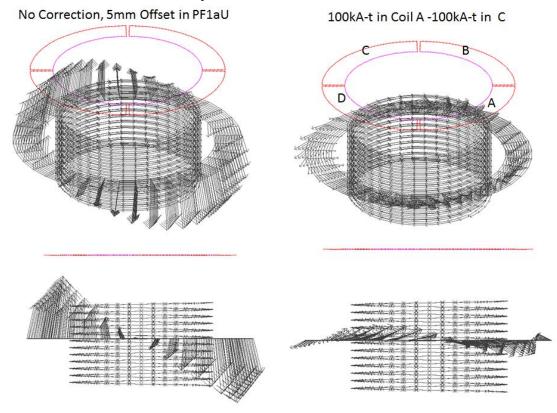



Figure 14.1- PF1c Error Fields due to leads on Horizontal Divertor Plane

Figure 10.1-2 Load deflection of the 225 degree C $% \left({{{\rm{C}}}_{{\rm{C}}}} \right)$ sample

23.0 Possible Field Correction Coils

The uncertainties in coil positions are effecting the coil and tile design progress. There may be a fall back/contingency plan to implement correction coils if needed after the coils, coil supports, and tile supports are built - and maybe after some run period. - Or maybe never if we can hold the tolerances. Power them with the SPA's?? Mount them off the PF2 Clamps?

Appendix A

EMAILS

Jan 29 2018 from Art Brooks: Peter,

I've scaled my results to 5 m and 20 kA to compare with you:

	Fx, N		Mx, N-m	
	Pete	Art	Pete	Art
OH	468,345	519,020	235,423	259,510
PF1a	39,893	35,814	20,037	17,907
PF1b	12,507	11,742	6,290	5,871
PF1c	100,129	9,394	5,031	4,697

They all look close except for pf1c which I believe you are of by a factor of 10. I noticed in all the others the Fx and Mx differ by a factor of 2. Art

Appendix B True Basic Code to Generate Coil Winding Patterns

dim x(4,10000),y(4,10000),z(4,10000),mat(10000),real(10000) ! Coil specs let transtype=6 let drcoil=.2 let nlayers=4 let Rcoil=.324561 let Zcoil=0 if transtype=1 then let PFname\$="pf1Au Replacement" let make=4 let trans=0 let Rcoil=.324561 let Zcoil=0 let drcoil=.062482 let dzcoil=.4634 let nlayers=4 let nlayerturns=12 let l1transs =1 let 11transe =5let 12transs = 8 let l2transe = 12let 13transs = 15 let 13transe = 19 let 14transs = 22 let 14transe = 26 end if if transtype=2 then let PFname\$="pf1Au Replacement" let make=4 let trans=0 let Rcoil=.324561 let Zcoil=0 let drcoil=.062482 let dzcoil=.4634 let nlayers=4 let nlayerturns=12 let l1transs =1 let 11transe = 5 let l2transs = 1let 12transe = 5

let 13transs =1 let 13transe = 5 let 14transs =1 let 14transe = 5 end if if transtype=3 then let PFname\$="pf1Au Replacement" let make=4 let trans=0 let Rcoil=.324561 let Zcoil=0 let drcoil=.062482 let dzcoil=.4634 let nlayers=4 let nlayerturns=12 let l1transs =1 let 11transe = 5 let l2transs =1 let 12transe = 5 let 13transs = 18 let 13transe =22let 14transs = 18 let 14transe = 22 end if if transtype=4 then let PFname\$="pf1Au Replacement Worst Loading" let make=4 let trans=0 let Rcoil=.324561 let Zcoil=0 let drcoil=.062482 let dzcoil=.4634 let nlayers=4 let nlayerturns=12 let l1transs =1 let 11transe =5let l2transs = 18let 12transe = 22 let 13transs =1 let 13transe = 5 let 14transs = 18let 14transe = 22 end if

if transtype=5 then let PFname\$="pf1Au Replacement Spiral Wound" let make=4 let trans=0 let Rcoil=.324561 let Zcoil=0 let drcoil=.062482 let dzcoil=.4634 let nlayers=4 let nlayerturns=12 let 11transs =0 let 11transe =36let 12transs =0 let 12transe = 36 let 13transs =0 let 13transe = 36 let 14transs =0 let 14transe = 36 end if if transtype=6 then let PFname\$="pf1bu Replacement " let make=2let trans=0 let Rcoil=15.51/39.37 let Zcoil=0 let drcoil=1.56/39.37 let dzcoil=7.21/39.37 let nlayers=2 let nlayerturns=10 let 11transs =0let l1transe =18 let 12transs =0 let 12transe = 18 let 13transs =0 let 13transe = 36 let 14transs =0 let 14transe = 36 end if !let nlayerturns=12 let condz=dzcoil/nlayerturns let condr=drcoil/nlayers

!let outfile\$="d:\nstx\csu\bellows\tras.txt"
let outfile\$="d:\nstx\csu\magnetic sta\tras.txt"

```
when error in
unsave outfile$
use
end when
OPEN #3: name outfile$, create new
if make>0 then
! Layer 1
let rlayer=rcoil -drcoil/2+condr/2
for t=1 to nlayerturns
for th=1 to 11transs-1
let theta=theta+10
let n=n+1
let mat(n)=1
let real(n)=10
let x(1,n) = (rlayer) \cos(pi + theta/180)
let z(1,n)=(rlayer)*sin(pi*theta/180)
let y(1,n)=condz^*(t-1)
next th
for th=l1transs to l1transe-1
let theta=theta+10
let n=n+1
let mat(n)=1
let real(n)=1
let x(1,n) = (rlayer) \cdot \cos(pi \cdot theta/180)
let z(1,n)=(rlayer)*sin(pi*theta/180)
let y(1,n)=condz*(t-1)+condz*(th-l1transs)/(l1transe-l1transs+1)
next th
for th=l1transe+1 to 36
let theta=theta+10
let n=n+1
let mat(n)=1
let real(n)=10
let x(1,n) = (rlayer) \cos(pi + theta/180)
let z(1,n)=(rlayer)*sin(pi*theta/180)
let y(1,n) = condz^*(t)
next th
next t
   Transition 1
!
for th=1 to trans/10
let theta=theta+10
let n=n+1
let mat(n)=1
let real(n)=10
let x(1,n) = (rlayer + condr/(trans/10)*(th))*cos(pi*theta/180)
let z(1,n)=(rlayer+condr/(trans/10)*(th))*sin(pi*theta/180)
```

```
let y(1,n)=condz*(nlayerturns)
next th
end if
If make >1 then
! Layer 2
let rlayer=rlayer+condr
for t=1 to nlayerturns
for th=1 to l2transs-1
let theta=theta+10
let n=n+1
let mat(n)=2
let real(n)=10
let x(1,n) = (rlayer) \cos(pi + theta/180)
let z(1,n)=(rlayer)*sin(pi*theta/180)
let y(1,n)=nlayerturns*condz-condz*(t-1)
next th
for th=l2transs to l2transe -1
let theta=theta+10
let n=n+1
let mat(n)=2
let real(n)=2
let x(1,n) = (rlayer) \cdot \cos(pi \cdot theta/180)
let z(1,n)=(rlayer)*sin(pi*theta/180)
let y(1,n)=nlayerturns*condz-condz*(t-1)-condz*(th-l2transs)/(l2transe-l2transs+1)
next th
for th=l2transe+1 to 36
let theta=theta+10
let n=n+1
let mat(n)=2
let real(n)=10
let x(1,n)=(rlayer)*cos(pi*theta/180)
let z(1,n)=(rlayer)*sin(pi*theta/180)
let y(1,n)=nlayerturns*condz-condz*(t)
next th
next t
```

```
! Transition 2
```

```
for th=1 to trans/10
let theta=theta+10
let n=n+1
let mat(n)=2
let real(n)=10
```

```
let x(1,n) = (rlayer + condr/(trans/10)*th)*cos(pi*theta/180)
let z(1,n)=(rlayer+condr/(trans/10)*th)*sin(pi*theta/180)
let y(1,n)=0
next th
end if
If make>2 then
! Layer 3
let rlayer=rlayer+condr
for t=1 to nlayerturns
for th=1 to 13transs-1
let theta=theta+10
let n=n+1
let mat(n)=3
let real(n)=10
let x(1,n) = (rlayer) \cdot \cos(pi \cdot theta/180)
let z(1,n)=(rlayer)*sin(pi*theta/180)
let y(1,n)=condz^*(t-1)
next th
for th=l3transs to l3transe
let theta=theta+10
let n=n+1
let mat(n)=3
let real(n)=3
let x(1,n) = (rlayer) \cos(pi + theta/180)
let z(1,n)=(rlayer)*sin(pi*theta/180)
let y(1,n)=condz*(t-1)+condz*(th-l3transs)/(l3transe-l3transs+1)
next th
for th=13transe+1 to 36
let theta=theta+10
let n=n+1
let mat(n)=3
let real(n)=10
let x(1,n) = (rlayer) \cdot \cos(pi \cdot theta/180)
let z(1,n)=(rlayer)*sin(pi*theta/180)
let y(1,n) = condz^*(t)
next th
next t
! Transition 3
for th=1 to trans/10
let theta=theta+10
let n=n+1
let mat(n)=3
let x(1,n) = (rlayer + condr/(trans/10)*th)*cos(pi*theta/180)
let z(1,n)=(rlayer+condr/(trans/10)*th)*sin(pi*theta/180)
let y(1,n)=condz*(nlayerturns)
```

```
next th
end if
if make>3 then
! Layer 4
let rlayer=rlayer+condr
for t=1 to nlayerturns
for th=1 to l4transs-1
let theta=theta+10
let n=n+1
let mat(n)=4
let real(n)=10
let x(1,n) = (rlayer) \cdot \cos(pi \cdot theta/180)
let z(1,n)=(rlayer)*sin(pi*theta/180)
let y(1,n)=nlayerturns*condz-condz*(t-1)
next th
for th=l4transs to l4transe
let theta=theta+10
let n=n+1
let mat(n)=4
let real(n)=4
let x(1,n)=(rlayer)*cos(pi*theta/180)
let z(1,n)=(rlayer)*sin(pi*theta/180)
let y(1,n)=nlayerturns*condz-condz*(t-1)-condz*(th-l4transs)/(l4transe-l4transs+1)
next th
for th=l4transe+1 to 36
let theta=theta+10
let n=n+1
let mat(n)=4
let real(n)=10
let x(1,n) = (rlayer) \cdot \cos(pi \cdot theta/180)
let z(1,n)=(rlayer)*sin(pi*theta/180)
let y(1,n)=nlayerturns*condz-condz*(t)
next th
next t
end if
print #3: "zero"
print #3: "type"
print #3: "8"
for i=1 to n
print#3: "n"
print #3: i;",";x(1,i);",";y(1,i);",";z(1,i)
print#3: "mat"
print#3: mat(i)
```

```
print#3: "real"
print#3: real(i)
print#3: "e"
print #3: i;",";i+1;",0,0,0,0,0,0"
next i
print #3: "erla"
print #3: "repla"
print #3: "clay"
print #3: "exit"
set window -.5,.5,-.2,.8
print "theta type="; thetatype
print "Rz= "; coilr
plot 0,0;1,0
plot 0,0;0,1
for i=1 to n
set color mat(n)
plot x(1,i), z(1,i);
call arrow(x(1,i), z(1,i), x(1,i+1), z(1,i+1))
next i
!plot x(1,i-1),z(1,i-1)
get key kinp
clear
plot 0,0;.8,.3
plot 0,0;0,1
plot 0,0;-.3,-.8
for i=1 to n
if mat(i)=1 then set color "blue"
if mat(i)=2 then set color "green"
if mat(i)=3 then set color "red"
if mat(i)=4 then set color "black"
!plot x(1,i)*.8,z(1,i)*.3+y(1,i);
!if mat(i)>1 then
call arrow(x(1,i)*.8,z(1,i)*.3+y(1,i),x(1,i+1)*.8,z(1,i+1)*.3+y(1,i+1))
pause .01
!end if
next i
plot x(1,i-1),z(1,i-1)
get key kinp
clear
plot 0,0;1,0
plot 0,0;0,1
for i=1 to n
if mat(i)=1 then set color "blue"
```

if mat(i)=2 then set color "green"
if mat(i)=3 then set color "red"
if mat(i)=4 then set color "black"
!plot x(1,i),y(1,i);
call arrow(x(1,i),y(1,i),x(1,i+1),y(1,i+1))
next i
plot x(1,i-1),z(1,i-1)

SUB arrow (a1,b1,a2,b2) LET a3=a1+.8*(a2-a1)+.1*(b2-b1) LET b3=b1+.8*(b2-b1)-.1*(a2-a1) LET a4=a1+.8*(a2-a1)-.1*(b2-b1) LET b4=b1+.8*(b2-b1)+.1*(a2-a1) plot a1,b1;a2,b2 plot a3,b3;a2,b2 plot a2,b2;a4,b4 END SUB end