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Purpose of Calculation: (Define why the calculation is being performed.)
The purpose of this calculation is to qualify the new centerstack casing and lower support skirt for the Upgrade loads .   The stress contributions are generated in this calculation or gathered  from other calculations.  A stress summation and summary for the centerstack casing is presented and compared with allowables. 
References (List any source of design information including computer program titles and revision levels.)
-See the reference list in the body of the calculation

Assumptions (Identify all assumptions made as part of this calculation.)
       Referenced calculations include assumptions.  

Calculation (Calculation is either documented here or attached)
Attached in the body of the calculation

Conclusion (Specify whether or not the purpose of the calculation was accomplished.)
    Stress levels are  below the static and fatigue allowables  for the inconel 625 shell. Bolting needs to be high strength.  ASTM A193 B8M class 2 bolts are recommended for all flange bolts , with appropriate preloading (torqued to 75% yield for conventional through bolts - less for the blind tapped holes in the PF1b mandrel).  Welds should be the full thickness of the thickness of the thinner shell segment. The PF1b mandrel  is in the main load path that transfers the casing  loads to the support skirt. In the fall of 2011 there were no spacers between flanges connected by the studs, and the studs would  not load in compression. The studs will not contribute adequately to the moments and compression loads at the base of the casing. It is recommended that tubular spacers be added to the studs.  Bolt stresses at the lower casing flange and skirt flanges are significantly stressed (60 to 70ksi) These should be preloaded high strength bolts.. These have an allowable of 62 ksi so,  they are slightly undersized. Peak stress is at the coax opening of the skirt. Increasing the bolt size on either side of the opening should be considered.  The shallow thread blind tapped bolt connection of the PF1b mandrel connection to the PF1a mandrel flange doesn't have adequate capacity to manage the last round of Halo loads. Doubling the number of holes is recommended. High strength bolts are recommended in the "softer" 316 flange - this allows a bit higher shear based on the Federal Screw Fasteners Standard. They will also have to be preloaded to take the lateral load in friction and to develop a greater moment carrying capacity. Welding on the high strength bolt threads would degrade their capacity, Use of Locktite is recommended. 
   Loading from the CHI electrical connections have been included in the assessment of the net loads on the casing, but the stresses in the CHI rod and the supports for this rod and the reactions from the bus bar connections have not yet been analyzed because details of theses supports are lacking. 
Cognizant Engineer’s printed name, signature, and date

Irving Zatz for Jim Chrzanowski


I have reviewed this calculation and, to my professional satisfaction, it is properly performed and correct.

Checker’s printed name, signature, and date:
_____________________________________________________A. Brooks
_____________________________________________________A. Zolfaghari
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    This is a collection of results from other calculations intended to assess the total stress in the centerstack casing. Some stress calculations have been added  beyond the references to complete assessment of the load inventory. Figure 3.0-1 shows the PDR status of the qualification of some of the elements of the casing structure. All of these components and loads have been re-visited in the final design.
     The first component of  normal operating stress comes from the inner PF analyses [2]. The inner PF coils, PF 1 a and b upper are supported by the casing. Net Vertical loads for the upper coils PF1a and b and  may be found in the Design Point spreadsheet [1], load combinations sheet. These are also included in section 5.2 of this calculation. Reference [2] calculates these independently from the 96 equilibria. The TF coils indirectly load the casing as well because the casing is one of the redundant or statically in-determinant load paths that resist the TF out-of-plane loads. The torsional shear stresses in the casing are quantified in the global model calculation, ref[9] and are summarized in section 14.0.  During a normal shot, the heat load on the tiles heats up the casing, but there is active cooling at the flanged ends of the casing to protect the Viton seals and PF1b which is very close to the flange. The thermal gradients in the casing and the conical sections of the casing cause stresses that will superimpose on the PF Lorentz load stresses. The heat balance calculation, reference [3] computes the heat transfer throughout the  interior of the vessel from plasma heating of tiles and exposed sections of the vessel. heat is conducted through the centerstack tiles and inner divertor and  reference [3] quantifies the casing temperature. A stress pass is included in the analysis and provides the stress to be added to other loading components
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Figure 3.0-2 Stress due to Halo Currents
   Disruption loads are addressed in reference [4] for halo currents and reference [10 ] for the inductively driven axisymmetric stresses in the casing wall. Inductive current stresses are less than 50 MPa. The halo current loads represent a potentially complex set of loads that depend on the entry and exit points, described in the GRD.  They also depend on loading time durations that preclude resistive re-distribution of the non-axisymmetric halo currents for very fast disruptions, and allow resistive re-distribution for slow disruptions. The non-axisymmetric loading that results from the fast disruptions loads the casing dynamically and is addressed by a  transient structural calculation. The casing inertia and the spring restraint provided by the bellows limits the stress in the casing. Tile weights used for the inertial components of the  model come from the tile stress calculation, ref [6] and the bellows analysis that provided the stiffness is reference [5]. Loads at the bellows spring are a part of the bellows loading addressed in the bellows stress calculation, reference [5] The bellows spring rate and the cantelever stiffness of the centerstack  is an important component of the magnetic stability analysis performed in reference [7]. The centerstack casing is vertically cantelevered from the pedestal. Stresses due to seismic overturning loads may be found in reference [12]
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Figure 3.0-3 FDR Presentation Showing Two of the Many Load Components on the Centerstack Casing.
Table 3.0-1 Centerstack Casing Stress Summary
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    For the FDR, an envelope of the stresses was presented and the sum was reported as 414 MPa, which was close to the fatigue allowable for Inconel 625. . In  table 3.0-1, the stresses are summed at four locations  and the peak total is 299.3. This occurs at a weld in the casing, shown in Figure 5.5-3. The weld is a full penetration through the thinner section and backed with a 1/6th seal weld. The stress calculations capture the stress in the full penetration weld. and as long as this meets acceptance criteria, the 1/16 weld is redundant.  
   The possibility of buckling the  1/4 inch casing shell is addressed in ref [2] and additionally in section 13.2 of this calculation.
    Bolt stresses at the lower casing flange and skirt flanges are significantly stressed (60 to 70ksi) These should be preloaded high strength bolts. ASTM A193 B8M class 2 bolts are recommended . These have an allowable of 62.5 ksi so,  they are slightly undersized. Peak stress is at the coax opening of the skirt. increasing the bolt size on either side of the opening should be considered.  
   The PF1b mandrel  is in the main load path that transfers the casing  loads to the support skirt. Currently there are no spacers between flanges connected by the studs, and the studs will not load in compression. The studs will not contribute adequately to the moments and compression loads at the base of the casing. It is recommended that tubular spacers be added to the studs. Ref [7] calculates the stress due to an offset between the magnetic and structural centers doe to tolerances. From [7], The stress due to the manufacturing tolerance would be a maximum of .43 MPa and the bellows stress would be 9.77 MPa
    Recent questions regarding the halo current loading on the centerstack casing highlights a design weakness in the support of the casing. The upper bellows provides minimal lateral restraint, and the casing is basically cantilevered from the lower structures and bolt circles. Halo Loads and particularly moments were acceptable when we took credit for mitigation of the peaking factor from dynamic effects and resistive redistribution of the asymmetric currents. From October 2011 emails,   there is a large uncertainty in the halo loads - Art suggests enveloping the uncertainty by assuming the worst loading at the mid plane  of 50,000 lbs - This would produce a moment of 50000*(1.6m*39.37+22in) = 4.2e6 in-lbs. The skirt bolt pattern has a section modulus of 19 in^3 and the bolt stress would be 237,000 psi. The bolts to the g-10 ring, and to the inserts in the TF flags - and connection through the lower crown to the pedestal would also see high loads.  
    It was  recommended that a lateral restraint be added at the upper bellows elevation - a slip ring or struts. They would have to take half the 50000 lb halo load. This would much reduce the moment at the base and add needed margin against loading that we probably won't be able to quantify until the upgrade has operated. Art Brooks recalculated the reaction loads and moments at the base (Appendix B)
Updated Halo loading of the lower G-10 ring and it's connections to the TF flags, i evaluated in ref [20] 
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4.0 Digital Coil Protection System (DCPS) Input

Casing Stress:

     Most of the loading on the casing is either thermal or disruption loading. The DCPS typically is concerned mainly with coil Lorentz force derived stresses. Table 3.0-1 lists the Lorentz Force derived stress as 45 MPa It occurs at the intersection of the  straight section and flare. This comes from L. Myatt's calculation of the casing stresses from the inner PF coils. ref[2] The 45 MPa will scale based on the net vertical load from PF1a and b upper. Len used the worst of the 96 scenarios  which corresponds to the 67939 lbs from the design point spreadsheet - excerpt at right. The DCPS should compute the casing Lorentz Stress from:
(Sum of PF1a and b Vertical loading in lbs ) * 45MPa /67939lbs = Lorentz Stress 

The max stress in the casing is 200 MPa for 96 equilibria, plus  thermal and disruption loads. With the Lorentz portion at 45 MPa, the  "headroom needed for Non-Lorentz Loads is 155 MPa. 

   The static  allowable is 450 MPa  so the Lorentz stress could go to 300 MPa, and still pass the static allowable. The worst case Max load is 257587lbs - this would produce a casing stress of 257587/67939*45 = 170 MPa - so there is only marginally a possibility that currents in their worst configuration could cause an  unacceptable stress - but the bolting the lower flange will fail before this stress could be reached. 
Lower Casing Support Bolts
    Because they are sized to the worst halo loads, there isn't much margin to take anything more than the total PF 1a,b upper and lower Lorentz launching load that was used in section 17 to qualify the  bolts. This is 25161 lbs from Table 5.2-1. Maintaining the net PF1a,b upper and lower summation below this value will protect the bolting from halo loads during a disruption. If more margin is needed to allow a better operating window, the halo loads on the bolts will have to be re-visited. 
5.0 Design Input,

5.1 Criteria

Criteria may be found in reference [8],   NSTX Structural Design Criteria Document, I. Zatz
5.2 Design Point Spreadsheet Loads

Reference [2] addresses the stress in the centerstack due to the loads from PF1a and b upper. The bolting at the lower end of the casing assembly is exposed to the net loads from PF1a, and b upper and lower. This summation is available in the Design Point spreadsheet, reference [1] 
Table 5.2-1 Net Vertical Loads on the Lower Connections of the Skirt 
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Table 5.2-2 Net Vertical Loads on the Lower Connections of the Skirt Plus OH Coil
	Fz(lbf)
	(PF1AU+PF1BU+PF1BL+PF1AL+OH)

	Min w/o Plasma
	-39635

	Min w/Plasma
	-53445

	Min Post-Disrupt
	-41843

	Min
	-53445

	Worst Case Min
	-375500

	Max w/o Plasma
	20397

	Max w/Plasma
	10748

	Max Post-Disrupt
	19630

	Max
	20397

	Worst Case Max
	375501
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5.4 Material Properties and Allowables
Table 5.4-1Tensile Properties  for Stainless Steels

	Material
	Yield, 292 deg K (MPa)
	Ultimate, 292 deg K (MPa)

	316 LN SST
	275.8[17]
	613[17]

	316 LN SST Weld
	324[17] (23.3ksi)
	482[17]

553[17]

	316 SST Sheet Annealed
	275[18]
	596[18]

	316 SST Plate Annealed 
	
	579

	304 Stainless Steel (Bar,annealed)
	234

33.6ksi
	640

93ksi

	304 SST 50% CW
	1089
	1241

180ksi


Table 5.4-2 Coil Structure Room Temperature (292 K) Maximum Allowable Stresses, Sm = lesser of 1/3 ultimate or 2/3 yield, and bending allowable=1.5*Sm

	Material
	Sm
	1.5Sm


	316 Stainless Steel
	184 MPa, 26.7 ksi
	276 MPa

	316 Weld
	161 MPa
	241 MPa

	304 Stainless Steel (Bar,annealed)
	156MPa(22.6ksi)
	234 MPa (33.9ksi)


[image: image7.png]From the NSTX Criteria: Weld Allowable

For welds in steel, the design Tresca stress shall be the lesser of:
2/3 of the minimum specified yield if the weld at temperature, or
1/3 of the minimum specified tensile strength of the weld at temperature.

From the AISC Criteria:

Reference and Weld Rod or weld wire Parent Material Allowable Stress
(Exclusive of Weld Efficiency)

ATSC Stress on cross All Same as Base material

section of full

pensiration Welds
ATSC Shear Stress on AWS AS1E60XX | A36- 21 ksi

Effective Throat of

fillet weld

For shear on an effective throat of a fillet, For 304 Stainless, the weld metal is
annealed, or the base metal in the heat effected zone is annealed. and Estimate
241*21/36 = 140 MPa = 20 ksi (without weld efficiency)

This is consistent with NSTX Criteria of 2/3 yield or 2/3 of 30ksi for annealed 304
With a weld efficiency of .7 the allowable is 14ksi, or 96 MPa

For fillets divide weld area by sqrt(2)




Figure 5.4-1 Weld Allowable

Inconel 625 properties are shown in Figure 5.4-3 and 4. Fatigue allowables from ref [2] are shown in figure 3.0-2
ASTM A193 Bolt Specs from PortlandBolt.com

	B8
	Class 2 Stainless steel, AISI 304, carbide solution treated, strain hardened


Mechanical Properties

	Grade
	Size
	Tensile ksi, min
	Yield, ksi, min
	Elong, %, min
	RA % min

	B8 Class 2
	Up to 3/4
	125
	100
	12
	35

	
	7/8 - 1
	115
	80
	15
	35

	
	1-1/8 - 1-1/4
	105
	65
	20
	35

	
	1-3/8 - 1-1/2
	100
	50
	28
	45


 The ASTM A193 B8M Class 2 5/8 inch Bolts would have a Stress Allowable of the lesser of 125/2 or 2/3*100 =62.5 ksi
From Ref 2

Center stack coil support structure is made from Inconel 625:

Sy~65 ksi, Sut~130 ksi

Sm~43 ksi (300 MPa)

Membrane + Bending Stress Limit at RT: (1.5)300=450 MPa
Max Cyclic Stress (58.5k cycles) = 375 MPa (R~0.05), see Fig. 4.1-1

[image: image8.emf] 

 INCONEL  625   

Test  Ultimate  Yield  Elongation  

Temperature,  Tensile  Strength  in 2"  

°F(°C)  Strength,  at 0.2%  percent  

   ksi (MPa)  offset,ksi  (MPa)     

Room  138.8  (957)  72.0  (496)  38  

200  133.3  (919)  67.3  (464)  41  

400  129 .4  (892)  62.2  (429)  44  

600  125.6  (866)  59.5  (410)  45  

800  122.2  (843)  59.2  (408)  45  

119.9 58.8 


Figure 5.4-2 Inconel 625 Properties
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Figure 5.4-3 Incoloy 625 Fatigue Properties

5.5 Photos and Drawings of Components
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Figure 5.5-1
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Figure 5.5-2 Upper and Lower Cylindrical Sections
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Figure 5.5-3 Casing Dimensions and Weld Details
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Figure 5.5-4  Lower Mandrel Assembly
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Figure 5.5 -5 Lower PFbl Mandrel Assembly
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Figure 5.5 -6 Lower Mandrel Assembly (October 2011 version with 11 5/8 bolts in the lower flange)
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Figure 5.5-7 Lower Support Skirt (FDR vintage with 24 1/2 in bolts at the lower flange) 
6.0 Analysis Models
    The referenced calculations include a number of separate models for thermal, and electromagnetic modeling. The centerstack casing is included in the global calculation, ref[9]
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Figure 6.0-1 Global Model Representation of the Centerstack Casing
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Figure 6.0-2 Swept Mesh Model of the Centerstack Casing
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Figure 6.0-3 Swept Mesh Model of the Centerstack Casing Showing Displacement Constraints

7.0 Pressure Loading

7.1 Normal Operating Vacuum Loading 
    Normal operating pressures on the casing comes from atmospheric pressure on the inside of the casing and produces hoop tension. The Tresca stress from this loading is 6.3 MPa
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Figure 7.1.1 Operating Vacuum Load Pressure Surfaces, Hoop, and Tresca Stress
7.2 Test Vacuum Loading and Buckling
    During final manufacuring tests, Leak tests may be performed by closing off the top and bottom flanges and drawing a vacuum on the casing. Helium is "sprayed" on the outside welds and a mass spectrometer is used at the vacuum pumping duct. The casing must be stable with an atmosphere of external pressure. This is the opposite loading experienced during normal operation. 
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Figure 7.2-1 Test Vacuum Load Pressure Surfaces, Displacements, and Stress
Shell stresses are small during the test vacuum
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Figure 7.2-2 Buckling Modes 1 and 2
The margin against buckling for this eigenvalue buckling calculation is 25.8. Well beyond the factor of 5 required in the NSTX structural Criteria Document. 
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Figure 7.2-3 Buckling Modes 3 and 5
The first two modes are the most critical. beyond this the buckling margin goes up beyond 33.

8.0 Heat Balance Results

    These results are reproduced from Art Brook's heat balance calculation, ref [3] 
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Figure 8.0-1 Temperature Distribution from the Heat Balance Calculation [3]
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Figure 8.0-2 Temperature Stress Distribution from the Heat Balance Calculation [3]
9.0  Halo Current Results
9.1 Halo Currents in the Casing
    These results are reproduced from Art Brook's Vessel and Internals Heat Balance Calculation, ref [4] 
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Figure 9.1-1 Halo Disruption Stress Results from [4] Presented at the FDR
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Figure 9.1-2 Halo Disruption Stress Results from [4]
9.2  Normal Operation and Halo Currents in the CHI Bus Connection

  Currents flow in the CHI system during start-up and during a disruption. Normal operation for the upgrade is expected to utilize 27 kA of current [21] when the TF is at full field. This is planned to produce 1 MA of plasma current. This occurs during start-up. The CHI can be used for current drive after the initiation. This was done early in the NSTX program to demonstrate current derive but is not commonly used. 
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CHI Start-up Parameters in NSTX and NSTX-U

Parameters NSTX NSTX-U

R/a (m) 0.86/0.68 0.93/0.62
Toroidal Field (T) 0.55 1.0
Planned Non-Inductive sustained Current (MA) 0.7 1.0
Poloidal flux (mWb) contained in the plasma at non- 132 206

inductive sustained current with internal inductance
of 0.35 and at device major radius

Maximum available injector flux (mWb) 80 340
Maximum startup current potential (MA) 04 ~1
Req. Injector current for max. current potential (kA) 10 27

* HIT-Il routinely operated with 30kA injector current without impurity issues

FY 11 Results R. Raman, D. Mueller, T.R. Jarboe et al. Phys. Plasmas 18, 092504 (2011)
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Figure 9.2-1 Normal Operational Parameters Expected for NSTX Upgrade [21]
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Figure 9.2-2 Layouts and Arrangement of the CHI Connections
	
	
	NSTX BASE
	NSTX CSU

	Ro
	m
	0.854
	0.934

	A_100
	 
	1.3
	1.5

	Ip 
	MA
	1.0
	2.0

	Bt@Ro 
	T
	0.6
	1.0

	I =5e6*radius*Bt at Radius
	Amp
	2.562e6
	4.67e6

	I per Turn =
	Amp
	71166
	129722


    The toroidal field at the CHI Rod is .934*1.0/(18.31/39.36) = 2.008T.  Normal operating current in the CHI rods is 27 kA/3 = 9kA. The load in the rod over almost a meter of height is 9000*2T = 18000N or 2023 lbs per rod, radially outward. . The Halo loading is 7% of 2e6 amps*2T*1m/3 = 93333N = 20981 lbs per rod. One important observation is that the disruption considered in Art Brooks simulation is a centered disruption. The disruption that drives currents in the CHI bus is a quench after a VDE. - So the loading in the CHI bus is not addative to those loads calculated by A. Brooks. 
10.0 Mid Plane Disruption, Quench of P1 
    This was thought to be an interesting disruption case. At the mid plane, the centerstack casing is not  reinforced The only structural strength comes from the 1/4 inch shell. 
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11.0 Slow Mid Plane Translation and Quench P1 to P2
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Figure 11.0-1 CS Casing Stresses for Translation and Quench
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Figure 11.0-2 CS Casing Equatorial Plane Radial Displacement Post 26 Time History
12.0 Tile Moments

The tile eddy currents will produce  moments about the vertical axis and radial  - Individual tile moments applied to an axisymmetric structure 
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Figure 12.0-1 Tile Inventory from Kelsey Tresemer's FDR Presentation

From Ref 16:

CSFW Tiles

There are two types of CSFW tiles: fixed tiles and floating tiles. The fixed tiles are held in place vertically and radially by four pins that run through the entire tile horizontally. Horizontally, they are held by a mounting bracket as well as two locating pins. However, the locating pins have a large tolerance and are unlikely to be a real constraint. 
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Figure 1. Top, side, and isometric views of the fixed CSFW tile.

The images above are simplified models of the tile. These images are not to scale and are used only as similar geometries.  The mounting bracket is screwed into the centerstack using bolts that are behind the tile and are tightened through small holes in the surface of the tiles.

The CSFW floating tiles are similar to the fixed tiles in shape. However, they are freer to translate. The tiles are held radially and vertically by the ends of the pins that hold the fixed tiles in place. Horizontally, they are held by fixed tiles on either side. The fixed and floating tiles are placed in an alternating pattern to allow this mounting method. For both the fixed and floating tiles, the following dimensions, loads, or parameters were used in the ANSYS qualification script.

	Variable Name
	Value
	Units

	Material
	7 (Thermagard)
	None

	Tile width
	3.4
	inches

	Tile height
	5.8
	inches

	Tile thickness
	0.75
	inches

	T1
	0.5
	inches

	T2
	0.5
	inches

	T3
	0.0625
	inches

	T4
	0.0625
	inches

	Heat flux
	0.13 × 106
	W/m2

	[image: image43.png]


 across face horizontally
	0
	T/s
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 across face vertically
	590
	T/s

	[image: image47.png]


 normal to face
	160
	T/s

	B field across face horizontally
	2.97
	Tesla

	B field across face vertically
	-0.37
	Tesla

	B field normal to face
	0.07
	Tesla

	Halo current density across face horizontally
	0
	A/m2

	Halo current density across face vertically
	7.76 × 106
	A/m2

	Halo current density normal to face
	2 × 106
	A/m2


From Art Brooks Tile Moment Estimator:

	Based on linear scaling of SPARK model results
	
	
	
	
	
	

	
	
	
	
	
	
	Note: Yellow Fields for Inputs
	

	Time Constant
	
	
	
	
	
	
	
	

	
	Width(in)
	 
	3.4
	in
	
	
	
	
	

	
	Height(in)
	
	5.8
	in
	
	
	
	
	

	
	radius
	r
	0.063637372
	m
	Equivalent radius 
	
	
	

	
	    diameter
	d
	0.127274744
	m
	
	
	
	
	

	
	thickness
	t
	0.01905
	m
	
	
	
	
	

	
	resitivity
	rho
	1.17E-05
	ohm-m
	ATJ Graphite
	
	
	

	
	time constant
	tau
	2.47E-05
	s
	
	
	
	
	

	Field Change
	
	
	
	
	
	
	
	

	
	Inductive
	dB
	0.59
	T
	
	
	
	
	

	
	Ramp Time
	dt
	0.001
	s
	Note: Inductive for dt << tau, Resistive for dt >> tau

	
	Resistive
	dBdt
	590
	T/s
	
	
	
	
	

	Induced current
	
	
	
	
	
	
	
	

	
	Inductive
	I_ind
	37546.0494
	amps
	Note: Linear Scaling From SPARK Analysis

	
	Resistive
	I_res
	973
	amps
	Note: Linear Scaling From SPARK Analysis

	
	  I_ind*EXP(-dt/tau)
	0
	amps
	
	
	
	
	

	
	  I_res*(1-EXP(-dt/tau))
	973
	amps
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	Forces and Moments
	
	
	
	
	
	
	
	

	
	Dipole Current
	I_dp
	973
	amps
	
	
	
	
	

	
	Dipole area
	a
	0.012722555
	m2
	
	
	
	
	

	
	Dipole Moment
	m
	12.37371058
	amps-m2
	Over estimate for resistive solution, reasonable for inductive

	
	
	
	2888.56443
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	Field
	Btf
	2.97
	T
	
	
	
	
	

	
	
	Bpf
	0.37
	T
	
	
	
	
	

	
	Torque = mxB
	Mpol
	36.75
	N-m
	325
	in-lbs
	27
	ft-lbs
	

	
	
	Mtor
	4.58
	N-m
	41
	in-lbs
	3
	ft-lbs
	

	
	
	
	 
	
	
	
	
	
	

	Dipole moment is normal to tile
	
	
	
	
	
	
	

	Torques are about poloidal and toroidal axes thru tile
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	


    The central sleeve of the casing is 89 inches long and 23 inches in diameter The number of tiles on this section of the casing is 89*23.29*3.1416/3.4/5.8 = 330 tiles. The net moment acting on the thin part of the casing  is 27*330*12 = 106 920. the moment will be reacted by the lower flanges and the upper and lower bellows. The moment will be split between the upper and lower ends of the shell. The shear stress is then 106920 in-lbs/23.29/pi/.25/2 = 2922.6psi - 20.15 MPa. shear. Tresca is 40.3 MPa. At the top and bottom flanges, torques from all 700 tiles must be reacted . Assuming that  all the tiles are similar to the CSFW tiles, the total moment is 27*700*12 = 226800 in-lbs. This is reacted in the heavier  cylindrical sections at each end of the casing. these are 30 inches in diameter and .438 inches thick.  The torsional shear is then 226800/2/30/pi/.438 = 2747 psi = 19 MPa Shear or 38 MPa Tresca.
13.0 PF Loading Results

13.1 Stress Results from Ref [2] 
· The 2D model identifies EQ31 (PF_Currents_Forces) as producing the max vertical tensile stress in the structure, as PF1a/b upper and PF1a/b lower pull away from the mid-plane with 56 kip.

· In this top-half symmetry model, 12.7 and 43.3 kip are applied to the PF1a and PF1b upper flanges, respectively.

Notice that the max stress of 45 MPa also appears in the center column to transition piece weld, which is comparable to the 50 MPa 2D result (<<300 MPa
[image: image48.jpg]ANSYS 13.0
JUN 17 2011
11:12:38
pf1abu_casing3d12
NODAL SOLUTION
STEP=2

suB
TIME=2

SINT  (AVG)
DMX =.227E-03

A454E+07

% .908E+07
(=) A36E+08
[ -182E+08
.227E+08
.272E+08
.318E+08

.363E+08
= .408E+08
L454E+08





Figure 13.1-1 Stress Results from [2]
13.2 Buckling
L. Myatt did a buckling calculation based on the compressive load from the upper inner PF coils. This showed a large margin. Buckling will be aggravated by the thermal expansion of the central region of the casing, and possibly any tolerance or other geometric imperfections introduced during manufacture or operation.
[image: image49.png]Center Tube Buckling Stability
Loads from E1 produce a compressive load in the 74"
thick central tube of 86 kip, which raises the concern over
buckling.
Roark’s equation for the critical stress (c') in thin
cylindrical tubes is:
- o'= E/R)A3"2(1-v2)1/2}
— o'= (29Msi)(0.25/11.64)/{31/2(1-0.32)/2} = 380 ksi
The average stress in the central tube:
— Gupe=(86 kip)/(2111.64"x0.25”) = 4.7 ksi

The ratio of critical stress to max stress is ~80 (>>5%)




Figure 13.2-1 L. Myatt's buckling calculations
  L. Myatt's calculations are based on Roark handbook calculations and do not include lateral loading from magnetic misalignments or differential  thermal expansion. An Eigenvalue buckling analysis of the centerstack casing was performed. The thermal expansion of the central region was approximated by selecting +/- 1 meter from the equatorial plane and applying 200 degrees C.   The ANSYS instructions say that you should do a static solution first. This was done  with the thermal plus Lorentz  loading. 
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Figure 13.2-2 Buckling Results with the Thermal Loading as a Part of the Load Vector
When ANSYS reports the load factors they are based on the full load vector in the initial static analysis. The results for the casing showed only load factors of 2  - when the Euler buckling hand calculations  showed factors of 50 
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Figure 13.2-3 Eigenvalue Buckling modes and Load Factors wit No Thermal Distortions

The  Eigenvalue buckling was rerun without the thermal loading and the load factors went up to 160 to 170 
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Figure 13.2-4 Eigenvalue Buckling modes and Load Factors with Thermal geometric Distortions

The thermal distortions were input with an initial geometric distortion so that the thermal effects would be considered a geometric imperfection rather than a part of the load. The load factors reduced but not by a substantial amount. The first mode factor went from 159 down to 158.
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Figure 13.2-5 Non-Linear Geometry Solution - Radial Displacement as a Function of Load
The NLGEO results show factors of 141.  The NLGEO analysis  kept the thermal loads static and the Lorentz loads were stepped up.
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Figure 13.2-6  NLGEO  Nominal Geometry, Thermal Expansion Displacement Applied, but not Scaled, Additional Lower Half Oval by 1mm (Representing Fabrication Tolerance
14.0 Torsional Loading from TF OOP loads
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    There is a torque from the TF out-of plane (OOP) loading that is transmitted through the bolted and welded connections. This has to be derived from the global modeling of the tokamak. The torsional shear stress in the casing is 6.4 MPa . Based on uniform shear flow, this would be a torque of 6.4e6/6895*.25*22.29*2*pi = 32499 in-lb
15.0  Seismic Loading Results
   More detailed seismic analysis may be found in Reference [12]. In ref [12] , both response spectra and static analyses were used. The results are approximately equivalent in terms of the magnitude of stresses. 
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Figure 15.0-1 Casing Results for .5g lateral static accelerations, Global model run #32
    Figure 15.0-1 shows the stresses for a later global model analysis, run#32, with a static lateral acceleration of 5 g's applied. .The centerstack casing seismic stresses are small.   
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Figure 15.0-2 Skirt Results for .5g lateral static accelerations, Global model run #32
16.0 Lower Skirt Normal Operating Stress 
    The skirt is a bolted assembly. It is included in the global model in a fully merged approximate manner. The stress levels are not large and it is assumed that the local details of the skirt will not add significantly to the stresses found in the global model. Figure 16.0-1 shows the general arrangement. Figure 16.0-2 shows the treatment of the skirt in the global model.
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Figure 16.0-1 Views of the Lower Skirt and Penetrations for Services
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Figure 16.0-2 Views of the Lower Skirt and Penetrations for Services
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Figure 16.0-3 Lower Skirt Modeling in the Global Model

Thicknesses and flange details are represented in the global model. This design represents a major improvement in the original design of the centerstack casing support. Initially support was via three legs which experienced excessive bending. These were replaced with the skirt assembly which had a substantially increased load carrying capability.
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Figure 16.0-4 Lower Skirt EQ79 Stress from in the Global Model Run#34
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Figure 16.0-5 Lower Skirt Stress from the Global Model Run#32 for 96 no-plasma equilibria and about half off the with-plasma equilibria

17.0  Lower Casing and Skirt Bolt Stress

    The lower casing support elements are loaded by the net loads from the PF Lorentz forces, and occasionally from disruption halo loads imposed on the casing. Bellows loads from the expansion of the casing put compressive loads on the lower structures. This section is mainly concerned with tensile loads on the bolts and welds and the bellows compression offsets the bolt and weld tension and is conservatively ignored. There is a torque from the TF out-of plane (OOP) loading that is transmitted through the bolted and welded connections. This has to be derived from the global modeling of the tokamak and is discussed in section 14 of this calculation. The torsional shear stress in the casing is 6.4 MPa . Based on uniform shear flow, this would be a torque of 6.4e6/6895*.25*22.29*2*pi = 32499 in-lb 
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Figure 17.0-1 Three Bolt Circles are of Interest
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Figure 17.0-2 Another Attempt to Trace the Load Path of the Casing Supports

17.1 Upper Pf1bl Mandrel Bolting and Weld
    The casing flange or divertor flange sits on the PF1b mandrel. The flange and mandrel are welded together and that weld is the primary load carrying element that supports the casing loads. As of August 16th this weld hadn't been detailed.  Additionally there are studs that connect across the outside of the mandrel that provide a redundant load path. Spacers were added between flanges connected by the studs and the studs will not load in compression. The studs act to reduce mandrel flange motion under the case loads, and share loads with the welds.  
PF Mandrel Assembly Bolting
In the following spreadsheet calculation, to calculations are presented. The first assumed the studs take the moment and tensile loads. The second assumes the weld takes the loads. The weld is the stronger and stiffer  of the two load paths and will take most of the loading. The studs and spacers are mainly intended to minimize flexure of the mandrel that might load the coil.. 
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Figure 17.1-1 Upper PF Mandrel Flange and Weld Calculations

    The weld stresses are low.  and the load path for the vertical tensile loads that result from the moment and Design Point Lorentz loads is more direct than the studs and spacers. The stud loads are overestimated in this calculation. The weld will also take the TF OOP torsional shear stress. This will be less than the 6.4 MPa (928 psi) discussed in section 14 because the PF1b Mandrel diameter is less than the central region of the casing for which the stress was quoted, and the weld thickness (1/4 inch) is the same as the casing wall thickness. Weld stresses are well below the 14 ksi allowable discussed in Figure 5.4-1. 
17.2 Pf1bl Mandrel LowerFlange Bolting
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Figure 17.2-1 Lower PF Mandrel Assembly
PF1b mandrel is shown in figure 5.5-5 and 17.2-1. The blind hole studs are used to connect the PF 1b mandrel into the PF 1a flange which in turn is connected to the skirt flange.     Below, the PF1b mandrel bolting is evaluated as though there are only 23 bolts. Doubling this is recommended. The female thread shear stress is evaluated using the Federal Screw standards [22] for high strength bolting in a lower strength female thread. The Sm allowable for 316 SST is 26.7 ksi (Table 5.4-2). 
From [8] 2.4.1.4.2 Special Stress Limits: The average primary shear stress across a section loaded under design conditions in pure shear (e.g., keys, shear rings, screw threads) shall be limited to 0.6 Sm.
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Figure 17.2-2 Lower PF Mandrel Bolt Pattern Calculations

 In shear , the allowable is .6*Sm or 16 ksi. The calculated shear stress is 20 ksi. The tensile stress is 39031 psi, below allowable of 62.5 ksi for the high strength bolts. Because of the thread shear, more bolts are needed. The shear capacity of the threads would actually be degraded if the welds were used. It is recommended that Locktite be used instead.
Good Morning and Happy New Year Peter,

I've gone ahead and added additonal studs in the available locations on the Upper and Lower PF-1B Winding Mandrels. The number of studs have increased from 21 to 34 on the Lower Mandrel and from 22 to 36 on the Upper Mandrel. Do you need the drawings for specific locations of the studs?

In lieu of Loc-tite on the threads, Jim would like to incorporate a tack weld. This should have no effect on the integrity of the High-strength bolts/studs. Do you agree?

Thanks.

I calculated 20800 shear for the threads in the lower PF1b flange. I must have mis-counted but I had 23 studs. The allowable for the 316 flange is 16 ksi. The shear area was based on a strong bolt in a soft hole. I have been recommending ASTM A193 B8M class 2 bolts which are a work hardened 304 bolt, so with corrections on bolt numbers, the shear would be 20800*23/34 = 14 ksi  so 34 bolts is OK. - but if the weld softens the stud, I lose on the shear area - The fed screw fasteners standard allows .75 of the hole shear area for strong studs in soft holes vs. .5 for soft studs in soft holes. If the whole stud was annealed, stresses would not be acceptable. A tack weld shouldn't anneal much of the stud but I am not sure. I have seen tack welds on nuts outside the stressed thread region, but never near a stressed region of a threaded fastener. I would definitely prefer Locktite. Also at installation, the studs need to be preloaded to improve the moment carrying capacity. with the 34 screws, the studs should be preloaded to 3000 lbs. 

 
17.3 Upper Skirt Bolt (section of a ) Circle
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Figure 17.3-2 Section Modulus Calculations for the Upper Skirt Bolt Circle
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   The ASTM A193 B8M Class 2  5/8 inch Bolts would have a Stress Allowable of the lesser of 125/2 or 2/3*100 =62.5 ksi, so they are just acceptable for this bolt pattern. The bolts should be preloaded to 75% yield, and this increases the effective section modulus of the bolt pattern. The preloaded bolt friction capacity was calculated based on a friction factor of .3 and there is a factor of safety of 63025/28100 =2.24 against slippage due to the lateral halo loading.

17.4 Lower Skirt Bolt (section of a ) Circle 
[image: image70.png]



Figure 17.4-1 Layout of the Lower Skirt Flange

   The skirt bolting is missing a 60 degree section corresponding to the 40 degree opening provided for the OH coax connection. In the initial set of reaction forces provided by Art Brooks, the halo loads were applied at the top of the skirt and had to  be translated to the lower bolted flange section which is 22.096 inches below the upper flange. In the latest transmittal of loads (Appendix B, ref [19] ) the loads are provided at the base of the skirt.  In this transmittal the lateral load is 160000N or 36,000 lbs. The lower bolt pattern of the skirt is different than the upper pattern. There are 11 5/8 inch  bolts in the lower circle.  

ASTM A193 B8M class 2  bolts with 100 ksi yield are recommended. The bolts should be pre-tensioned  to 75% yield. 5/8 inch bolts have a stress area of .2256 in^2 so this would be a load of  16920 lbs each. Based on a friction factor of .3, 11 bolts would have a shear capacity of 11*.3*16920 = 55836 lbs, well in excess of the 37092 lbs applied shear. 
     So far, the peak halo vertical tensile forces have been considered to act concurrently with the peak halo moment. A review of Art Brooks plots (Appendix B) shows that the peak moment occurs after the peak vertical load., [image: image71.png]475N square
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Figure 17.4-2 Section Modulus of the Lower Skirt Flange Bolting
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Figure 17.4-3 Lower Skirt Flange Bolt Stress Calculations
17.5 Bolt Loads on the Lower TF Flag Keys 
    The G-10 ring on top of the TF flags in the bottom of the machine is attached using countersunk bolts and thread inserts to the TF flags. The centerstack skirt and the OH bottom cage flange are in turn attached to the G-10 using bolts and thread inserts into the G-10 ring at a more radially-outward bolt pattern.  Figure 17.5-1 and 2  show this interface.
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Figure 17.5-1
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Figure 17.5-2
The OH Coax Box is analyzed in ref [23]. The OH rests on a "cage" that also is bolted into the stacked flanges above the TF flag keys. The OH is not loaded laterally Ref 20 considers the net vertical Design Point combined OH and Inner PF loading. Additional loads from the lateral and vertical halo loading on the casing must be considered in ref [20]. The stack up of flanges, the structure around the coax, and the OH support cage are assumed to bridge the open section of the skirt.  
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Figure 17.5-3 Lower Flag Key Loading

The bolt load at the lower flag key is calculated to be 9984 lbs without taking credit for the preload moment capacity. This is less than the 12000 lbs considered in ref [20] 

Attachment A Email Data

From A Brooks Sept 19 2011

Peter,
 
The latest dynamic reaction loads to the support are significantly different from what you have (see the updated calculation of Halo Currents I sent you last week). The peak reaction loads are (from figures 23 and 24 for Fast Quench):
 
Fx (Lateral force)                              150,000 N
Fz (Vertical force)                            110,000 N
My (Moment about base)             90,000 N-m
 
The vertical force appears to come from a Poisson effect with the large radial forces and resulting hoop stresses in the mid section of the CS. This produces large Sz (vertical stress) which reacts at the base during the dynamic response.
 
The lateral force is still lower than the 50,000 lbs (222,000 N) Mark was using.
 
Art
 
 Peter,
 
Comments on the Centerstack Casing Stress Summary Calc:
 
1)     Peak stresses in CS from Halo are now reported to be 43.7MPa, down from previous 59.6 MPa
2)     Peak Thermal Stress has dropped to 192 MPa from 280 MPa
 
Art
 
Attached is an update to the forces and moments on the CS Base Support and Bellows. The net applied load is 250 kN, up from the 140 kN previously reported. This is due to the guidance from Stefan to adjust the TPF at the strike point such that the TPF at the midplane is 1.35 ( the strike point needed to be incrased to 1.60). The 250 kN is very close to the estimated value obtained by assuming a constant TPF of 1.35 over the +/- 0.6m height.

 

The peak moment is now 130 kN-m and the peak reaction load is 250 kN at the base support. There is also a sizeable reaction at the bellows/bumper, 220 kN, though it is not in phase with the reaction load at the base (see last two figures in attached).

 

Art

 
Thu 3/11/2010 8:21 AM
Peter,

 

Summing up the applied halo forces for the resistive distribution scenario (for the strike at z=+/-0.6m) with PF and TF (1/R) fields I get:

 

 

Applied Load Sum on CS

 

Fx = -30695.6 N, Fy=Fz=0

Mx =  80400.7 N-m, My=Mz=0

 

 

I ran these thru a stress pass constraining all the points on the top and bottom flanges and looked at the reaction loads:

 

Reaction Loads on CS when Upper&Lower Flanges Fully Constrained

 

      Fx, N       Fy          Fz          Mx, N-m           My          Mz

Up    15347.      32464.      44662.      -40200.9    56846.7    -201.8

Low   15349.     -32463.     -44661.      -40199.6    -56848.9    201.8

 

The sum of the Up and Low values do add to negative the applied loads as expected. It just highlights the need to look at the reaction moments as well when considering support design loads.

 

Art

Appendix B

Halo reaction loads for the base skirt  with the compliance of the G-10 flange modeled.
Peter,






Dec 19 2011
 

I've extracted the forces and moments at the interface of the base of the CS and top of the lower support. The peak vertical load is lower (~60 kN) than at the bottom of the lower support (~80 kN). The moments are about the same (~95 kN-m)  but occur at different times. The numbers are extracted using fsum on the interface nodes with the lower support elements and are the total force (static + inertial + damping).

 

Art
In response to a request for the load at the PF1b mandrel elevation:

Peter,






Dec 22 2011
 

The lateral load at that elevation is ~125 kN. The plots I sent contain the transient behavior of each of the three load and moment directions.

 

Art

Peter,

 

Adding the compliant G10 plate and structure sitting on the TF flags has reduced the moment (now measure at the G10, z=-2.7m) to a peak of 95 kN-m during the dynamic response. The net lateral force has dropped to 160 kN. The bellows/bumper reaction drop slightly to 200 kN and again is not in phase with the reaction load at the base (see attached plots).

 

Art

 

---------- Forwarded message ----------
From: Arthur Brooks <abrooks@pppl.gov>
Date: Tue, Nov 1, 2011 at 12:31 PM
Subject: Halo Reaction Forces with Bumper
To: Peter Titus <ptitus@pppl.gov>


Peter,
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Figure 3.0-1 PDR Qualification of Casing Elements
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Figure 17.1-1 Lower PF Mandrel Assembly
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Halo Loads From Art Brooks

Lower Bellows and Ceramic Break Stress with 50kip Halo Load 
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