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Figure 8.3-6 Radial -Vertical Shear for, No Coil Currents, Both Coils Hot

8.4 TF Ripple Loads on PF 4 and 5

PF 4 and 5 pass by the TF outer leg. The local toroidal field at the outer TF legs imposes periodic torques
on the neighboring PF coils. The torques add bending stress to the existing bending stresses which result
from the discrete coil support points. The ripple effect is being quantified independent of other loading. To
accomplish this, the Lorentz Loads are quantified with and without the TF current and the two files are
differenced to obtain loading for only the effect of the TF currents.
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Figure 8.4-1 The Result of the Subtraction of (PF+TF) Load File and (PF Only) Load File, with only the
PF coils plotted. Only the effect of the TF on the PF remains.

TF Ripple Loads on PF 4 and 5 Upper

Plotted with TF leg Segments to Show
Torque Loading Near the TF Legs

TF Ripple Loacls on PF Coils are
Included in Willard's, Han's, Andrei's
and Titus' Loads — But not Influence
Coefficient Calculations.

Figure 8.4-2 The Result of the Subtractlon of (PF+TF) Load File and (PF Only) Load File, with only the PF
coils plotted. Only the effect of the TF on the PF remains.
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8.4-3 Hoop Directed Stress - Bending Stress Due to TF Ripple.

The bending stress in PF4 and 5 is less than 11 MPa at most locations. The asymmetry is due to local

support bracket and port modeling.

9.0 Digital Coil Protection System Input

The approach used for the PF4 and 5 coils for calculating the stress
multipliers/algorithms is to utilize a global model [2] that simulates the whole
structure and includes an adequately refined modeling of the component in
question. Unit terminal currents are applied to each coil separately, Lorentz
loads are calculated, and the response of the whole tokamak and local
component stress is computed. This approach is correct for stresses that are a
consequence of an individual coil load which is, in turn, a result of the
superposition of contributions from all other coil currents. Local component
stresses may then be computed in the DCPS or in a spreadsheet for the many
scenarios required by the GRD. This approach has been applied to the PF4
and 5 coil stress. Where a component stress is a consequence of multiple coil
loads, the approach must derive coefficients from unit loads which, in turn, are
computed from the influence coefficients. This analysis approach has been
exercised for the existing PF 4 and 5 support welds and is discussed in section
9.3 (moved to the Appendix)

At this writing, thermal stresses are assumed to be a consequence of uniform
heat-up of the coils. Stresses due to temperature gradients in the coils are not
considered.

Two approaches are used to provide the needed multipliers/algorithms.
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Figure 9.0-1 Linear Global Model Used
in Calculating DCPS Stress Multipliers,
Ref [2]




The first is to use the loads on PF coils computed by the DCPS software and apply these to local models
of components. It is usual practice to utilize influence coefficient calculations to determine hoop and axial
(vertical for tokamak's) loads from coil currents. However, the centroid of the Lorentz loads may not be at
the geometric center of the coils, and a moment about a geometric center of the coil may be produced. The
effect of this offset in force centroid, especially on local PF supports, is discussed.

The second approach to calculating the stress multipliers/algorithms is to utilize a global model that
simulates the whole structure and includes an adequately refined modeling of the component in question.
Unit terminal currents are applied to each coil separately, Lorentz loads are calculated, and the response of
the whole tokamak and local component stress is computed. Local component stresses may then be
computed in the DCPS or in a spreadsheet for the many scenarios required by the GRD.

9.1 PF5 Coil Stress DCPS Input

9.1.1 Influence Coefficients and Stress Multipliers

First, a candidate "worst case" location is selected. The stress state that will be checked must be an
individual stress component. For PF5, the peak stress in the conductor is driven by a combination of hoop
stress and bending stress, in the same direction, caused by the 12 discrete points at which the large ring coil
is supported.

PF5 Upper Coil DCPS Input

Pick a Coil (PF5 Upper)
Pick a Worst Place
(At the New Columns)

Figure 9.1.1-1 Finding a Worst Case Location to use for Calculating Coefficients

The next step is to calculate Lorentz forces. The PF 5 coil was chosen as a critical component. Lorentz
Forces for each combination of PF 5 unit current and unit currents in each other coil. Stresses are
determined at the critical location for each of these unit load files. In this case, the critical stress location
has been chosen as the conductor on the top surface of the winding over the new column supports. The
stress values form the stress influence coefficients for each PF current. These can be used in a spreadsheet
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to calculate the stress value for the critical location for each set of equilibrium currents or any set of coil
currents.

Forces on PF5 (and 4) due to Unit Terminal
Currents (actually 1000A) in PF 4 and 5

15 Other Sets of Loads
Are Calculated,
Including one for the
Plasma

Figure 9.1.1-2 Unit Current Biot Savart Load Calculation

PF5 Stress Influence Coefficients
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Figure 9.1.1-3 ANSYS Results for One of 16 Sets of Loads/Coefficients
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Figure 9.1.1-4 Application of Stress Coefficients to the Old Scenario
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Figure 9.1.1-5 Comparison with Global Model Results
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Figure 9.1.1-7 Another Comparison with Global Model Results
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Figure 9.1.1-9 Using a Scenario/Current Set Consistent with the Local Model, Calculate a Smeared Stress
for the Full Current in PF4 and 5 Model/Analysis

For computation of the stress multiplier, a consistent smeared stress must be calculated from the influence
coefficients for the detailed model that had full currents in PF4 and 5 - but no other PF currents. To make
the comparison with the smeared results, an "equilibrium" current set was added in the spreadsheet, that
had only full currents in PF4 and 5 and the spreadsheet calculated the smeared stress that the influence
coefficients would produce for this current set. This is 21 MPa.
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Smeared to Local Stress Multipliers

So far, the stress computed from the influence coefficients is the "smeared" stress from the global model.
The coils are more complicated than represented in the global model. There are coolant holes and a portion
of the cross section is insulation and not copper. These will increase local copper stress over what is
reported in the global model. Local models have better modeling of the interactions between the support
pads and the coils, and include non-linearities - frictional interfaces that may increase or decrease the stress
with respect to the global model results. Two detailed local models are available. The first is the upper
symmetry quadrant of the PF4/5 and vessel. This is loaded with the peak currents allowed in the two coils.
A second model which is a full modeling of the PF4/5 coils is loaded with the EQ#80 currents. This second
model is presented in more detail in section 9.1.2. Rigorously, the stress multipliers should be consistent
with the location chosen as the critical "spot".
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Figure 9.1.1-11 Stress Multiplier for the Full Current Loading and Model
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Figure 9.1.1-12 Stress Multiplier for the Full Model and EQ#80 Currents

There are two different stress multipliers for different loads but the same geometry. Unfortunately, the local
models are non-linear. It was hoped that the behavior would be sufficiently linear to support the influence
coefficient approach. Of the two examples chosen, the EQ#80 is more representative of the bulk of the
design equilibria in which PF4 is not used near its capacity. This may change to even out thermal
excursions of the coils. To obtain practical stress multipliers, some enveloping of both behaviors and
positions is needed. The location above the fixed supports is also highly stressed, and in the local models
the peak stress is not always on the top and bottom of the winding packs, but may be at the pancake
interfaces at the mid-build of the coils.

PF 4 and 5 Max Principal
Stresses

PF 4 and 5 Currents forthe
96 Scenarios

=
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B2 ¢
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-

_ Full Current in PF4 and 5, 16 and 32 kA,
s Produces 55 Mpa PF5 Conductor Stress With No Thermal.
Another 55 Mpa is added from thermal cases

Figure 9.1.1-13 Peak Stresses at other locations within the coils
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Table 9.1.1-1 Stress Multipliers with the Influence Coefficient Results as a Base

Analysis Critical Worst over Worst over the | Worst Stress Thermal Adder
Location "Spot” Over | New Column Fixed Support | With Thermal

New Column
Max PF4/5 28/21=1.33 | 40/21=19 55/21=2.6 110MPa 55MPa
Current Model
and Loading
Section 9.1.2 23/37=.62 40/37=1.08 52/37=14 126 MPa 74MPa
Benchmark
Eqg#80 Model

88.7 51.6 53.3 53.3

The procedure for calculating the peak hoop directed tension stress is to use the stress multipliers
multiplied by the influence coefficients multiplied by the coil currents, then add the appropriate thermal
contribution. Since the peak current in PF4, for all 96 scenarios, at present is 4kA, choosing the multiplier
for the EQ#80 results is probably sensible.

Why is the Conductor Stress

Higher at the Existing Support?

There is more bending here
Maybe because the column of the
new column/clamp is centered @

PF5 and allows more “sag” here

Full PF4/5 Current 14.0kA in PF4 and 31.8kA in PES, Mu=.

3

Figure 9.1.1-14 Effect of New Column Position
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Also, it looks like the non-uniformity in the coils stresses at the two different supports is related to
compliance in the new clamp/column because the column is centered on PF5 resulting in an offset when
PF4 and 5 are on. This causes a sagging of the new support which transfers load to the existing clamp

location.
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9.1.2 EQ 80 Benchmark

rent 16.0kA in PF4 and 3

Figure 9.1.2-1 Model Without Equatorial Plane Symmetry Boundary Conditions
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Figure 9.1.2-2 Biot Savart Model and Resulting Force Vectors

Figure 9.1.2-3 Bakeout Conductor Stress
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EQ 80 Hot PF5 Cold PF4
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Figure 9.1.2-7 EQ 80+ Thermal Stress Hot PF4 and 5
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9.2 PF4 Coil Stress DCPS Input

The procedure outlined above is applied to PF4 in this next section. The results of the ANSYS runs and
multipliers are included in a spreadsheet that is available for implementation in the DCPS.

PF4 Check of
Influence Coefficient
Calculation vs.
Global Model

Qld +/-24 kA
Scenaria

o 10 20 30 40 so 60 70 a0 30

Figure 9.2-1 Comparison of Global "Smeared" Stress Results and the Results from the Influence
Coefficients
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Figure 9.2-2 96 Equilibrium Results with the Full Current result replacing EQ 1
9.3 Existing Support Weld Stress Multipliers

This section derives from (Reference 9) an analysis of coefficients to relate PF4 and 5 loads to the weld
stress of the bracket pad. This is pertinent to the upgrade because it was used for a protection system that
was implemented in 2010 in NSTX. This same approach can be translated to the DCPS requirements. This
section has been shifted to the appendices because it is not specific to the upgrade.
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10.0 Leads

Analysis of the PF4 and 5 leads has been included in the analysis of the PF4/5 supports because the logic of
the 180 degree "fixed" supports allows "rigid" supports of the leads if they are positioned near the fixed coil

support points.

;_é;v .#&Wg’. .
s

k)

PF&/5 Fields at
PFS lead

Lead

Leads/Terminals are modeled
with a.Im radius and .Im
straight

Figure 10.0-1 Fields and Forces Near the Leads

Cantilevered, un-supported leads produced excessive bending stresses due the Lorentz Loads caused by
the local coil fields. The unsupported lead stresses are shown in Figure 10.0-2 (Below).

L929E+08

kA in PF5, Mu=.3 Without Corre

Figure 10.0-2 Local Lead Bending Stress

The bending stress would be relieved by taking credit for the connection to the bus bars on the unistrut at
the support platform. This was modeled by displacement constraints. These would produce stresses if the
coils move relative to the bus bar support. The PF4/5 support concept imposes fixity at two locations 180-
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degrees apart. Choosing one fixed point near the lead break-out will limit the differential displacement

stress in the leads.

11.0 Fatigue Analysis

Principal stresses for the PF4 and 5 coils are shown below for full
currents in PF4 and 5 for various combinations of temperatures. In
Section 9, the digital coil protection system stress multipliers were used
to calculate the tensile stress in the hoop direction for all the available
scenario currents with the 10% headroom applied with and without the

plasma included.

Full PF4/5 Current 16.0kA
in PF4 and 31.8kA in PF5, Mu=.3
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Figure 11.0-2 From Section 9, the peak Max Principal Stress in PF5 for all scenarios is=55*(37/21)+55 =
152 MPa.
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Figure 11.0-3 Fatigue Stress Evaluation for Full Currents in PF4 and 5 - No other PF currents

The PF5 Maximum Max Principal Stress for all scenarios, for all thermal conditions is 152 MPa (see
Section 9). The allowable stress to meet the cyclic fatigue limit was developed for the OH coil fatigue
calculation [7] and is 125 MPa.

It should be emphasized that this evaluation conservatively assumed that all 60,000 pulses utilize the

scenario that produces the worst case stress, and that this stress occurred when the thermal stresses are at a
peak.
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12.0 Brackets, Hardware and Bracket-to-Vessel Welds

12.1 Existing Bracket to Vessel Welds

This is included in the upgrade calculations because this analysis was used in an early version of the
DCPS which is currently in operation. The weld stress vs. load factors calculated here were applied during
operation and the coil protection system disallowed a normal test shot. The problem is that the corners of
the rectangular weld pattern have significant concentrations that would be plastically relieved, but the strain
range would remain to affect the fatigue life. The corners were inspected, and no fatigue indications were
noted. This region will be added to an inspection regimen during outages to ensure that fatigue sensitive
welds are not developing cracks.

The weld is nominally 5/16-inch, but the QA report recommends that it be treated as an effective ¥ inch
weld. To facilitate meshing the weld, an arbitrary cross section is used, then the weld stress is scaled by the
ratio of the weld section in the model to the actual weld section. In this case, the weld was intended as a
fillet, but material has been added to accommodate the vessel curvature, and the resulting weld was derated.

Inspect Weld in
this comer
Inspect 5 d 31.8
weld in this
D LV
Weld Allownble ‘ . . o
20ksi with PT
14ksi, or 96 MPa Lorestz+ 100C o 10 ot
With Visual

Nominal Weld =5 16

QA Effective Weld Size='4
FEA Weld MNodel = 10mm
Lorentz Stress =
57%(.01%39.37 .25=90 N [Pa
=13 ksi

Joe Winston inspected the
corner stresses at this April =
2010 outage. and found no
cracks in the highly stressed
corners.

Figure 12.1-1 Weld Stresses in the Existing Bracket to Vessel Weld

The weld is assumed to have a larger cross section than a fillet, so the .707 factor was not applied. Weld
allowable is a function of the level of inspection that is applied. At PPPL, only visual inspection is routine.
ASME would require a weld efficiency of 0.7 or lower.
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Figure 12.1-2 Weld Stresses in the Existing Bracket Weld to the Vessel - Lorentz Loads Only

100 C Coil

Lorentz+100C Coil

Lorentz Only

16.0 in PF4
Zero Coil
Currents

31.8kA in PF5

16.0 in PF4

Vessel at RT
100 degrees
coil temp

Mu=.3

31.8kA in FF5

Vessel at RT
100 degrees
coil temp

SEQV

-138E+07

Bl 607 SR
— R .318E+07 S iy
B 201E+08 .321E+08 i
. 263E+08 .611E+08 B ioocion
r_j _?H;Eéo% .900E+08 E:j -THGE+HE
B -450E+08 .119E+09 T 138E+09
B -512E+08 .177E+09 B lciEi00
.574E+08 .206E+09 e
-235E+09 B >o6zi09

.264E+09

Figure 12.1-3 Weld Stresses in the Existing Bracket Weld to the Vessel
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Figure 12.1-4 Weld Stresses in the Existing Bracket Weld to the Vessel
In-Plane PF4 and 5U Loads With Strut
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12.2 Bracket Welds for Upgrade Loads

Type A bracket
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Column plus Sliding Block

Type B bracket
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Figure 12.2-2 Analysis Model Weld Details
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Figure 12.2-3 Weld Stresses from the Local Model of the Bracket
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Figure 12.2-4 Weld Stresses Scaled from the Local Model and Influence Coefficients

PF4/5 Coil and Support Analysis Page 57



Type A bracket

Caleulaced
11
ANCE TO

1

41

10.51n

10.51n

Figure 12.2-6 Weld Section Properties for the Type B Bracket
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Figure 12.2-7 Weld Section Properties for the Type B Bracket

Weld Stresses Calculated From Weld Section Properties
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Figure 12.2-8 Net Loads on Bracket/Coil System
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Fatigue:
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Figure 12.2-9 Fatigue Assessment

The weld stresses in the weld of the backing plate/pad to the vessel are 2118 psi and 2763 psi for the type A
and B brackets, respectively. These are well below the fatigue allowable calculated above. This is
consistent with the findings of the inspection described in Appendix A. The stress in the weld between the
back plate or pad and the bracket was calculated to be 7672 psi based on the 1/8-inch fillets on the vertical
legs of the bracket.

12.3 PF5 Bracket Support Plate and Weld, With and without Existing Column

The existing Support bracket for PF 4 and 5 includes an extension to support PF5. During the operation of
NSTX, the support column between the existing upper and lower PF5 extensions buckled, and needed
reinforcement. Early upgrade PF4/5 support concepts sought to remove this column because of its
weakness, and to ease clearance issues. In this section, bracket stresses are considered with and without the
column. The cantilever load principally derives from attractive loads to the lower PF4 and 5 coil pair. The
final design, as of November 2011, has new, heavier columns between the upper and lower support
brackets. This section is an exploration of why the new column was needed.
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