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Purpose of Calculation: (Define why the calculation is being performed.)
To qualify the stresses in PF4 and 5 and the stresses in their support brackets and columns. 
References (List any source of design information including computer program titles and revision levels.)
Included in the body of the report - See section 6.1
Assumptions (Identify all assumptions made as part of this calculation.)
Multiple models of PF4 and 5 are used in these calculations. Each has a different level of refinement, and is intended to address different aspects of the coils and supports. The assumptions regarding the individual models and their relationship with the other models and analyses are discussed with each model. There is a global model of the tokamak which uses smeared properties of the winding pack and there is a quarter symmetry model of just the upper half of half of the coils and associated brackets and vessel sections. The quarter symmetry model addresses local conductor and insulation stress, and the global model addresses the interactions with the full PF and TF systems.   
Calculation (Calculation is either documented here or attached)
See the following report
Conclusion (Specify whether or not the purpose of the calculation was accomplished.)
Stress levels in both the coils and supports satisfy the NSTX CSU criteria
It is recommended that      Clamp plate studs be replaced with ASTM A193 B8M Class 2 bolting material. These are a work hardened 304 sst. These provide assurance that if the launching loads are not equal and opposite on top vs. bottom, then 6 support points can support the net tensile loads on the studs. To mitigate the fatigue loading on the bolts - but to limit local contact pressures in the copper coils, it is recommended that the bolts be preloaded based on a 20 ksi yield and some lift-off would then occasionally cycle the bolt threads. Stud preload can be re-visited prior to assembly.
    The dovetail joint in the new PF4 and 5 support clamps/columns must have a low friction material (mu =.05), and there is a  a geometric constraint on the slide of  H/w <2. where the geometry is shown in Figure 12.6-3
Cognizant Engineer’s printed name, signature, and date

Mark Smith


I have reviewed this calculation and, to my professional satisfaction, it is properly performed and correct.

Checker’s printed name, signature, and date

Irving Zatz
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3.0 Executive Summary:
    The design of the outer PF 4/5 supports has gone through a number of iterations.  Initially, only 6 support points were proposed (twelve including uppers and lowers). The existing support brackets (Figure 3.0-2) were to be bypassed and an additional set of six stronger columns were to be added. This left six strong support points that could react the large attractive loads between PF4/5 upper and PF4/5 lower. If the coils could handle the spans created by the six  support points, this option was thought to be attractive because the vessel shell would be off-loaded. Ultimately, 12 supports were needed.
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     The PF5 insulation system is a mylar wrapped fusifab epoxy system. Because of the poor bonding of the mylar to epoxy and to the copper conductors, twelve supports were necessary to reduce the spans and resulting bending stress. Stresses in PF4 and 5 have been calculated in a detailed model of the vessel shell, support hardware, and winding pack. In order to assess the stress in the coils, stress analysis of the winding pack is used in concert with influence coefficients to add localized stress behavior with thermal stress and for all scenarios currently postulated for NSTX - with 10% headroom in currents, with and without plasma. PF5U conductor stress is calculated to be 122 MPa with all effects included. This is below the fatigue allowable developed for the OH coil [7].
  The coil support concept is as presented in the PDR, with six existing supports augmented by six new support columns. Elimination of the existing strut or column between the upper and lower existing PF4/5 supports was considered but this overstressed the cantilevered portion of the PF5 support, added loads to the pad welded to the vessel, and added stress in the port ligaments, and so, the strut/column has been retained.  
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   PF4 and 5 have to be aligned with respect to the centerline of the plasma. The current (meaning prior to the upgrade) approach is to connect pushers and clamps around the coils to push the coils into roundness and concentricity. Currently, coil heat up is trivial. For the upgrade, the coils will be on for the 5 sec. pulse and will heat to 100C - expanding and fighting the alignment clamps. Table 6.3-2 shows the maximum temperatures expected during upgrade operation. John Menard and Masa Ono were consulted during a project meeting. An n=2 error, i.e., an elliptical coil, is acceptable as long as it is aligned with the plasma centerline - i.e., it precludes an n=1 error, or a net lateral shift. So the coils are radially held with respect to the vessel and have them grow into an oval as they thermally expand. The degree of ovality was accepted by Jon Menard and Masa Ono. 
    The intention is to fix the sliding blocks on two opposite, existing PF4 and 5 supports. This makes the coils and their supports symmetric about a vertical plane that cuts through both fixed supports. A 180-degree half symmetry modeling is sufficient to capture the full 360-degree behavior of the coils. Dovetail slides are proposed to allow differential thermal radial motion between PF4 and 5. Pivoting links are used to model the mechanics, but sliding dovetail joint is actually used, Low friction materiel is required. Magna Plate is suggested. It has a friction coefficient “as low as .05”. According to the design criteria document, mu must be assumed to be  mu +.15 or .2 and this puts a geometric constraint on the slide of  H/w <2. The geometry is shown in Figure 12.6-3
    In addition to the alignment issues, there are leads that require support. They currently break out of the coils and are connected to a unistrut frame that fixes them in space, providing support for Lorentz loads but allowing no thermal growth of the coil. If the fixed radial supports are chosen near the leads, then the lead supports will work - at least conceptually.
   The staggered column design produces 12 supports for the attractive loads on the PF4/5 upper and lower coils. The support points alternate between support by the vessel, and support by the six columns.  Most of the analysis presented in this calculation assumes that the small columns (that buckled during initial NSTX runs) are retained. They are much less stiff than the new columns, and some loading is transferred to the vessel.  The new columns are modeled as 3-inches in diameter and 0.3-inch width wall thickness. The welds connecting the bracket to the vessel shell concentrate at the corner of the perimeter weld. The weld is nominally 5/16-inch, but the QA report recommends an effective ¼ inch weld.  Local corner stresses were high even for the existing NSTX loading, and an inspection of these corner welds was performed to determine if any fatigue failures were initiating.  No indications of cracking or fatigue were found. The six (twelve included uppers and lowers) existing PF4 and 5 brackets are the only support for the assembly of PF 4 and 5 upper (U) and lower (L) coils. Most loading on the coils is attractive loading between the series connected PF4-U&L coils and PF5-U&L coils. The net loading is smaller. The attractive loads are intended to be taken by 12 columns, six original and six new columns. Without consideration of elastic effectiveness of the old columns, and considering the columns to resist all the attractive loads, then the weldments to the vessel would only take the net load with acceptable stress levels. Hand calculations of these loads show that these welds satisfy static and fatigue limits. In order for the bracket-to-vessel welds to be loaded primarily by the net assembly loads rather than the attractive loads between PF4 and 5, the existing columns must be stiffened.   This was done in May, 2011 and the FDR is now based on a much stiffer set of columns all around. Buckling of the stiffer columns is addressed in section 14.0 with a large displacement solution and a load multiplier of 2.6. No indications of non-linearities were found. 

      Clamp plate studs are currently listed as 316SS, but no grade or condition is specified. It is recommended that they be replaced with ASTM A193 B8M Class 2 bolting material. These are a work hardened 304 sst. These provide assurance that if the launching loads are not equal and opposite on top vs. bottom, then 6 support points can support the net tensile loads on the studs. To mitigate the fatigue loading on the bolts - but to limit local contact pressures in the copper coils, it is recommended that the bolts be preloaded based on a 20 ksi yield and some lift-off would then occasionally cycle the bolt threads. Stud preload can be re-visited prior to assembly.
4.0 Digital Coil Protection System Input

   The digital coil protection system algorithms are discussed in more detail in section 9.  Conceptual design of the upgrade to NSTX explored designs sized to accept the worst loads that power supplies could produce. Excessive structures resulted that would have been difficult to install and were much more costly than needed to meet the scenarios required for the upgrade mission, specified in the General Requirements Document (GRD).  Instead, the project decided to rely on a digital coil protection system (DCPS).  Initial sizing was then based on the 96 scenarios in the GRD design point with some headroom to accommodate operational flexibility and uncertainty. The DCPS must control currents to limit component stresses and temperatures to acceptable levels. 
    Two approaches are used to provide the needed multipliers/algorithms. 

    The first is to use the loads on PF coils computed by the DCPS software and apply these to local models of components. The second approach to calculating the stress multipliers/algorithms is to utilize a global model that simulates the whole structure and includes an adequately refined modeling of the component in question. Unit terminal currents are applied to each coil separately, Lorentz loads are calculated, and the response of the whole tokamak and local component stress is computed. Local component stresses may then be computed in the DCPS or in a spreadsheet for the many scenarios required by the GRD by scaling and linear superposition of the unit results.  This approach has been applied to the PF4 and 5 coil stresses. 

PF4/5 DCPS Multipliers

The DCPS should calculate the upward load on the upper PF4 and 5 coils individually and assume this is split over 6 of the 12 support clamp plates which each have 4 studs. Similarly, the downward load on each of the lower PF4 and PF5 coils should be split over 6 of their 12 supports. This is a conservative but needed assumption because for most loading all 12 supports will resist the tensile loads of the coils with respect to their support brackets. Up-down asymmetry in loading may effectively load  the 12 supports unequally.  If the existing SS316 generic studs are replaced by ASTM A-193 B8M Class 1 bolts, the stress allowable would be 2/3*95 = 63.3 ksi, which corresponds to 8000 lbs per stud. The studs should be tensioned above this or about 10000 lbs (the NSTX Structural Design Criteria Document [3] allows 0.75*yield). With proper pre-tensioning, the alternating stress effecting fatigue will be small.  
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5.0 Introduction and Evolution of the Design

    A number of structural concepts for the PF 4 and 5 supports have been considered and analyzed. Early in the upgrade effort "Worst Case Power Supply Loads" were used to size components. This led to a heavy support or frame intended to carry PF4 and 5 loads away from the vessel shell. 
    The expense of the outer PF frame – particularly the effort associated with removing diagnostics and instrumentation, power and coolant lines, to install the cage structure, led to the investigation of continuing to support the outer PF coils off the vessel. This is the original support concept used by NSTX. The re-categorization of the worst case current loads as “Extremely Unlikely”, as described in the structural design criteria document [3], has allowed consideration of less extensive modifications to the outer PF supports. In this concept, stronger columns are being added to connect the upper PF4/5 groupings and the lower PF4/5  groupings. The location for these six columns is chosen to be between the existing (small/weak) columns. These locations are judged less congested than the existing attachment points.  Figure 5.0-1 shows the PF 4/5 support column upgrade mounted on the vacuum vessel. 
Upgrade operations will make more extensive use of PF4 and 5, for both current levels and pulse duration. For the upgrade scenarios, the coils will warm to temperatures significantly above current operational values. The coil out-of round condition caused by the Joule heating of PF4 and 5 during normal operation is discussed in section 8.1.  The structural concept chosen for the FDR and PDR uses radially restrained supports 180 degrees apart. This causes the coil to deform elliptically when energized and, more significantly, when allowed to heat to 100 degrees C during a long pulse. Table 6.3-2 shows the maximum temperatures expected during upgrade operation. 
At the PDR the columns were 5 inches in diameter and 1/2 inch thick.   
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Figure 5.0-1 Earlier Concepts for Support of PF 4 and 5 
6.0 Design Input, 
6.1 References 
 [1] NSTX Upgrade Moment Influence Coefficients  NSTXU-CALC-13-05-00Rev 0,  Peter Titus, January 18 2011

[2] NSTX-CALC-13-001-00 Rev 1  Global Model – Model Description, Mesh Generation, Results, Peter H. Titus  December  2010

[3] NSTX Structural Design Criteria Document, NSTX_DesCrit_IZ_080103.doc I. Zatz

[4] NSTX Design Point Sep 8 2009  http://www.pppl.gov/~neumeyer/NSTX_CSU/Design_Point.html
[5] OOP PF/TF Torques on TF , R. Woolley, NSTXU CALC 132-03-00

[6] "MHD and Fusion Magnets, Field and Force Design Concepts", R.J.Thome, John Tarrh, Wiley Interscience, 1982

[7] OH Conductor Fatigue Analysis NSTXU-CALC-133-09-00 Rev 0 Jan 7 2011 Peter Titus, PPPL 
[8] Approximate Rubber Elastic Properties from Wikipedia:
	Approximate Young's modulus for various materials[3]

	Material
	GPa
	lbf/in² (psi)

	Rubber (small strain)
	0.01-0.1
	1,500-15,000


[9] Analysis of Weld Stresses for  Existing PF4/5 Supports,  Memo to: Ron Hatcher, Larry Dudek, Danny Mangra, NSTX Distribution, From: Peter Titus Date: Feb 11 2010

[10] NSTX General Requirements Document (GRD)
[11] email from C. Neumeyer providing explanation of temperature specs in the Design Point Spreadsheet, (included in Appendix C)
[12]   April 5 2011 email from Jim Chrzanowski: PF’s 2,3,4,5 are all mylar wrapped then b-stage fusifab’d (included in Appendix C)
6.2
Criteria 

Coil and structural criteria are outlined in "NSTX Structural Design Criteria Document", Zatz [3]

Criteria – Static Allowables for Coil Copper Stresses
     The TF conductor properties are taken as representative of the PF4 and 5 copper physicals. The OH conductor is taken as representative of the fatigue performance of PF4 and 5. The TF copper ultimate is 39,000 psi or 270 MPa . The yield is 38ksi (262 MPa).  Sm is 2/3 yield or 25.3ksi or 173 MPa – for adequate ductility, which is the case with this copper which has a minimum of 24% elongation.  Note that the ½ ultimate is not invoked for the conductor (it is for other structural materials) . These stresses should be further reduced to consider the effects of operation at 100C. This effect is estimated to be 10%, so the Sm value is 156 MPa. and the bending allowable is 233 MPa
· From: 2.4.1.1   Design Tresca Stress Values (Sm), NSTX_DesCrit_IZ_080103.doc [3]
· • (a) For conventional (i.e., non-superconducting) conductor materials, the design Tresca stress values (Sm) shall be 2/3 of the specified minimum yield strength at temperature, for materials where sufficient ductility is demonstrated (see Section 2.4.1.2). [3] 

·  It is expected that the CS would be a similar hardness to the TF so that it could be wound readily. For the stress gradient in a solenoid, the bending allowable is used. The bending allowable is 1.5*156 or 233MPa, 
•  (d)  For bolting materials, the design Tresca stress values shall be:


•
2/3 of the minimum specified yield strength at  every point in time;


ASME B&PV(Section III, Appendix III, Article III-2120) specifies 1/3

•
Also, the component must meet ductility requirements which are to be established for each material not specified by ASME B&PV.


See Section 2.4.1.4.3 [3] for bolting stress limits.

I-4.1.4.3   Stress Limits for Bolting Material

For preload:

•
Bolt preload stress shall not exceed the lesser of 0.75 Sy at room temperature or 0.75 Sy at operating temperature.

For operating loads:

•
Average tensile stress due to primary loads shall not exceed 1.0 Sm.

•
Maximum direct tension plus bending stress due to primary loads shall not exceed 1.5 Sm.

For preload combined with operation:

At any point in time, combined operating loads and preload shall be evaluated for compatibility with joint design but in any case the maximum direct tension plus preload stress shall not exceed 0.9 Sy.
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6.3  Coil Builds Forces and Temperatures from the Design Point

Table 6.3-1 Coil Builds from the Design Point
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Table 6.3-2 Coil Temperatures from the Design Point
	Coil
	Tmax_LPPI
	Tmax_SPFI

	
	deg C
	deg C

	OH (half-plane)
	100
	100

	PF4b
	33
	25

	PF4c
	33
	25

	PF5a
	100
	72

	PF5b
	100
	72


From an email from Charlie Neumeyer [11]:
"LPPI" is a term I came up to describe the nominal upgrade target, namely a 5 second (long pulse) plasma flat top where the OH current does not complete the second swing, only delivering part of its double-swing flux. The remaining flux is supplied non-inductively. Thus LPPI stands for "Long Pulse Partial Inductive". 

"SPFI" is another operating mode I felt the need to describe because it forces the design to contend with the full second swing current. In this case the pulse has a flat top less than 5 seconds (short pulse) but the full OH double-swing flux is used and it is sufficient to drive the current without reliance on non-inductive means. In this case it turns out that the flat top duration is limited by the OH I2T, not the available OH flux, which is more than sufficient per my plasma model. “
Table 6.3-3 Fr and FzCoil Forces from the Design Point
	Fr(lbf)
	PF4U
	PF5U
	PF5L
	PF4L

	Min w/o Plasma
	-95013
	82112
	82136
	-95015

	Min w/Plasma
	-103764
	142324
	141288
	-103805

	Min Post-Disrupt
	-148517
	37584
	37596
	-148573

	Min
	-148517
	37584
	37596
	-148573

	Worst Case Min
	-147018
	-20953
	-20951
	-147020

	Max w/o Plasma
	260098
	507374
	507445
	260075

	Max w/Plasma
	287106
	625215
	625286
	287213

	Max Post-Disrupt
	121449
	363572
	361490
	121496

	Max
	287106
	625215
	625286
	287213

	Worst Case Max
	468102
	667642
	667721
	468078

	
	
	
	
	

	Fz(lbf)
	PF4U
	PF5U
	PF5L
	PF4L

	Min w/o Plasma
	-203072
	-239929
	-49698
	-78007

	Min w/Plasma
	-171095
	-150201
	-145201
	-63411

	Min Post-Disrupt
	-89212
	-203095
	-20016
	-133935

	Min
	-203072
	-239929
	-145201
	-133935

	Worst Case Min
	-415803
	-506937
	-181134
	-74506

	Max w/o Plasma
	78007
	49698
	239929
	180275

	Max w/Plasma
	63403
	145201
	150218
	148314

	Max Post-Disrupt
	133920
	20017
	203119
	89222

	Max
	133920
	145201
	239929
	180275

	Worst Case Max
	149049
	181133
	506937
	415804


Table 6.3-4 Loads from Earlier (PDR) Design Point Spreadsheet

	
	Fz(lbf)
	PF4U
	PF5U
	PF5L
	PF4L

	
	Min
	-204724
	-241452
	-50636
	-85361

	
	Worst Case Min
	-423491
	-523610
	-191878
	-151945

	
	Max
	85361
	50636
	241452
	186601

	
	Worst Case Max
	151945
	191878
	523610
	423491


6.4 Materials Properties 
	Material
	Yield

 4 deg K (MPA)
	Ultimate 4 deg K, 

(Mpa)
	Yield, 80 deg. K (MPa)
	Ultimate, 80 deg. K (MPa)
	Yield, 292 deg K (MPa)
	Ultimate, 292 deg K (MPa)

	304 SST 50% CW
	
	
	1344 (195 ksi)
	1669
	1089
	1241

	304 Stainless Steel (Bar,annealed)
	404
	1721
	282
	1522
	234
	640


Coil Structure Room Temperature (292 K) Maximum Allowable Stresses, Sm = lesser of 1/3 ultimate or 2/3 yield, and bending allowable=1.5*Sm

	Material
	Sm
	1.5Sm


	304 Stainless Steel (Bar,annealed)
	156MPa(22.6ksi)
	234 MPa (33.9ksi)
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Vessel Material Mill Certifications for the 304 Vessel Show a 45 ksi Yield
ASTM A193 Bolt Specs from PortlandBolt.com

	B8M
	Class 1 Stainless steel, AISI 316, carbide solution treated.

	B8
	Class 2 Stainless steel, AISI 304, carbide solution treated, strain hardened

	B8M
	Class 2 Stainless steel, AISI 316, carbide solution treated, strain hardened


Mechanical Properties

	Grade
	Size
	Tensile ksi, min
	Yield, ksi, min
	Elong, %, min
	RA % min

	B8 Class 1
	All
	75
	30
	30
	50

	B8M Class 1
	All
	75
	30
	30
	50

	B8 Class 2
	Up to 3/4
	125
	100
	12
	35

	
	7/8 - 1
	115
	80
	15
	35

	
	1-1/8 - 1-1/4
	105
	65
	20
	35

	
	1-3/8 - 1-1/2
	100
	50
	28
	45

	B8M Class 2
	Up to 3/4
	110
	95
	15
	45

	
	7/8 - 1
	100
	80
	20
	45

	
	1-1/8 - 1-1/4 
	95
	65
	25
	45

	
	1-3/8 - 1-1/2
	90
	50
	30
	45
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SN Curve developed for the OH coil in ref [7]
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Insulation Shear Stress Allowable

• From Dick Reed Reports/Conversations:

• Shear strength, short-beam-shear, interlaminar

•

Without Kapton 65 MPa    (TF, 

PF1 a,b,c)

• With Kapton 40 

MPa (CS)

• Estimated Strength at Copper Bond   65 MPa/2 =32.5 

MPa (All Coils)

• From Criteria Document:

• I-5.2.1.3  Shear Stress Allowable

• The shear-stress allowable, Ss, for an 

insulating material is most strongly a function of 

the particular material and processing method 

chosen, the loading conditions, the 

temperature, and the radiation exposure level.  

The shear strength of insulating materials 

depends strongly on the applied compressive 

stress.  Therefore, the following conditions 

must be met for either static or fatigue 

conditions:

• Ss = [2/3 to ]+ [c2 x Sc(n)]

•

2/3 of 32.5 MPa = 

21.7 MPa

5ksi=34 MPa

2/3 of this is 23 MPa

C2~=.1 (not .3)

From an October 27 2009 email 

from Dick Reed

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

CTD static to Failure

PPPL Fat Qual Test

PPPL Fat with

Kapton Qual Test

From NSTX TF Test Report:

2/3 of 24 = 

16 MPa (Static)

C2~.44

Should be Further De-rated for Fatigue

Existing TF Prepreg

CTD 12P

Planned VPI CTD 101K


[image: image11.png]From the PF5 Fab Spec:

+ 1.6 Transitions: Lateral transitions between coil turns and vertical transitions between layers to be
formed over anominal length of 10” with adequate bend radii to avoid distortion of the coil cross
section. All voidsto be filled with filler blocks per Para. 1.7.

* 1.7 Surface Preparation, Insulation, Barriers &Filler Blocks: the copper is to be cleaned to remove
heavy oxide film and oil before proceeding with the insulation application. Turn insulation to be 2 layers
0f0.00325” Mylar halflapped overwrapped with 2 layers of 0.010” “Fusa-Fab” B-stage epoxy/fabric tape
halflapped. The wound coils are to be overwrapped with 4 layers half lapped of 0.010” “Fusa-Fab”.

* L7A InsulationBaking: The insulated coil is to be overwrapped with Tedlar and shrinkable Mylar and
press-cured. Fixturing must be provided to supply adequate pressure during curing per the manufacturer’s
recommendations and to assure the finished coil dimensions. A minimum of three thermocouples equally
spaced around the coil are to be used to monitor curing temperature.

+ 1.7B PostBaking Inspection: The cured coil is to be examined for any areas which did not bond or for
gaps orimperfections in the insulation surface. Any defects>1” in diameter and affecting more than 1
laver of the “Fusa Fab” must be repaired per an agreed upon procedure before proceeding.
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6.5 Coil Geometry and Currents
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Type B Bracket Details

[image: image16.png](4) PF 4 & PF 5 CLAMP TIE ROD
96 REGD

12 REGD

(1) _SLIDING PLATE

s

7

TOP_CLAMP PLATE

LT

12 REQD





Existing Coil Clamp Details
6.6 Elastic Constants, Thermal Expansion Coefficients
There are no composite or orthotropic moduli used in these models. Isentropic moduli are listed below: 
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7.0 Coil and Support Model

    The analysis model used for both the coils and support details is a quarter symmetry model. The vertical symmetry plane cuts through the two radially fixed supports which are two of the existing sliding block supports that have been locked. Equatorial plane symmetry is also imposed, so net vertical loading must be addressed in the global model [1].  Coil loads have been calculated from combinations of coil full current levels. Other coils are not included in the Lorentz calculations for this model.  Effects of the other coil currents are addressed in other models - the global model [2] and exercising the DCPS multipliers for the latest scenarios, with and without the plasma.  The model discussed in this section includes the coil cross section pancake structures and individual conductors and insulation layers.  It was expected that the self attractive loads between pancakes would affect their ability to support bending moments due to vertical loading. The coils are supported at discrete support brackets and columns around the perimeter of the coils. In order to include the flexibility of the vessel shell, and evaluate the weld stresses of the attachments to the vessel, a portion of the vessel shell is included.  

7.1 Model Elements
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Fig. 7.1-1 180 Symmetry Model with 12 Supports
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Fig. 7.1-2 Model of the PF4 and 5 supports  -  Support Column Upgrade Mounted on the Vacuum Vessel
    The mesh generation and calculation of the Lorentz forces is done outside of ANSYS using a code written by the author of this report. The mesh generation feature of the code is checked visually and within ANSYS during the PREP7 geometry check. The author’s code uses a Biot Savart solution for field calculations, based on single stick field calculations from Dick Thome's book [6] with some help from Pillsbury’s FIELD3D code to catch all the coincident current vectors, and other singularities. The analysts in the first ITER EDA went through an exercise to compare loads calculated by the US, RF and by Cees Jong in ANSYS, and confirmed that the US analyses were “OK”. Agreement was not good on net loads on coils that should net to zero – all the methods had some residuals, but summations on coil segments agreed very well. Some information on the code, named FTM (Win98) and NTFTM2 (NT,XP),  is available at: http://198.125.178.188/ftm/manual.pdf  ), and on the P drive under P:\public\Snap-srv\Titus\NTFTM.
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Fig. 7.1-3 June 2011 Model of the PF4/5 Support System with Heavier Columns all Around
7.2 Fields and Forces
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Figure 7.2-1 Fields and Forces for the 180 degree Symmetry Model with Full Current in PF5 and zero current in PF4
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Figure 7.2-2 Biot Savart Model showing the current sticks modeling the lower coils - These are deleted in the structural model and up-down symmetry is assumed for this model.  Up down asymmetries are evaluated from loads in the Design Point Spreadsheet. 
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Figure 7.2-3 Local Detail of the Lorentz Forces at the Coil Leads
7.3  Provisions for Differential Thermal Growth of PF4 and 5 - Results for the Link Concept

From the NSTX Design Point Spreadsheet [4], the max temperature in PF4 is 33C degrees and PF5 is 100C degrees. The design Point Summary of these temperatures is included in Section 6.3. 

While the link concept is not being used, as a mechanism, it provides the needed degrees of freedom to allow independent thermal expansion of PF4 and 5.  In the present FDR design, a sliding T slot or dovetail joint is used similar to the sliding joint used in the existing support.
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Figure 7.3-1 Left: Final Design Dovetail Slide, Right: The link Design, Mechanically Similar to the Dovetail

7.4 Run Log Files and File Locations
Run files and some results will be put on the pdrive. 

P drive:

P:\public\Snap-srv\Titus\NSTX\CSU\PF45Sup
ptitus-64pc

Clam03.txt,  f:\nstx\csu\PF45Sup           

\nstx\csu\pf45sup\Dove01.txt April 2011
\nstx\csu\PF45Sup\Coib03\   Coib05.txt,    Link concept that allows differential thermal growth between PF4 and 5
Laptop

OuterPFs/ProE        Existing support

OuterPFs/RonHatcher        Existing support Weld Influence Coefficients

OuterPFs/Thermal        Bake-out Thermal Gradient around existing support

Titus_64 (Andrei's Computer)
e:\run27   Latest Global Model Files

e:\nstx\csu\pf45Sup           Larry's Model

8.0  PF 4 and 5 Results
8.1  Displacement Results

   PF4 and 5 have to be aligned with respect to the centerline of the plasma. The present (meaning prior to the upgrade)  approach is to connect pushers and clamps around the coils to push the coils into roundness and concentricity. Currently, coil heat up is trivial. For the upgrade, the coils will be on for the 5 sec. pulse and will heat to 100C - expanding and fighting the alignment clamps.  John Menard and Masa Ono were consulted. An n=2 error, i.e., an elliptical coil, is acceptable as long as it is aligned with the plasma centerline - i.e., it precludes an n=1 error. So the coils are radially held with respect to the vessel and have them grow into an oval.  The degree of ovality was presented, discussed and accepted by Menard and Ono. 
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Figure 8.1-1   Coils held radially at left and right. Existing supports free to slide. Coils at 100C
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Figure 8.1-2   Coils held radially at left and right. Existing supports free to slide. Coils at 100C
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Figure 8.1-3   Coils held radially at left and right. Other supports free to slide. PF5 at 100C, PF4 and 5 clamped together at added support columns
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Figure 8.1-4   Coils held radially at left and right. All other supports free to slide. PF4 at 100C PF 5 at RT
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Figure 8.1-5   Coils held radially at left and right. All other supports free to slide. PF5 at 100C, PF4 at RT
8.2  PF 4 and 5 Coil Conductor Stress Results

The global model, [2] produces stress results for the 96 scenarios and for cases with and without the plasma. The coils in this model are "smeared" and do not include the effects of the details of the conductor cross section - insulation layers and coolant holes. The smeared Von Mises Stress values in the figures below are modest, 57 MPa, 63 MPa, 62 MPa and 60 MPa for scenarios 3, 13, 33, and 43, respectively.  These are scenarios run without a plasma. The thermal effects of warm expanded coils are not included in the global model. These are simulated in the model, which has winding pack details and the mechanics of the sliding connections at the new column locations.  
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Fig 8.2-1    Global Model Results for PF4 and 5, ref [2]
In order to assess the effects of the latest scenarios, the DCPS stress multipliers offer an attractive method of keeping up with the evolution in the design point spreadsheet currents.  These latest GRDS requirements include with and without plasma, and variations in plasma shape and disruption inductive coupling of the coils with the decaying plasma. 
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Coil Conductor Stress 
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    The stress in the conductor, for Lorentz loads and thermal loads with PF4 and 5 at the same temperature, is shown below. Peak stresses are where the coils are restrained radially at the existing clamps near the lead and 180 degrees away from the lead. 

The Sm value for the coil cold worked copper is expected to be similar to the TF specs or Sm is 156 MPa with the bending allowable at 233 MPa (see the criteria in section 6).  Fatigue is addressed in section 11. Peak Stresses below are all above the 233 MPa limit. 
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With PF4 and 5 rigidly connected at the added support column locations, and only PF5 hot, the stress goes up 41 MPa and is above the 233 MPa static limit. 
[image: image32.png]PF 4 and 5 Max Principal
Stresses

Do - 00304
o anmeos





Conductor stress with a mechanism to allow differential radial motion of PF4 and 5
8.3 PF4 and 5 Coil Insulation Stress
    Insulation Stress, or more properly, insulation shear displacements, were an important concern that led to the adoption of 12 support points for the coils. The insulation system used for the PF5 coil is a mylar wrapped Fusifab Epoxy system that is expected to have minimal bond strength. Analysis of a support concept that utilized six new support columns, and did not rely on the existing support brackets, is discussed in Appendix A. This produced large copper bending stresses.
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Lowering insulation stress was a significant driver in the decision to provide 12 support points. In the figure above, the shear stress due to bending between supports is reduced from about 25 MPa to 5 MPa in PF4. PF4 is divided into two pancakes and interacts strongly with PF5. With PF4 and 5 upper and lower coils energized, PF4U is loaded downward and PF5 is attracted to both the PF4U and the PF4/5 lower pair. For this loading, the bending load in PF4 is most severe, and the bending in PF5 is moderate. PF4 pancakes partially separate and the local self load does not provide any frictional shear between pancakes to engage the full section of the coil. Both PF4 and 5 use the fusifab/mylar/epoxy system that will have minimal epoxy bond shear strength. Even the 1 or 2 MPa in the bulk of the coils for the 12 support FDR concept may be too much to eliminate sliding. Demonstration of acceptable copper stresses, small shears and displacements will have to be sufficient to qualify the coils.   
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8.4
TF Ripple Loads on PF 4 and 5

PF 4 and 5 pass by the TF outer leg.  The local toroidal field at the outer TF legs imposes periodic torques on the neighboring PF coils. The torques add bending stress to the existing bending stresses which result from the discrete coil support points. The ripple effect is being quantified independent of other loading. To accomplish this, the Lorentz Loads are quantified with and without the TF current and the two files are differenced to obtain loading for only the effect of the TF currents.
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The Result of the Subtraction of (PF+TF) Load File and (PF Only) Load File, with only the PF coils plotted. Only the effect of the TF on the PF remain. 
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Hoop Directed Stress - Bending Stress Due to TF Ripple. - Less than 11 MPa at most locations. The asymmetry is due to local support bracket and port modeling. 
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9.0  Digital Coil Protection System Input
The approach used for the PF4 and 5 coils for calculating the stress multipliers/algorithms is to utilize a global model [2] that simulates the whole structure and includes an adequately refined modeling of the component in question. Unit terminal currents are applied to each coil separately, Lorentz loads are calculated, and the response of the whole tokamak and local component stress is computed. This approach is correct for stresses that are a consequence of an individual coil load which is, in turn, a result of the superposition of contributions from all other coil currents. Local component stresses may then be computed in the DCPS or in a spreadsheet for the many scenarios required by the GRD.  This approach has been applied to the PF4 and 5 coil stress. Where a component stress is a consequence of multiple coil loads, the approach must derive coefficients from unit loads which, in turn, are computed from the influence coefficients. This analysis approach has been exercised for the existing PF 4 and 5 support welds and is discussed in section 9.3 (moved to the Appendix)
    At this writing, thermal stresses are assumed to be a consequence of uniform heat-up of the coils. Stresses due to temperature gradients in the coils are not considered. 
    Two approaches are used to provide the needed multipliers/algorithms. 

    The first is to use the loads on PF coils computed by the DCPS software and apply these to local models of components. It is usual practice to utilize influence coefficient calculations to determine hoop and axial (vertical for tokamak's) loads from coil currents. However, the centroid of the Lorentz loads may not be at the geometric center of the coils, and a moment about a geometric center of the coil may be produced. The effect of this offset in force centroid, especially on local PF supports, is discussed. 

      The second approach to calculating the stress multipliers/algorithms is to utilize a global model that simulates the whole structure and includes an adequately refined modeling of the component in question. Unit terminal currents are applied to each coil separately, Lorentz loads are calculated, and the response of the whole tokamak and local component stress is computed. Local component stresses may then be computed in the DCPS or in a spreadsheet for the many scenarios required by the GRD.  

9.1 PF5 Coil Stress DCPS Input

    First, a candidate "worst case" location is selected. The stress state that will be checked must be an individual stress component. For PF5, the peak stress in the conductor is driven by a combination of hoop stress and bending stress in the same direction caused by the 12 discrete points at which the large ring coil is supported.  
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Figure 9.1-1 Finding a Worst Case Location For Which to Calculate Coefficients
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Figure 9.1-2 Unit Current Biot Savart Load Calculation
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Figure 9.1-3 Application of Stress Coefficients to the Old Scenario
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Figure 9.1-4 Comparison with Global Model Results
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Figure 9.1-5 Another Comparison with Global Model Results
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Figure 9.1-6 Another Comparison with Global Model Results
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Figure 9.1-7 Compare Results from Influence Coefficients to the Detailed Local Model of the Coils
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Figure 9.1-8 Using a Scenario/Current Set Consistent with the Local Model, Calculate a Stress Multiplier for the Conductor Stress

The procedure for calculating the peak hoop directed tension stress is to use the stress multipliers or influence coefficients multiplied by the coil currents, Multiply the result by 37/21 to account for the local conductor cross section multiplier, then add the 55 MPa thermal stress components. The peak stress in the plots of all scenarios is 38 MPa and the peak stress is then :
= 38*(37/21)+55 = 122 MPa  

This is a tension stress representative of the principal stress which needs to be compared with a fatigue allowable (see Section 11).
9.2 PF4 Coil Stress DCPS Input
    The procedure outlined above is applied to PF4 in this next section.
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9.3 Existing Support Weld Stress Multipliers
    This section derives (from Reference 9) an analysis of coefficients to relate PF4 and 5 loads to the weld stress of the bracket pad. This is pertinent to the upgrade because it was used for a protection system that was implemented in 2010 in NSTX.  This same approach can be translated to the DCPS requirements.
10.0 Leads

Analysis of the PF4 and 5 leads has been included in the analysis of the PF4/5 supports because the logic of the 180 degree "fixed" supports allows "rigid" supports of the leads if they are positioned near the fixed coil support points.
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    Cantilevered, un-supported leads produced excessive bending stresses due the Lorentz Loads caused by the local coil fields.  The unsupported lead stresses are shown below. 
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    The bending stress would be relieved by taking credit for the connection to the bus bars on the unistrut at the support platform. This was modeled by displacement constraints. These would produce stresses if the coils move relative to the bus bar support. The PF4/5 support concept imposes fixity at two locations 180-degrees apart. Choosing one fixed point near the lead break-out will limit the differential displacement stress in the leads. 
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11.0 Fatigue Analysis

    Principal stresses for the PF4 and 5 coils are shown below for full currents in PF4 and 5 for various combinations of temperatures. In Section 9, the digital coil protection system stress multipliers were used to calculate the tensile stress in the hoop direction for all the available scenario currents with the 10% headroom applied with and without the plasma included. 
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From Section 9, the peak Max Principal Stress in PF5 for all scenarios is=38*(37/21)+55 = 122 MPa.  
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Fatigue Stress Evaluation for Full Currents in PF4 and 5 - No other PF currents
The PF5 Maximum Max Principal Stress for all scenarios, for all thermal conditions is 122 MPa (see Section 9). The allowable stress to meet the cyclic fatigue limit was developed for the OH coil fatigue calculation[7] and is 125 MPa.
It should be emphasized that this evaluation conservatively assumed that all 60,000 pulses utilize the scenario that produces the worst case stress, and that this stress occurred when the thermal stresses are at a peak.  
12.0 Brackets, Hardware and Bracket-to-Vessel Welds 
12.1 Existing Bracket to Vessel Welds

    This is included in the upgrade calculations because this analysis was used in an early version of the DCPS which is currently in operation. The weld stress vs. load factors calculated here were applied during operation and the coil protection system disallowed a normal test shot. The problem is that the corners of the rectangular weld pattern have significant concentrations that would be plastically relieved, but the strain range would remain to affect the fatigue life. The corners were inspected, and no fatigue indications were noted. This region will be added to an inspection regimen during outages to ensure that fatigue sensitive welds are not developing cracks. 

     The weld is nominally 5/16-inch, but the QA report recommends that it be treated as an effective ¼ inch weld.  To facilitate meshing the weld, an arbitrary cross section is used, then the weld stress is scaled by the ratio of the weld section in the model to the actual weld section. In this case, the weld was intended as a fillet, but material has been added to accommodate the vessel curvature, and the resulting weld was derated.
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 The weld is assumed to have a larger cross section than a fillet, so the .707 factor was not applied. Weld allowable is a function of the level of inspection that is applied. At PPPL, only visual inspection is routine. ASME would require a weld efficiency of 0.7 or lower. 

[image: image57.png]16.0 in PF4 and 31.8kA in PF5, Mu=.3

- SEQU (RVG)
DMX =.182E-03
Y SMN =.138E+07
‘ 7 SMX =.574E+08

.138E+07 1385408 . 263E+08 3575408 .512E+08

. T61E+07 .201E+08 .325E+08 .450E+08 .574E+08




[image: image120.png]



[image: image58.emf]PF4/5 Weldment

Nominal Weld = 5/16 in.

QA Effective Weld = 1/4

FEA Weld Model Thick =10mm

Weld Stress =90*(.01*39.37)/.25

=142 MPa = 30555 psi

/title,PF4 and PF5 Upper Loads

!Remove OOP Loads

bf,all,temp,20

f,436,fz,-204000/12/.2248

f,1098,fz,-241000/12/.2248

Solve

Ron: Scale Weld Stress by ratio of your forces to those that I applied


In-Plane PF4 and 5U Loads With Strut
12.2 Bracket Welds for Upgrade Loads


[image: image59.png]



Figure 12.2-1 Bracket Types and Weld Specifications
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Figure 12.2-2 Analysis Model Weld Details
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Figure 12.2-3 Weld Stresses from the Local Model of the Bracket
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Figure 12.2-4 Weld Stresses Scaled from the Local Model and Influence Coefficients
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The weld stresses in the weld of the backing plate/pad to the vessel are 2118 psi and 2763 psi for the type A and B brackets, respectively. These are well below the fatigue allowable calculated above. This is consistent with the findings of the inspection described in Appendix A.  The stress in the weld between the back plate or pad and the bracket was calculated to be 7672 psi based on the 1/8-inch fillets on the vertical legs of the bracket. 

12.3 PF5 Bracket Support Plate and Weld, With and without Existing Column
The existing Support bracket for PF 4 and 5 includes an extension to support PF5. During the operation of NSTX, the support column between the existing upper and lower PF5 extensions buckled, and needed reinforcement. Early upgrade PF4/5 support concepts sought to remove this column because of its weakness, and to ease clearance issues. In this section, bracket stresses are considered with and without the column.  The cantilever load principally derives from attractive loads to the lower PF4 and 5 coil pair. 
Without the strut, bending stress concentrates at the corners of the gusset plate weld. The global Model [2]
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was run with and without the support strut. 
[image: image69.png]With Existing Support Strut, Run#28





Even though the support strut is being retained, the "no strut" case is included here because it is relatively easy to construct stress multipliers for the bending stress in the cantilevered part of the support. This allows exploration of all the identified scenarios, with and without plasmas. 
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It is evident from this plot that the small diameter column does little to resist the cantilever bending of the PF5 support plate. A stiffer section is needed. A heavier column was added in May, 2011 and a model including this has been run and reduces the bending stress on the cantilever section substantially. 
Bracket Stress by Influence Coefficients

If the bracket stress is determined primarily by the PF5 loads, the bracket stress can be related to coil current influence coefficients in a way similar to how the coil stresses can be computed. This is not rigorous technically, because the rods/columns will introduce contributions from the lower coils.  This section is not included in the DCPS for this reason, but it allows consideration of all 96 scenarios, with and without a plasma.
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The peak stress in the plate near the weld toe is less than 150 MPa, which is within the static allowable for the bracket material, but is probably a concern with respect to weld fatigue. This is another reason why the existing column/rod should be stiffened. 

12.4 Column Stresses from the Global Model

The global model [2] is available to provide column stresses in both the added column and the existing column. While the existing column/rod is not stiff enough to help the brackets welded to the vessel shell, the stresses in the columns and rods are small (less than 120 MPa in the rod and 30 MPa in the 3 inch pipe column). This stress level does not require any further evaluation or consideration in the DCPS. 
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12.5 Coil Clamp Plate Bolting
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Fz(Ibf) PF4U PF5U PF4L PF5L
Min w/o_Plasma -203072 -239929 -78007 -49698
Min w/Plasma -171095 -150201 -63411 -145201
Min Post-Disrupt -89212 -203095 -133935 -20016
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Worst Case Min -415803 -506937 -74506 -181134
Max w/o_Plasma 78007 49698 180275 239929
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Worst Case Launching
Load Load per Bolt(12*4 Bolts)  Stress(Stress Area= .1416)
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PFSU 181133 3773.604167 26649.74694
PFAL 74506 1552.208333 10961.92326

181134 2773 625 26649 89407




    For loading that is up-down symmetric, that is the upper coils are being loaded upward and the lower loads are being loaded downward, then all 12 supports will resist the loads. Then there are four studs per clamp plate and 12 sets of clamp plates. The present FDR design used ¾-inch bolts on the added column clamps, but in this analysis it is assumed that 1/2 inch bolts are used everywhere. 
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    If the loads are not up-down symmetric, for example, if upward loads on the upper coils are not equilibrated by the lower coils, then the clamps welded to the vessel could see larger loads. If 6 support points are assumed, then the loads on the studs for the existing brackets could double from around 4000 lbs to 8000 lbs - still within the allowable for the recommended ASTM A193 B8M Class 2 bolts.
    Preloading the bolts will aid in reducing the effect of fatigue. Preloaded clamp bolts will see the preload stress up until the bolted clamp lifts off.  If the preload exceeds the applied load, then the bolts only see the preload stress. If the preload is less than the applied load, then the bolts need to be sized and evaluated based on the applied load.  By specifying a preload which does not exceed the bolt capacity, and ensuring that the bolt is sized appropriately for the applied loads, guarantees that the bolt stress does not exceed the allowable. 
   For a static allowable check, the DCPS does not need to include the effect of the preload. To mitigate the potential for fatigue, the preload in the bolts should be specified. The usual practice is to go to 70% yield - this is above the static allowable for which the bolt is qualified - so, it shouldn't unload under the applied load - but for the high strength bolts this may be overkill. The higher preload may stress the copper conductors. It is recommended that the bolts be preloaded based on a 20 ksi yield and some occasional lift-off would be allowed.
12.6 T slot Stress

    All supports, except those that are locked (near the leads and 180 degrees opposite) must allow independent radial motion of PF4 and 5.  At the PDR, a clamped concept was presented that didn't allow this motion. - or, it was expected that the rubber pads would allow the relative motion. A rubber clamped version was run, and for the pad size assumed. the compliance was not good enough to allow the differential motion.
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Figure 12.6-1 Dovetail or T slot  sliding Block and Link Model Used to Simulate the Radial motion of the sliding block.

The FDR clamp is a design more similar to the existing sliding clamps. This latest design has only been partially analyzed but a link connected design that has the same mechanics has been used to properly model the thermal stresses in the coils.  Each of the four tierods that hold PF4 down see about 4000 lbs (see table above). The T slot shown below will see the loads from four studs or 16000 lbs.
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Figure 12.6-2 Dovetail Stress Analysis
Part of the T slot has been analyzed with 16,000 lbs applied. The flange thickness should be increased.
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Figure 12.6-3 Mechanics of Self-Locking of the Sliding Support
	Fr(lbf)
	PF4U
	PF4L

	Min
	-152166
	-152181

	Max
	289472
	289442

	
	
	

	Fz(lbf)
	PF4U
	PF4L

	Min
	-203125
	-134053

	Max
	134052
	180293


Table 12.6-1 Forces on PF4 and 5 from the Design Point Spreadsheet

Restraining Force = mu* 203125 +2*mu *h/w*289472

To allow radial growth under Lorentz loads the radial load must be greater than the frictional restraining force, or:         289472 >mu*(203125+2*h/w*289472)

Or mu must be less than 289472/(203125+2*(~2)*289472) = .213
Or mu must be less than .1 for H/W~4

Magna Plate has a Friction Coefficient “as low as .05”. We are supposed to design to mu +.15 or .2 so H/w <2

12.7
Vessel Shell Stress
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Vessel stresses are 160 MPa at the bottom and 64 MPa at the top (from the Jan 6, 2011, meeting presentation).
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These results show the shell stress slightly higher with no plasma. In the load sequence, first 10 load cases without plasma are analyzed then 10 load cases with plasma are analyzed. The trend in coil tensile stress is the opposite - see Section 9 - but the differences aren't great. 

13.0 Bake-Out Thermal Stress
    In an early analysis, the existing PF 4 and 5 support hardware was modeled as remaining at RT during bake-out. This produced a sharp gradient between the PF4/5 support bracket and the vessel shell. During a 2010 outage, the bracket was instrumented with thermocouples and the actual bake-out temperature gradient was measured. This was then imposed on the structural model and the stresses were found to be much reduced, particularly in the weld. 
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Bake-out stresses From the Jan 6, 2010 Meeting report.  

14.0 Buckling Stability
     The new columns were approximated replacing the existing columns with the same pipe section used for the new clamp/column assembly. This is a model that could be meshed quickly. Then a large displacement solution (ANSYS nlgeo,on) with increasing loading up to 2.6 times the loads for the full current in PF4 and 5 (but no other PF coil or plasma current) was run. The results are linear and the column stresses are 20 ksi at the fully loaded condition. There is no indication of impending collapse under fully loaded conditions - either geometric non-linearity or stresses that would introduce plastic hinges. The analysis was was run with increased loading but was terminated prior to the collapse loading.
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Figure 14.0-1 Large Displacement Loading of the Model to Address The Potential for Elastic or Plastic Collapse
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Figure 14.0-2 Large Displacement Loading of the Model Taken  to Collapse

    The design of the heavier column that will replace the existing column or strut, presented at the May Peer Review, has a shim pack at the mid height of the column.  The effect on the stability of the column is a concern. The stack and flanges must be as stiff as the column. It is recommended that the shim pack be put closer to an end that could be a pin end and still be stable. 
     Regarding coil buckling, this load case does not produce significant compressive hoop stress in either coil. But to get compressive hoop stresses in one or the other coil, there would have to be either reversed currents or a large current in PF4.  So, if you have a compressive hoop in one coil, it would have to be coupled with a tension in the other, and since they are connected together via the clamps and radial slides, the tensile loaded coil should stabilize the compressive one. 
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Figure 14.0-3 Initial Loading Tresca Results with a Load Multiplier of 1.0
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Figure 14.0-4 Initial Loading Tresca Results with a Load Multiplier of 1.7
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Figure 14.0-5 Large Displacement Tresca Results  with a Load Multiplier of 2.6
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Figure 14.0-6 Vertical Stress with a load multiplier of 2.6

Appendix A Analysis of Earlier Concepts 

Feasibility of 6 vs 12 Support Points




A.1 

Results for Added Columns and Rubber Support Pads



A.2

Concept which Supports TF OOP Loads off the PF4 and 5 supports

A.3

PDR Clamp Concept






A.4
 
Stress Multipliers for the PF4 and 5 Clamp Weld in the Existing NSTX (2010)
A.5
A.1 Feasibility of 6 vs. 12 Support Points

Currently (2011), both PF4 and 5 are supported by six support brackets welded to the vessel shell (12 including uppers and lowers). This study investigated the use of 6 supports for the upgrade loads.  The PF5 insulation system is a mylar wrapped fusifab epoxy system.  Because of the poor bonding of the mylar to epoxy and to the copper conductors, and because of copper stresses - particularly in PF4, twelve supports are necessary for the upgrade to reduce the spans and resulting bending stress. 
Table a.1-1 Design Point Vertical Loads at the time of the Study
	Fz(lbf)
	PF4U
	PF5U
	PF5L
	PF4L

	Min
	-204724
	-241452
	-50636
	-85361

	Worst Case Min
	-423491
	-523610
	-191878
	-151945

	Max
	85361
	50636
	241452
	186601

	Worst Case Max
	151945
	191878
	523610
	423491
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A.2 Results for Added Columns and Rubber Support Pads

With the agreement that 12 columns were needed and that the existing columns would be used, the effort turned to providing centering features that would accommodate the differential heat-up of PF4 and 5. Rubber blocks were suggested to allow differential motion between the coils at the added support columns/brackets. The pads that were analyzed had too high a shear stiffness and didn't allow the needed compliance. Links and dovetail joints were suggested. 
A.3 Support Concept in which the TF OOP loading is supported off the PF4 and 5 supports
    This was a concept that attempted to transfer the out-of-plane loading to the vessel through the PF 4 and 5 support brackets. It put a twisting moment on the bracket and the weld stresses were unacceptable. 
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Table A.2-1 Net Loads on the PF4 and 5 Assembly

	Fz(lbf)
	(PF4U+PF5U)-(PF4L+PF5L)

	Min
	-502240

	Worst Case Min
	-1065883

	Max
	-108545

	Worst Case Max
	44617
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A.4    PDR Clamp Concept

This clamp detail, which was presented at the PDR, did not have a feature that would have allowed PF5 and PF4 to have different operating temperatures. Also the clamping behavior was difficult to implement and analyze because a common clamp was used for both coils. This was analyzed by Larry Bryant and there was difficulty obtaining convergence, consistent with the mechanical uncertainty of how the single clampo would interact with the two coils. . 
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Appendix A5

Stress Multipliers for the PF4 and 5 Clamp Weld in the Existing NSTX (2010)

    The existing PF 4 and 5 supports were modeled and loads based on the upgrade design were applied. This analysis is representative of only the up-down symmetric attractive loads. The loads that were applied are shown in the table below. These are 1/6th the loading that would be appropriate for the whole of PF4U and PF5U coils. These loads produced 30,555 psi in the weld that holds the bracket to the vessel. The allowable stress in the weld is a function of the weld profile and the QA/inspection level applied to the weld. For visual inspection, a weld efficiency of 0.7 was assumed. If the weld was liquid penetrant inspected, a weld efficiency of 1.0 would be assumed.
	Applied Loads on the model with a Resulting Weld Stress of 30555 psi
	Allowable Load based on Visual weld inspection and an allowable weld stress of 14ksi
	Allowable Load based on Visual Plus Penetrant weld inspection and an allowable weld stress of 20ksi

	Due to PF4U: 17,000 Lbs 

Plus  PF5U: 20,000 Lbs = 37000 lbs
	16,900 Lbs
	24,200 Lbs


	Applied Loads on the model with  22,200 Lbs in the Strut 
	Allowable Load based on minimum AISC A307 bolting double shear allowable of 8.84 kips
	Allowable Load based on  Fy=36ksi steel, (e.g., A-36) for a double shear allowable of 9.54 kips
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Fig 9.3-1 Existing PF4 and 5 Support

	PF4U: +PF5U = 37000 lbs, 
	14,700 Lbs
	15,900 Lbs


The strut bolt stress is limiting for the case where the loads in PF4/5 are just attractive. Weld stresses double for the same loading if the strut is removed. If there is a net load on the PF4/5U + PF4/5L assembly, then the strut does not contribute to supporting this load component, and the allowable load from only a net assembly load would be 8 kips top and bottom or 16 kips total.  So one rule or guide would be the following:
The (Attractive Load on PF4/5U to PF4/5L + the net load on PF4/5U and L assembly) should be less than 16 kips.
In this analysis, PF4 and 5 loads are grouped together. PF5 loading has a larger moment arm and has a bigger effect on the weld and strut bolt stress. To be strictly correct, the PF5/PF4 load ratio should be as  assumed in the analysis.  Only the bracket to vessel weld and the strut end bolts were looked at. It is assumed that the buckling of the strut was addressed when it failed, and that there is adequate margin against buckling at present. Also, it is assumed that only compression loads are taken by the strut (the 1/8-inch welds that connect the strut clevis to the bracket are too small). (note that a new larger column is being used in the upgrade) 
 Analysis
    The weld is nominally 5/16-inch, but the QA report recommends that it be treated as an effective ¼ inch weld. To facilitate meshing the weld, an arbitrary cross section is used then the weld stress is scaled by the ratio of the weld section in the model to the actual weld section. In this case, the weld was intended as a fillet, but material has been added to accommodate the vessel curvature, and the resulting weld was derated.  
The weld is assumed to have a larger cross section than a fillet, so the standard 0.707 factor was not applied. The weld allowable is a function of the level of inspection that is applied. At PPPL, only visual inspection is routine. ASME would require a weld efficiency of 0.7 or lower. 
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Fig 9.3- 2 - In-Plane PF4U and 5U Loads With Strut
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Figure 9.3-5 PF4 and 5 Strut Bolting Detail

The strut is modeled as 3 cm in diameter. For the upgrade loads, the stress in the strut is about 140 MPa, so the load is 98.9l kN or 22,200 lbs.
The shoulder bolt that takes the strut compression load is a ¾ inch 304 SST bolt in double shear.  The AISC allowable for an A307 bolt is 8.84 kips (or 9.54 kips for Fy=36ksi steel , like A-36) in double shear. 304SS bolting could have a 30 ksi yield, but is likely closer to the A36 yield due to roll forming of the bolt. 
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The Weld Allowable is 20 ksi with inspection and an efficiency of 1.0 and 14 ksi with a weld efficiency of .7 These are discussed in Figure 6.3-4  in Section 6.
Table 9.1-1 NSTX Centerstack Upgrade PF Loads

	
	Fz(lbf)
	PF4U
	PF5U
	PF5L
	PF4L

	
	Min
	-204724
	-241452
	-50636
	-85361

	
	Worst Case Min
	-423491
	-523610
	-191878
	-151945

	
	Max
	85361
	50636
	241452
	186601

	
	Worst Case Max
	151945
	191878
	523610
	423491


Benchmark Check of 20 kA Current Operation of PF5 with Existing supports.  
The calculation below only has PF 4 and 5 upper and lower modeled. With only currents in PF5, the analysis below shows 60 kN compared with 80 kN from Ron Hatcher's calculation with all PF currents active. 
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Appendix B
PF4/5 Bracket Support Weld Inspection
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Pete,
The machine techs were able to get into several of the PF 4/5 support 
brackets with a borescope to inspect the welds.  They looked at the 
brackets under TF coils 2,4,6,8,10,12.  They were able to inspect the 
upper coners in all cases and the lower corners in most cases.  No 
signs of any cracks or distress.  Winston said if we wanted to look at 
some in person they could get in again on Thursday evening.
Larry
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Appendix C References

Reference 11

 Pete,  

"LPPI" is a term I came up to describe the nominal upgrade target, namely a 5 second (long pulse) plasma flat top where the OH current does not complete the second swing, only delivering part of its double-swing flux. The remaining flux is supplied non-inductively. Thus LPPI stands for "Long Pulse Partial Inductive". 

"SPFI" is another operating mode I felt the need to describe because it forces the design to contend with the full second swing current. In this case the pulse has a flat top less than 5 seconds (short pulse) but the full OH double-swing flux is used and it is sufficient to drive the current without reliance on non-inductive means. In this case it turns out that the flat top duration is limited by the OH I2T, not the available OH flux, which is more than sufficient per my plasma model. 

So, these two cases bracket how the machine will operate.

You can see this here:

http://www.pppl.gov/~neumeyer/NSTX_CSU/PF_Coil_Summary.htm
I have not put this in the GRD, but I can if you like. In fact the SPFI condition is probably the design driver for many of the out-of-plane loads because it pushes the OH to -24kA second swing. The GRD calls for an OH flux of 2.0 Wb which we supply in the LPPI case. With the SPFI case and the full second swing we get 2.3Wb. 

Chas

On Mar 29, 2011, at 2:27 PM, Peter Titus wrote:

Charlie: What do these mean? Long Pulse something?  Short Pulse Someithing?
-Peter

Tmax_LPPI Tmax_SPFI 
Charles L. Neumeyer
Princeton University, Plasma Physics Laboratory
Forrestal Campus, U.S. Route #1 North at Sayre Drive
P. O. Box 451
Princeton, N. J. 08543
Tel:    609-243-2159
Mobile: 609-313-4738

Fax:    609-243-3266

Reference 12

April 5 2011 email from Jim Chrzanowski:

Pete
 
FYI- The PF-2, PF-3 and PF-4 were all manufactured by PPPL.  Their insulation scheme is (4) half-lapped layers of Mylar insulation, followed by (2) half-lapped layers of Fusa-Fab” B-stage insulation.
 
Jim
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Figure 3.0-2 Existing  PF4/5 Supports
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Figure 3.0-1 FDR PF4/5 Supports
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Fig 9.3-3 - If the strut is removed, the weld stresses approximately double. 
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Figure 9.0-1  Linear Global Model Used in  Calculating DCPS Stress Multipliers, Ref [2]
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Figure 3.0-3  Linear Global Model [2] Used in  Calculating DCPS Stress Multipliers
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Insulation Shear Stress Allowable

From Dick Reed Reports/Conversations:

Shear strength, short-beam-shear, interlaminar

       Without Kapton		              65 MPa    (TF, PF1 a,b,c)

         With Kapton		       		 40 MPa (CS)

         Estimated Strength at Copper Bond   65 MPa/2 =32.5 MPa (All Coils)



From Criteria Document:

I-5.2.1.3  Shear Stress Allowable

The shear-stress allowable, Ss, for an insulating material is most strongly a function of the particular material and processing method chosen, the loading conditions, the temperature, and the radiation exposure level.  The shear strength of insulating materials depends strongly on the applied compressive stress.  Therefore, the following conditions must be met for either static or fatigue conditions:

	Ss =	[2/3 to ]+ [c2 x Sc(n)]


2/3 of 32.5 MPa = 21.7 MPa



5ksi=34 MPa

2/3 of this is 23 MPa

C2~=.1 (not .3)



From an October 27 2009 email from Dick Reed



From NSTX TF Test Report:

2/3 of 24 = 16 MPa (Static)

C2~.44

Should be Further De-rated for Fatigue

Existing TF Prepreg

CTD 12P

Planned VPI CTD 101K
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