

Povision No. 0

**NSTX-U** 

## Calculation No: <u>NSTXU-CALC-011-20-00</u> Revision No: <u>0</u>

Purpose of Calculation: (Define why the calculation is being performed.)

The purpose of this report is to evaluate IBDV tile assemblies to ensure each component can withstand total mechanical loads due to halo forces, eddy moments, and thermal stresses during maximum anticipated operating conditions.

Codes and versions: (List all codes, if any, used)

ANSYS v19.1

References (List any source of design information including computer program titles and revision levels.)

See attached report section "References"

Assumptions (Identify all assumptions made as part of this calculation.)

See attached report section "Assumptions"

Calculation (Calculation is either documented here or attached)

See attached report sections "Method of Analysis" and "Results"

Conclusion (Specify whether or not the purpose of the calculation was accomplished.)

All maximum temperature results fall within the allowable peak temperature of 1600 C. All components in the IBDV LHF tile assemblies (tiles, T-bars, shear pins, and bolts) were evaluated under the operating conditions laid out in section 2 and found to be within their mechanical acceptance criteria as laid out in the "NSTX Structural Design Criteria."

Cognizant Individual (or designee) printed name, signature, and date

Preparer's printed name, signature and date

I have reviewed this calculation and, to my professional satisfaction, it is properly performed and correct.

Checker's printed name, signature, and date

# National Spherical Torus eXperiment - Upgrade

# NSTX-U

## Calculation of Plasma Facing Components: IBDV LHF Tile and Variants Transient Thermal and Structural Analysis

NSTXU-CALC-011-20-00

September 21, 2018

**Prepared By:** 

Moheb Thomas, Engineering Analyst **Reviewed By:** 

Han Zhang, Engineering Analysis Division **Reviewed By:** 

Doug Loesser, Head, Mechanical Engineering

## NSTX-U CALCULATION

## Record of Changes

| Rev. | Date Description of Changes |                 | Revised by |
|------|-----------------------------|-----------------|------------|
| 0    | 9/21/18                     | Initial Release |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |
|      |                             |                 |            |

## **Table of Contents**

| 1      | Executive Summary                                                                                                                             | 5                                            |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 2      | Purpose                                                                                                                                       | 5                                            |
| 3      | Assumptions                                                                                                                                   | 6                                            |
| 4      | Inputs   4.1 Material Assignments.   4.2 Material Data.   4.3 Bolt Preload   4.4 Friction Coefficients   4.5 Thermal.   4.6 Mechanical Inputs | 6<br>ed.<br>6<br>6<br>6<br>8                 |
| 5      | ANSYS Results                                                                                                                                 | <b>10</b><br>10                              |
|        |                                                                                                                                               |                                              |
| 6      | Conclusion<br>6.1 Tiles<br>6.2 T-Bar<br>6.3 Shear Pin<br>6.4 Bolts                                                                            | <b>24</b><br>24<br>25<br>25<br>25            |
| 6<br>7 | Conclusion                                                                                                                                    | 24<br>25<br>25<br>25<br>25<br>26<br>26<br>26 |

#### 1 Executive Summary

All components in the IBDV (tiles, T-bars, shear pins, and bolts) were evaluated under the operating conditions laid out in section 2 and found to be within their mechanical acceptance criteria as laid out in the "NSTX Structural Design Criteria." The Belleville washers are designed for high load functions and are thus deemed acceptable. The margins of safety for other components of interest are summarized in Table 1 for each mechanical loading scenario considered.

|                                                                                                                                                                                         | Default tile<br>[POCO TM]                                        | Langmuir and<br>Mirnov Cutout Tile<br>[POTO TM]                          | Langmuir and<br>Mirnov Cutout<br>Tile [6510]                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|
| Tile<br>[POCO TM<br>Acceptance criteria<br>= 20.5 MPa in<br>tension and 55 MPa<br>in compression]<br>[R6510 Acceptance<br>criteria = 19 MPa in<br>tension and 65 MPa<br>in compression] | 15.3 MPa max<br>[25.4% margin]<br>-54.9 MPa min<br>[0.2% margin] | 21.3 MPa max<br>[Exceeds<br>allowable]<br>-53.5 MPa min<br>[2.7% margin] | 16.3 MPa max<br>[14.2% margin]<br>-44.8 MPa min<br>[31.1% margin] |
| <b>T-Bar</b><br>[Peak allowable<br>stress = 1,034 MPa]                                                                                                                                  | 72.3 MPa<br>intensity<br>[93.0% margin]                          | 69.5 MPa intensity<br>[93.3% margin]                                     | N/A                                                               |
| Shear Pin<br>[Peak allowable<br>stress = 291 MPa]                                                                                                                                       | 13.9 MPa<br>intensity<br>[95.2% margin]                          | 12.8 MPa intensity<br>[95.6% margin]                                     | N/A                                                               |
| Bolt<br>[Peak allowable<br>stress = 1,034 MPa]                                                                                                                                          | 115.2 MPa<br>intensity<br>[88.9% margin]                         | 103.0 MPa<br>intensity [90.0%<br>margin]                                 | N/A                                                               |

Table 1: Tile Assembly Components Results and Margins

The transient thermal analysis results are compared in Table 2. All maximum temperature results fall within the allowable peak temperature of 1600 C.

| Temperature in C after first flux shot |        |  |  |  |
|----------------------------------------|--------|--|--|--|
| Default tile                           | 925.99 |  |  |  |
| Langmuir and Mirnov Cutout<br>Tile     | 919.14 |  |  |  |

Table 2: IBDV Temperature Results

## 2 Purpose

The purpose of this report is to evaluate IBDF LHF tile assemblies to ensure each component can withstand total mechanical loads due to halo forces, eddy moments, and thermal stresses during maximum anticipated operating conditions. Thermocouple and gas injection tube tile variations are also assessed to confirm assembly acceptability.

The anticipated thermal conditions are simulated in a transient thermal analysis via ANSYS [ANalysis SYStem] version 19.1 and then input into a static structural analysis to simulate the halo forces and eddy moments.

## 3 Assumptions

None. Any assumptions contained within hand calculation are explicitly stated in their respective sections.

## 4 Inputs

- 4.1 Material Assignments
  - 4.1.1 Casing 718
  - 4.1.2 Shear Pin 718
  - 4.1.3 Gaskets GTA
  - 4.1.4 Tiles POCO
  - 4.1.5 T-Bar 718
  - 4.1.6 Bolts 718
  - 4.1.7 Belleville Washers 718
- 4.2 Bolt Preload
  - 4.2.1 750 N per bolt = 168.6 lbf
- 4.3 Friction Coefficients
  - 4.3.1 Between Belleville washer and Tee-bar = 0.3
  - 4.3.2 Between Tile and Gasket = 0.1
  - 4.3.3 Between Tile and Tee-bar = 0.1
  - 4.3.4 Between Tile and Sheer Pin = 0.1
  - 4.3.5 Between Case and Gasket = 0.1

## 4.4 Thermal

- 4.4.1 Initial Temperature 41C
- 4.4.2 Surface Fluxes see figure 2
- 4.4.3 Radiation Emissivity = 0.7 (Systems Requirements Document)
- 4.4.4 Ambient Temperature = 126C (Ref.7.1)
- 4.4.5 Convection
- 4.4.5.1 Film Coefficient = 288 W/(m^2\*C) (Systems Requirements Document)
- 4.4.5.2 Ambient Temperature = 22C (Systems Requirements Document)



Figure 2: Thermal Fluxes on Surface



Figure 3: General Thermal Model



## Figure 4: Chamfer Heat Flux

## 4.5 Mechanical Inputs



## Figure 5: Tile forces and moments



Figure 6: Preload Forces



Figure 7: Body Moments

## 5 ANSYS Results

5.1 Thermal Results



Figure 8: Default Tile Thermal Results at End of 5 Seconds Flux Shot



Figure 9: Temperature Immediately Preceding Second Flux Shot

|    | Time [s]    | Minimum [°C] | Maximum [°C] |
|----|-------------|--------------|--------------|
| 1  | 1.e-002     | 40.932       | 104.66       |
| 2  | 1.5533e-002 | 40.905       | 122.49       |
| 3  | 2.1067e-002 | 40.883       | 135.34       |
| 4  | 3.7666e-002 | 40.842       | 161.39       |
| 5  | 8.7466e-002 | 40.766       | 206.99       |
| 6  | 0.13727     | 40.711       | 239.9        |
| 7  | 0.23727     | 40.629       | 286.24       |
| 8  | 0.33727     | 40.557       | 322.93       |
| 9  | 0.43727     | 40.498       | 353.9        |
| 10 | 0.53727     | 40.446       | 381.08       |
| 11 | 0.63727     | 40.4         | 405.55       |
| 12 | 0.73727     | 40.357       | 428.02       |
| 13 | 0.83727     | 40.317       | 448.84       |
| 14 | 0.93727     | 40.278       | 468.34       |
| 15 | 1.          | 40.255       | 480.13       |
| 16 | 1.04        | 40.241       | 487.46       |
| 17 | 1.08        | 40.227       | 494.65       |
| 18 | 1.2         | 40.187       | 515.01       |
| 19 | 1.32        | 40.15        | 534.35       |
| 20 | 1.68        | 40.051       | 585.81       |
| 21 | 2.08        | 39,953       | 637.47       |
| 22 | 2.48        | 39.864       | 684.74       |
| 23 | 2.88        | 39,782       | 728.63       |
| 24 | 3.28        | 39 706       | 769.86       |
| 25 | 3.68        | 39.635       | 808.93       |
| 26 | 4.08        | 30 568       | 846.1        |
| 27 | 4.00        | 20 505       | 991 50       |
| 20 | 4.40        | 39,305       | 004.08       |
| 20 | 5           | 20 / 20      | 025.00       |
| 20 | 16.05       | 20 1/0       | 222.55       |
| 21 | 20.022      | 20 215       | 250.0        |
| 22 | 20.935      | 20 226       | 239.0        |
| 22 | 25,404      | 29,520       | 255.00       |
| 33 | 20.035      | 39.31        | 214.90       |
| 34 | 31.094      | 40.101       | 190.18       |
| 30 | 37.745      | 41.43        | 108.9        |
| 30 | 46.046      | 43.399       | 151.78       |
| 37 | 56.28       | 46.053       | 138.29       |
| 38 | 69.26       | 49.271       | 127.39       |
| 39 | 86.725      | 52.795       | 118.01       |
| 40 | 112.34      | 56.131       | 109.08       |
| 41 | 155.        | 58.092       | 99.384       |
| 42 | 239.2       | 56.212       | 87.483       |
| 43 | 358.7       | 50.877       | 76.458       |
| 44 | 478.2       | 45.652       | 66.208       |
| 45 | 597.7       | 41.221       | 57.656       |
| 46 | 717.2       | 37.645       | 50.779       |
| 47 | 836.7       | 34.815       | 45.335       |
| 48 | 956.2       | 32.597       | 41.061       |
| 49 | 1075.7      | 30.868       | 37.724       |
| 50 | 1137.8      | 30.085       | 36.211       |
| 51 | 1200.       | 29.405       | 34.895       |

Table 3: Temperature for Default Tile with Respect to Time



Figure 10: Transient Thermal Results for Default Tile



Figure 11: Variant Tile Thermal Results at End of 5 Seconds Flux Shot



Figure 12: Variant Tile Temperature Immediately Preceding Second Flux Shot

|     | Time [s]    | Minimum [°C] | Maximum [°C] |
|-----|-------------|--------------|--------------|
| 1   | 1.e-002     | 40.939       | 103.79       |
| 2   | 1.5559e-002 | 40.912       | 121.59       |
| 3   | 2.1117e-002 | 40.889       | 134.78       |
| 4   | 3.7793e-002 | 40.845       | 160.59       |
| 5   | 8.7821e-002 | 40.767       | 205.65       |
| 6   | 0 13785     | 40 709       | 238.21       |
| 7   | 0.23785     | 40.627       | 284.06       |
|     | 0.33785     | 40.557       | 320.41       |
| 0   | 0.43785     | 40.337       | 351.15       |
| 10  | 0.53785     | 40.446       | 378 15       |
| 11  | 0.63785     | 10,200       | 402.47       |
| 12  | 0.72795     | 40.335       | 402,47       |
| 12  | 0.02705     | 40.330       | 424.75       |
| 1/1 | 0.03705     | 40.310       | 44,5,41      |
| 14  | 1           | 40.279       | 404.77       |
| 15  | 1.04        | 40.230       | 470.57       |
| 17  | 1.04        | 40.242       | 405.03       |
| 1/  | 1.08        | 40.228       | 490.79       |
| 18  | 1.2         | 40.189       | 511.02       |
| 19  | 1.32        | 40.151       | 530.23       |
| 20  | 1.68        | 40.052       | 581.39       |
| 21  | 2.08        | 39.954       | 632.69       |
| 22  | 2.48        | 39.865       | 6/9.61       |
| 23  | 2.88        | 39.782       | 723.18       |
| 24  | 3.28        | 39.705       | 764.09       |
| 25  | 3.68        | 39.633       | 802.87       |
| 26  | 4.08        | 39.565       | 839.8        |
| 27  | 4.48        | 39.501       | 875.04       |
| 28  | 4.74        | 39.461       | 897.37       |
| 29  | 5.          | 39.423       | 919.14       |
| 30  | 16.95       | 39.068       | 323.96       |
| 31  | 20.933      | 39.094       | 261.82       |
| 32  | 23.382      | 39.169       | 237.01       |
| 33  | 25.83       | 39.303       | 218.84       |
| 34  | 30.784      | 39.824       | 194.48       |
| 35  | 37.535      | 40.916       | 172.74       |
| 36  | 46.166      | 42.706       | 154.85       |
| 37  | 56.994      | 45.173       | 140.61       |
| 38  | 71.022      | 48.211       | 129.01       |
| 39  | 90.239      | 51.563       | 118.98       |
| 40  | 118.33      | 54.642       | 109.47       |
| 41  | 163.86      | 56.327       | 99.207       |
| 42  | 250.43      | 54.509       | 86.127       |
| 43  | 369.93      | 49.487       | 75.663       |
| 44  | 489.43      | 44.537       | 65.681       |
| 45  | 608.93      | 40.324       | 57.254       |
| 46  | 728.43      | 36.916       | 50.445       |
| 47  | 847.93      | 34.221       | 45.049       |
| 48  | 967.43      | 32,113       | 40.816       |
| 49  | 1086.9      | 30.472       | 37.516       |
| 50  | 1200.       | 29.255       | 35.062       |
| 1   |             |              |              |

Table 4: Temperature for Variant Tile with Respect to Time



Figure 13: Transient Thermal Results for Variant Tile

5.2 Mechanical Results



Figure 14: Default Tile Stresses







Figure 16: Default Tile Bolt Stress





Figure 17: Default Tile Shear Pin Stresses

Figure 18: Default Tile Shear Pin Linearized Stress

|    | Length [mm] | Membrane [MPa] | Bending [MPa] | Membrane+Bending [MPa] | Peak [MPa] | ✓ Total [MPa] |
|----|-------------|----------------|---------------|------------------------|------------|---------------|
| 1  | 0.          | 13.904         | 31.092        | 35.847                 | 27.043     | 61.763        |
| 2  | 0.21167     | 13.904         | 29.796        | 34.716                 | 22.807     | 56.522        |
| 3  | 0.42333     | 13.904         | 28.501        | 33.595                 | 18.191     | 50.942        |
| 4  | 0.635       | 13.904         | 27.205        | 32.483                 | 13.607     | 45.452        |
| 5  | 0.84666     | 13.904         | 25.91         | 31.379                 | 9.354      | 40.261        |
| 6  | 1.0583      | 13.904         | 24.614        | 30.283                 | 5.4176     | 35.343        |
| 7  | 1.27        | 13.904         | 23.319        | 29.195                 | 1.2926     | 29.987        |
| 8  | 1.4817      | 13.904         | 22.023        | 28.117                 | 2.2344     | 27.823        |
| 9  | 1.6933      | 13.904         | 20.728        | 27.05                  | 3.7188     | 26.019        |
| 10 | 1.905       | 13.904         | 19.432        | 25.995                 | 4.503      | 24.173        |
| 11 | 2.1167      | 13.904         | 18.137        | 24.953                 | 5.5388     | 22.296        |
| 12 | 2.3283      | 13.904         | 16.841        | 23.926                 | 6.6682     | 20.522        |
| 13 | 2.54        | 13.904         | 15.546        | 22.917                 | 7.7024     | 19.174        |
| 14 | 2.7517      | 13.904         | 14.25         | 21.929                 | 7.9824     | 17.985        |
| 15 | 2.9633      | 13.904         | 12.955        | 20.964                 | 8.1648     | 16.959        |
| 16 | 3.175       | 13.904         | 11.659        | 20.026                 | 8.388      | 15.856        |
| 17 | 3.3867      | 13.904         | 10.364        | 19.121                 | 8.6459     | 14.83         |
| 18 | 3.5983      | 13.904         | 9.0684        | 18.253                 | 8.5727     | 13.993        |
| 19 | 3.81        | 13.904         | 7.7729        | 17.429                 | 8.2407     | 13.284        |
| 20 | 4.0217      | 13.904         | 6.4775        | 16.656                 | 7.9611     | 12.666        |
| 21 | 4.2333      | 13.904         | 5.182         | 15.944                 | 7.8397     | 12.164        |
| 22 | 4.445       | 13.904         | 3.8865        | 15.302                 | 7.6966     | 11.78         |
| 23 | 4.6567      | 13.904         | 2.591         | 14.74                  | 7.181      | 11.635        |
| 24 | 4.8683      | 13.904         | 1.2955        | 14.271                 | 6.6293     | 11.46         |
| 25 | 5.08        | 13.904         | 5.3086e-015   | 13.904                 | 6.0573     | 11.219        |
| 26 | 5.2916      | 13.904         | 1.2955        | 13.65                  | 5.5767     | 11.021        |
| 27 | 5.5033      | 13.904         | 2.591         | 13.516                 | 5.1505     | 11.026        |
| 28 | 5.715       | 13.904         | 3.8865        | 13.508                 | 4.6696     | 11.226        |
| 29 | 5.9266      | 13.904         | 5.182         | 13.627                 | 4.2444     | 11.464        |
| 30 | 6.1383      | 13.904         | 6.4775        | 13.871                 | 3.8921     | 11.745        |
| 31 | 6.35        | 13.904         | 7.7729        | 14.233                 | 3.5799     | 11.972        |
| 32 | 6.5616      | 13.904         | 9.0684        | 14.705                 | 3.2991     | 12.414        |
| 33 | 6.7733      | 13.904         | 10.364        | 15.277                 | 3.0843     | 12.962        |
| 34 | 6.985       | 13.904         | 11.659        | 15.938                 | 2.9826     | 13.529        |
| 35 | 7.1966      | 13.904         | 12.955        | 16.677                 | 3.0211     | 14.087        |
| 36 | 7.4083      | 13.904         | 14.25         | 17.484                 | 3.1736     | 14.664        |
| 37 | 7.62        | 13.904         | 15.546        | 18.351                 | 3.3406     | 15.323        |
| 38 | 7.8316      | 13.904         | 16.841        | 19.268                 | 3.369      | 16.212        |
| 39 | 8.0433      | 13.904         | 18.137        | 20.228                 | 3.428      | 17.143        |
| 40 | 8.255       | 13.904         | 19.432        | 21.226                 | 3.5377     | 18.089        |
| 41 | 8.4666      | 13.904         | 20.728        | 22.256                 | 3.6943     | 19.045        |
| 42 | 8.6783      | 13.904         | 22.023        | 23.314                 | 4.001      | 19.806        |
| 43 | 8.89        | 13.904         | 23.319        | 24.397                 | 4.4077     | 20.573        |
| 44 | 9.1016      | 13.904         | 24.614        | 25.5                   | 4.514      | 21.761        |
| 45 | 9.3133      | 13.904         | 25.91         | 26.621                 | 4.1205     | 23.88         |
| 46 | 9.525       | 13.904         | 27.205        | 27.758                 | 5.7877     | 26.18         |
| 47 | 9.7366      | 13.904         | 28.501        | 28.909                 | 9.3866     | 28.839        |
| 48 | 9.9483      | 13.904         | 29.796        | 30.073                 | 13.209     | 31.739        |
| 49 | 10.16       | 13.904         | 31.092        | 31.247                 | 17.106     | 34.821        |

Table 5: Default Tile Shear Pin Linearized Stress



Figure 19: Variant Tile Stresses



Figure 20: Variant Tile T-Bar



Figure 21: Variant Tile Bolt Stress



Figure 22: Variant Tile Shear Pin Stresses



Figure 23: Variant Tile Shear Pin Linearized Stress

|    | Length [mm] | Membrane [MPa] | Bending [MPa] | Membrane+Bending [MPa] | Peak [MPa] | ✓ Total [MPa] |
|----|-------------|----------------|---------------|------------------------|------------|---------------|
| 1  | 0.          | 12.754         | 30.895        | 36.65                  | 29.993     | 65.224        |
| 2  | 0.21107     | 12.754         | 29.607        | 35.434                 | 23.562     | 57.617        |
| 3  | 0.42215     | 12.754         | 28.32         | 34.223                 | 17.464     | 50.12         |
| 4  | 0.63322     | 12.754         | 27.033        | 33.017                 | 11.978     | 42.935        |
| 5  | 0.8443      | 12.754         | 25.745        | 31.817                 | 8.419      | 38.521        |
| 6  | 1.0554      | 12.754         | 24.458        | 30.625                 | 5.3269     | 34.848        |
| 7  | 1.2664      | 12.754         | 23.171        | 29.44                  | 2.833      | 30.962        |
| 8  | 1.4775      | 12.754         | 21.884        | 28.264                 | 3.1504     | 28.299        |
| 9  | 1.6886      | 12.754         | 20.596        | 27.099                 | 3.8633     | 26.134        |
| 10 | 1.8997      | 12.754         | 19.309        | 25.945                 | 4.9253     | 24.063        |
| 11 | 2.1107      | 12.754         | 18.022        | 24.804                 | 6.0432     | 22.064        |
| 12 | 2.3218      | 12.754         | 16.735        | 23.68                  | 6.6601     | 20.308        |
| 13 | 2.5329      | 12.754         | 15.447        | 22.574                 | 7.0127     | 18.846        |
| 14 | 2.744       | 12.754         | 14.16         | 21.489                 | 7.5457     | 17.326        |
| 15 | 2.955       | 12.754         | 12.873        | 20.43                  | 8.1308     | 15.861        |
| 16 | 3.1661      | 12.754         | 11.585        | 19.401                 | 8.5101     | 14.626        |
| 17 | 3.3772      | 12.754         | 10.298        | 18.408                 | 8.5014     | 13.566        |
| 18 | 3.5883      | 12.754         | 9.0109        | 17.457                 | 8.4805     | 12.566        |
| 19 | 3.7993      | 12.754         | 7.7236        | 16.555                 | 8.3789     | 11.695        |
| 20 | 4.0104      | 12.754         | 6.4364        | 15.712                 | 8.1459     | 10.927        |
| 21 | 4.2215      | 12.754         | 5.1491        | 14.937                 | 7.9921     | 10.188        |
| 22 | 4.4326      | 12.754         | 3.8618        | 14.242                 | 7.8333     | 9.6441        |
| 23 | 4.6436      | 12.754         | 2.5745        | 13.639                 | 7.449      | 9.3443        |
| 24 | 4.8547      | 12.754         | 1.2873        | 13.139                 | 7.0959     | 8.9895        |
| 25 | 5.0658      | 12.754         | 5.2898e-015   | 12.754                 | 6.7073     | 8.8492        |
| 26 | 5.2768      | 12.754         | 1.2873        | 12.495                 | 6.32       | 8.8151        |
| 27 | 5.4879      | 12.754         | 2.5745        | 12.369                 | 5.9465     | 8.8345        |
| 28 | 5.699       | 12.754         | 3.8618        | 12.378                 | 5.5024     | 9.0279        |
| 29 | 5.9101      | 12.754         | 5.1491        | 12.523                 | 5.1405     | 9.2481        |
| 30 | 6.1211      | 12.754         | 6.4364        | 12.798                 | 4.8996     | 9.4854        |
| 31 | 6.3322      | 12.754         | 7.7236        | 13.195                 | 4.5987     | 9.9098        |
| 32 | 6.5433      | 12.754         | 9.0109        | 13.702                 | 4.3836     | 10.369        |
| 33 | 6.7544      | 12.754         | 10.298        | 14.308                 | 4.1893     | 10.9          |
| 34 | 6.9654      | 12.754         | 11.585        | 15.                    | 4.0617     | 11.495        |
| 35 | 7.1765      | 12.754         | 12.873        | 15.767                 | 4.071      | 12.091        |
| 36 | 7.3876      | 12.754         | 14.16         | 16.598                 | 4.0155     | 12.87         |
| 38 | 7.8097      | 12.754         | 16.735        | 18.418                 | 4.0551     | 14.565        |
| 39 | 8.0208      | 12.754         | 18.022        | 19.392                 | 4.0369     | 15.57         |
| 40 | 8.2319      | 12.754         | 19.309        | 20.4                   | 4.1062     | 16.589        |
| 41 | 8.443       | 12.754         | 20.596        | 21.438                 | 4.1613     | 17.718        |
| 42 | 8.654       | 12.754         | 21.884        | 22.501                 | 4.2874     | 18.875        |
| 43 | 8.8651      | 12.754         | 23.171        | 23.585                 | 4.4357     | 20.106        |
| 44 | 9.0762      | 12.754         | 24.458        | 24.689                 | 4.2694     | 22.171        |
| 45 | 9.2872      | 12.754         | 25.745        | 25.81                  | 4.5002     | 24.56         |
| 46 | 9.4983      | 12.754         | 27.033        | 26.945                 | 5.3019     | 26.941        |
| 47 | 9.7094      | 12.754         | 28.32         | 28.093                 | 10.293     | 30.39         |
| 48 | 9.9205      | 12.754         | 29.607        | 29.252                 | 16.256     | 34.623        |
| 49 | 10.132      | 12.754         | 30.895        | 30.421                 | 22.246     | 39.273        |

Table 6: Variant Tile Shear Pin Linearized Stress





Figure 24: Variant Tile Stresses with 6510

## 6 Conclusion

The following results are summarized in section 1.

## 6.1 Tiles

The tile material is POCO TM. POCO TM has a tensile strength of 41 MPa and compressive strength of 110 MPa. Per section 2.5.2.4 of Ref. 7.4, the allowable stress for carbon tiles is  $\frac{1}{2}$  of the ultimate tensile and compressive stresses. Thus, the acceptance criterion for the tiles is 20.5 MPa in tension and 55 MPa in compression.

The maximum stress from all the scenarios evaluated is 21.3 Mpa in tension and 54.9 Mpa in compression. The maximum tension criteria of 54.9 MPa

falls within the acceptance criterion of 55 MPa with a margin of 0.2%. The maximum compression value of 21.3 MPa exceeds the acceptance criterion of 20.5 MPa.

The secondary tile material evaluated is Graphite 6510. Graphite 6510 has a tensile strength of 38 MPa and compressive strength of 130 MPa. Per section 2.5.2.4 of Ref. 7.4, the allowable stress for carbon tiles is  $\frac{1}{2}$  of the ultimate tensile and compressive stresses. Thus, the acceptance criterion for the 6510 tiles is 19 MPa in tension and 65 MPa in compression.

The maximum stress the 6510 analysis evaluated is 16.3 Mpa in tension and 44.8 Mpa in compression. The maximum tension value of 16.3 falls within the acceptance criterion of 19 MPa with a margin of 14.2%. The maximum compression value of 44.8 MPA falls within the acceptance criterion of 65 MPa with a margin of 31.1%.

#### 6.2 T-Bar

The T-Bar material is INCONEL Alloy 718. INCONEL Alloy 718 has a yield stress of 1,034 Mpa. The design tresca stress ( $S_m$ ) value is 2/3 of the material yield stress (Guidance per section 2.4.1.1 of Ref. 7.4) which results in an  $S_m$  value of 689.3 MPa. The peak allowable stress for the bolts is calculated (per guidance of section 2.4.1.4.1 and 2.4.1.4.2 of Ref. 7.4) as follows:  $1.5(K)(S_m)=1.5(1)(689.3 \text{ MPa})=1,034 \text{ MPa}$ . The multiplier "K" is conservatively assigned a value of 1.0 to reflect normal operating conditions per section 2.4.1.5 of Ref. 7.4.

The maximum T-bar stress from row 5 and 6 analysis from all the scenarios evaluated is 72.3 Mpa which is less than the peak allowable stress of 1,034 MPa. Thus, the T-bars satisfy the stress acceptance criteria. With an 93% margin.

## 6.3 Shear Pin

The shear pin material is INCONEL Alloy 718. The bending stress is calculated as follows: Mc/I= 73 MPa which is multiplied by Kt=1.8 to account for fillet stress concentration to allow peak stress value of 131 Mpa. However, the primary allowable is 291 with the new factor for the fillet. The highest linearized stress concentration on the shear pin is 13.9 MPa. This maximum stress provides a 95.2% margin.

#### 6.4 Bolts

#### 6.4.1 Basic Stress Limits

The bolt material is INCONEL Alloy 718. INCONEL Alloy 718 has a yield stress of 1,034 Mpa. Taking the design tresca stress ( $S_m$ ) as 2/3 of the material yield stress (Guidance per section 2.4.1.1 of Ref. 7.4) results in an

 $S_m$  value of 689.3 MPa. The peak allowable stress for the bolts is calculated (per guidance of section 2.4.1.4.1 and 2.4.1.4.2 of Ref. 7.4) as follows:  $1.5(K)(S_m)=1.5(1)(390 \text{ MPa})=1,034 \text{ MPa}$ . The multiplier "K" is conservatively assigned a value of 1.0 to reflect normal operating conditions per section 2.4.1.5 of Ref. 7.4.

The maximum bolt stress from all the scenarios evaluated is 115.2 Mpa which is less than the peak allowable stress of 1,034 MPa. Thus, the bolts satisfy the stress acceptance criteria with a 88.9% margin.

6.4.2 Preload Stress Limits

Per section 2.4.1.4.3 of Ref. 7.4, the bolt preload stress is not to exceed 0.75 of the yield stress ( $S_y$ ). Using the yield stress of 1,034 MPa results in a maximum preload stress acceptance criterion of 775.5 MPa.

The bolt shank has a diameter of 5.766 mm (0.005766 m). Thus, the shank cross sectional area is  $\pi r^2 = \pi^* (0.005766 \text{ m})^2 = 1.044\text{E}-4 \text{ m}^2$ . The bolt preload of 1500 N results in a bolt shank preload stress of (1500N/1.044E-4 m<sup>2</sup>)\*10<sup>-6</sup> = 14.4 MPa. The preload stress of = 14.4 MPa is less than the peak allowable preload stress. Thus, the bolts satisfy the preload stress acceptance criteria.

## 7 References

- 7.1 PFC-180613-AK-01, "PFC thermal and structural analysis procedure" from A.KHODAK to M. Jaworski, R. Ellis, A. Jariwala, B. Linn, J. Klabacha, M. Reinke, P. Titus
- 7.2 "Introduction to Tribology" Second Edition by Bharat Bhushan
- 7.3 memo "MODIFICATION OF HEAT FLUX REQUIREMENTS FOR CSAS" from M.L. REINKE to M. JAWORSKI, S. GERHART
- 7.4 NSTX-CRIT-0001-02, "NSTX (National Spherical Torus Experiment) Structural Design Criteria" dated January 2016