Disruption Analysis of PP, VV, and Components

Model includes bracket conducting path on back of PPs

Opera 3D Model – Transient ELEKTRA Solver

Square shape plasma (same cross section area as circular shape)

FE Mesh

Fast mid-plane centered disruption 2 MA/ms Back ground field OH, TF and PF coils (#79)

Plasma current (CC) PF5 current (CW) Background fields at center of lower PPPs (1.2, 0.72, -0.8) m

	Br (T)	Bz (T)
Without plasma	0.152	-0.465
With plasma t=0	-0.0265	-0.439
End of disruption	0.038	-0.264

Eddy Current Distribution – Skin Depth

Electrical conductivity and skin depth (1ms disruption)			
	Conductivity (S/m)	Skin depth	
Passive Plate	5.07x10 ⁷ (85% Cu)	2.25 mm	
Bracket	1.35x10 ⁶ (SS)	13.7 mm	(r
VV	1.35x10 ⁶ (SS)	13.7 mm	
CS Casing	1.35x10 ⁶ (SS)	13.7 mm	

100 --Mn-Zn 10 -Al Cu steel 410 δ -Fe-Si 1 -Fe-Ni mm) 0.1 0.01 0.001 0.001 0.01 0.1 10 100 1000 1 f (kHz)

The skin depth of copper passive plates is only ~2-2.5 mm during 1 ms plasma disruption

$$\delta = \sqrt{\frac{2\rho}{\omega\mu}} = \sqrt{\frac{1}{\pi f \sigma \mu}} = \frac{1}{\sqrt{3.14 \times 10^3 \times 4 \times 3.14 \times 10^{-7} \times 5.066 \times 10^7}} = 2.25 \times 10^{-3}$$

Eddy Current Centered Disruption - 60 Degree Model

Eddy Current Centered Disruption – 60 Degree Model

Eddy Current Distribution on Bracket (Back of PPs)

23/May/2011 11:05:34

Disruption Analysis of PP, VV, and Components

23/May/2011 11:06:14

Total Toroidal Current Induced during Disruption

Eddy Current on VV and CS Casing

Eddy Current on Lower Passive Plate

Background fields a	center of lower F	PPs (1.2, 0.7)	2, -0.8) m
---------------------	-------------------	----------------	------------

Lower PPP center	Br (T)	Bz (T)
coil background field (#79)	0.152	-0.465
with plasma at =0	-0.0265	-0.439
with plasma at 1ms	0.038	-0.264

Center of lower PPPs

X (m)	Y (m)	Z (m)
1.2	0.72	-0.8

Disruption Loads on PPPs

Moment center of lower PPPs

X (m)	Y (m)	Z (m)
1.2	0.72	-0.8

Disruption Analysis of Lower PPs

Disruption Analysis of Lower PPs

Mid Disruption Analysis of Upper PPs

Disruption Analysis of Upper PPs

