Check of disruption calculations for NSTX Upgrade passive plates

J. Menard May 25, 2011

Shape evolution during VDE Representative 700kA shot 140587 from NSTX

Reconstructing this evolution is quite challenging – requires circuit model of vessel (LRDFIT)

Peak plate current density calculation using LRDFIT axisymmetric equivalent

(same code used for reconstructions)

• 30-40MA/m² (0.7MA) → 100-120MA/m² in Upgrade (2MA)

50-70kPa local pressure on significant fraction (~1/4) of plate \rightarrow 400-600kPa at 2MA

Peak plate current density comparison

• 2D model circulating current density from representative plasma is within factor of 2 of GRD/XL specification

Peak plate current comparison

- LRDFIT for 140587 = 50kA net toroidal current \rightarrow 150kA at 2MA
- Full database \rightarrow higher values \rightarrow 160-200kA plate current at 2MA

Assessment of maximum local field

- In GRD, the VDE plasma equilibria are not self-consistent
 - Actual plasma must be in radial force balance
 - Assuming poloidal fields are worst case might therefore be overly conservative
- However, largest pressures on plates can occur near end of current quench, i.e. at time when field ≈ vacuum field
 - − 140587 at 401ms is time of peak instantaneous JxB pressure \rightarrow local B_P at plate is 0.22T \rightarrow 0.5-0.6T for 2MA
 - 0.5-0.6T is comparable to that assumed in GRD for 2MA plasma
- GRD usage of max B_P at plate is reasonable assumption

Crude estimate of plate deflection and peak stress similar to ANSYS results

		1			
	Input	Calculation			
Major radius [m]	1.3				
# of plates	12				
length fraction	0.6				
Plate length (no rescale)		0.408			
Plate length rescale factor	1				
Plate length (rescaled)		0.41			
Plate thickness [in]	0.5				
Plate thickness [m]		0.0127			
Plate width (b)	0.4				
Ixx		6.82794E-08			
Plasma current	2.00E+06				
Plate current fraction	0.1				
Plate current		2.00E+05			
Magnetic field [T]	0.5				
Normal force		4.08E+04			
Normal area		0.16336			
Normal pressure		2.50E+05			
Force / length		1.00E+05			
Cu-Cr-Zr Young's Modulus [psi]	1.70E+07				
Cu-Cr-Zr Young's Modulus [Pa]		1.17E+11			
Max deflection (uniform load) [m]		4.53E-03	4.5	4.5 mm	
Max deflection (point load) [m]		7.24E-03	7.2	mm	
Section modulus		1.08E-05			
Stress at center of const. CS		1.94E+08	193.9	MPa	

(AVG)

Additional braces from plates to vessel to effectively reduce the plate length by a factor of 2 would be effective at reducing deflection and stress

	Input	Calculation				Input	Calculation		
Major radius [m]	1.3				Major radius [m]	1.3			
# of plates	12				# of plates	12			
length fraction	0.6				length fraction	0.6			
Plate length (no rescale)		0.408			Plate length (no rescale)		0.408		
Plate length rescale factor	1				Plate length rescale factor	0.5			
Plate length (rescaled)		0.41			Plate length (rescaled)		0.20		
Plate thickness [in]	0.5				Plate thickness [in]	0.5			
Plate thickness [m]		0.0127			Plate thickness [m]		0.0127		
Plate width (b)	0.4				Plate width (b)	0.4			
lxx		6.82794E-08			Ixx		6.82794E-08		
Plasma current	2.00E+06				Plasma current	2.00E+06			
Plate current fraction	0.1				Plate current fraction	0.1			
Plate current		2.00E+05			Plate current		2.00E+05		
Magnetic field [T]	0.5				Magnetic field [T]	0.5			
Normal force		4.08E+04			Normal force		2.04E+04		
Normal area		0.16336			Normal area		0.08168		
Normal pressure		2.50E+05			Normal pressure		2.50E+05		
Force / length		1.00E+05			Force / length		1.00E+05		
Cu-Cr-Zr Young's Modulus [psi]	1.70E+07				Cu-Cr-Zr Young's Modulus [psi]	1.70E+07			
Cu-Cr-Zr Young's Modulus [Pa]		1.17E+11			Cu-Cr-Zr Young's Modulus [Pa]		1.17E+11		
Max deflection (uniform load) [m]		4.53E-03	4.5 mm		Max deflection (uniform load) [m]		2.83E-04	0.3 mm	
Max deflection (point load) [m]		7.24E-03	7.2 mm		Max deflection (point load) [m]		4.53E-04	0.5	mm
Section modulus		1.08E-05			Section modulus		1.08E-05		
Stress at center of const. CS		1.94E+08	193.9	MPa	Stress at center of const. CS		4.85E+07	48.5 MPa	

- Unclear if additional braces to vessel are compatible with bake-out, etc
- Additional strengthening elements on each plate is another possibility

Comments on changing passive plate material, and comment on skin depth effects

- Have had initial discussions of changing plate material to SS with Columbia University group
 - Calculations for last NSTX 5 year plan + KSTAR
 - Simulations indicate RWM growth rate increases by ~ 1 order of magnitude (or more) → not acceptable
- Roughly speaking, do not want to reduce plate field penetration time more than factor of 2-4
- Skin depth for Cu at 70C: δ [mils] = 2837/sqrt(f [Hz])
 →90 mils at 1kHz (1ms) → 1/e decay of E-field

 $\rightarrow \delta \sim 5x$ the thickness of the plate \rightarrow induced current in plate on these time-scales could be significantly smaller than assumed