NSTX

FAILURE MODES AND EFFECTS ANALYSIS

(FMEA)

Revision 10

Dated: November 2014

Prepared By:

Name/WBS	Signature	Name/WBS	Signature
K. Tresemer (WBS 11)		R. Kaita (WBS 4X)	
M. Smith (WBS 12)		R. Ramkrishnan (WBS 5X)	
S. Raftopoulos (WBS 13)		P. Sichta (WBS 6X)	
T. Stevenson (WBS 2X and DCPS)		C.Gentile (Operations)	
W. Blanchard (WBS 3X)			

Reviewed by:

Name	Signature	Name	Signature
P. Titus		L. Dudek	
NSTX Project Engineer		NSTX Center Stack Upgrade	
T. Stevenson		J. Levine	
NSTX NBI Upgrade		ES&H	

Approved by:		
_	Ron Strykowsky, NSTX Upgrade Project Manager	_

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 2 of 115

Table of Contents

I. PREFACE	4
SCOPE 4	
SAFETY IMPLICATIONS	4
II LIST OF ACRONYMS	6
III. WBS ELEMENTS	7
1 Torus Systems	7
WBS Element 1.1 Plasma Facing Components: Component: Graphite & Carbon Fiber Composite Tiles	7
WBS Element 1.1 Plasma Facing Components Component: Passive Plates	8
WBS Element 1.1 Plasma Facing Components Component: Inboard & Outboard Divertors	
WBS Element 1.1 Plasma Facing Components Component: NBI Protective Plates	
WBS Element 1.2 Vacuum Vessel & Support Structures Component: Vacuum Vessel (VV)	
WBS Element 1.2 Vacuum Vessel & Support Structures Component: Support Structures (SS)	12
WBS Element 1.3 Magnets Component: Outer PF Coils (WBS 1.3.1)	14
WBS Element 1.3 Magnets Component: Outer TF Coils (WBS 1.3.2)	
WBS Element 1.3 Magnets Component: TF Inner Leg Bundle (WBS 1.3.3.1)	18
WBS Element 1.3 Magnets Component: Shaping Coils (PF1a, PF1b and PF1c) (WBS 1.3.3.3)	
WBS Element 1.3 Magnets Component: Center Stack Casing (WBS 1.3.3.4)	
WBS Element 1.3 Magnets Component: Water Cooled Flexible Cable Leads	
2 Plasma Heating and Current Drive Systems	
WBS Element 2.1 High Harmonic Fast Wave (HHFW) Radio Frequency (RF) System	
WBS Element 2.2 Coaxial Helicity Injection (CHI) System	
WBS Element 2.3 Electron Cyclotron Heating (ECH) System	
WBS Element 2.4 Neutral Beam Injection (NBI) System Component: General	
WBS Element: 2.4 Neutral Beam Injection (NBI) System Component: NBI Duct	
WBS Element 2.4 Neutral Beam Injection (NBI) System Component: NBI Vacuum Vessel	
WBS Element: 2.4 Neutral Beam Injection (NBI) System Component: Beam Line Acceleration System	
WBS Element 2.4 Neutral Beam Injection (NBI) System Component: Cryopumping System	
WBS Element 2.4 Neutral Beam Injection (NBI) System Component: Local PLC Controller	
3. Auxiliary Systems	
WBS Element: 3.1 Vacuum Pumping System Component: Main Pumping Duct	
WBS Element 3.1 Vacuum Pumping System Component: Turbomolecular Pumps (TMP)	
WBS Element: 3.1 Vacuum Pumping System Component: Roughing Pump Skid	
WBS Element 3.1 Vacuum Pumping System Component: Backing Pump Skid	47

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 3 of 115

WBS Element 3.1 Vacuum Pumping System Component: N2 Vent Valves	48
WBS Element 3.1 Vacuum Pumping System Component: Residual Gas Analyzer (RGA)	49
WBS Element 3.2 Cooling Water System	
WBS Element 3.2 Cooling Water System Component: Coolant Distribution in Test Cell	
WBS Element: 3.2 Cooling Water System Component: Pumps & Automatic Valves	
WBS Element: 3.2 Cooling Water System Component: Cooling Water Local I&C	
WBS Element: 3.3 Bakeout System Component: High Temperature Skid (HTS), Low Tempera	
Associated Piping, and DC Power Supply	
WBS Element: 3.4 Gas Delivery System (GDS)	
WBS Element: 3.4 Gas Delivery System Component: Lithium Evaporator (LITER)	68
WBS Element: 3.4 Gas Delivery System Component: Lithium Granule Injector (LGI)	74
WBS Element: 3.4 Gas Delivery System Component: Material Analysis Particle Probe (MAPP	²) 82
WBS Element: 3.5 Glow Discharge Cleaning (GDC) System	
WBS Element: 3.6 Deuterated Trimethylboron (dTMB) System	
4 Plasma Diagnostics	
WBS Element: 4X Diagnostics Component: Plasma Current Rogowski Coils	88
WBS Element: 4X Diagnostics Component: Flux Loops	
WBS Element: 4X Diagnostics Component: Thermocouples	91
5 Power Systems	
WBS Element: 5X Power Systems Component: AC Power Systems (WBS 5.1)	92
WBS Element: 5X Power Systems Component: AC/DC Power Supply Converters	94
WBS Element: 5X Power Systems Component: Safety Disconnect Switches	97
WBS Element: 5X Power Systems Component: DC Current Transducers	102
WBS Element: 5X Power Systems Component: DCPS	
WBS Element: 5X Power Systems Component: Analog Coil Protection (ACP)	106
WBS Element: 5X Power Systems Component: Ground Fault Detection	106
WBS Element: 5X Power Systems Component: Power Supply Real Time Controller (PSRTC)	107
WBS Element: 5X Power Systems Component: Hardwired Control System	108
6 Central Instrumentation and Control (I&C)	110
WBS Element: 6X Central I&C Component: EPICS Process Control System	
WBS Element: 6X Central I&C Component: MDS+ Data Acquisition System	
WBS Element: 6X Central I&C Component: Safety System	
9 Operations	113
WBS Element: Operations	113

I. PREFACE SCOPE

This revision of the NSTX FMEA is intended to reflect the configuration of the NSTX device following the upgrade to the Center Stack and addition of a second NBI system (NSTX-U). Compared to the prior revision of the FMEA this version includes two new columns, one for failure probability and one for failure consequence. [See memo 71-091211-CLN-01, "Procedure to Update the NSTX Failure Modes and Effects Analysis (FEMA) Document."]

NSTX-U utilizes the auxiliary systems of D-site. The TFTR Final Safety Analysis Report (FSAR) and the D-Site Facilities Safety Assessment Document (D-Site SAD) includes FMEAs for these systems, including effects of failures on the auxiliary systems themselves. For NSTX this document only addresses failures that impact the NSTX-U device. Effects of failures on the auxiliary systems themselves are covered by the TFTR FSAR and the D-Site SAD.

In general, single failure modes are addressed. In some cases, for failures that would have severe consequences in terms of damage to hardware or risk to personnel safety, multiple failures are addressed.

SAFETY IMPLICATIONS

Certain failures can increase the risk of injury to personnel. For any particular failure, the level of risk of injury to personnel depends on several factors including:

- 1) the nature of the failure
- 2) the presence or absence of features which mitigate the effect of the failure (e.g. redundancy, energy isolating barriers, etc.)
- 3) the presence or absence of personnel in the area where the failure has occurred
- 4) the level of training of the personnel

This FMEA addresses 1) and 2) above. Items 3) and 4) relate mainly to administrative procedures which aim to prevent access to hazardous areas or to limit access to personnel trained to conduct themselves safely in potentially hazardous areas. This FMEA does not address administrative procedures.

This FMEA addresses NSTX-U systems in the NSTX Test Cell, as well as other D-site systems whose failure could damage the NSTX-U device, or which have been significantly modified for use on NSTX-U, or which relate to safe access to the NSTX Test Cell.

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 5 of 115

This FMEA *does not* address safety issues related to the conduct of operations throughout the balance of the D-site facility. Considering that the safety of operations of TFTR was documented and approved via the TFTR FSAR (now the D-Site SAD), and demonstrated to be effective for several decades, it would not add to the safety of NSTX-U operations to repeat that analysis herein.

Considering its role in establishing safe access to the NSTX Test Cell, the Safety Lockout Device (SLD), along with the interface between the SLD and the power supply system Safety Disconnect Switches (SDS), and the supervision of operation of the power supply system by the Hardwired Interlock System (HIS), have been addressed herein, even though they have not been changed for NSTX-U in any substantial way. The SLD and SDS interface remain absolutely unchanged. The HIS has been modified to reflect the simpler requirements for NSTX-U but the TFTR concepts (redundancy, etc.) and actual components have been fully retained.

Hot Access is a special mode that allows for the presence of a limited number of personnel in the NSTX Test Cell during coil energization in order that they can observe first hand any unexpected behavior. These persons will each have in their possession a key which locks the HIS in the Hot Access Mode, preventing simultaneous TF and PF energization (and the possibility of plasma formation) *using exactly the TFTR HIS interlocking mechanism*. Compared to an observer outside of the NSTX Test Cell, these persons will unavoidably be exposed to a higher level of risk of injury. However, via design of protective shields as well as administrative procedures to ensure their use, all reasonable measures will be taken to minimize this risk. Hot Access Mode was not utilized on NSTX during its run from 1999-2011, and is not expected to be used for NSTX-U.

II LIST OF ACRONYMS

ACP	Analog Coil Protection system	NSTX	National Spherical Torus Experiment
В	magnetic field	NTC	NSTX Test Cell
CHI	Coaxial Helicity Injection	OH	Ohmic Heating
COE	Chief Operating Engineer	PAUX	Permissive relay for Auxiliary Systems
DCCT	DC Current Transducer	PC Link	Power Conversion (power supply command data)
			Link
DCPT	DC Potential (voltage) Transducer	PF	Poloidal Field
E-stop	Emergency Stop	PFC	Plasma Facing Component
ECH	Electron Cyclotron Heating	PLC	Programmable Logic Controller
EIC	(FCPC) Engineer In Charge	PPPL	Princeton Plasma Physics Lab
EPICS	Experimental Physics Instrumentation & Control	PSRTC	Power Supply Real Time Controller
	System		
FCPC	Field Coil Power Conversion	RF	Radio Frequency
FMEA	Failure Modes & Effects Analysis	RGA	Residual Gas Analyzer
HCS	Hardwired Control System (in FCPC)	RIS	Rochester Instrument System (fault detector)
HHFW	High Harmonic Fast Wave	rms	root mean square
HIS	Hardwired Interlock System	SDS	Safety Disconnect Switch
HSC	Halmar Signal Conditioner	SLD	Safety Lockout Device
HVAC	Heating/Ventilating/Air Conditioning	SOL	Scrape Off Layer
I	current	TF	Toroidal Field
I&C	Instrumentation & Control	TFTR	Tokamak Fusion Test Reactor
I/O	Input/Output	dTMB	Deuterated Trimethylboron
IR	Infra Red	TMP	Turbo Molecular Pump
LEC	Liquid Effluent Collection tank	UPS	Uninterruptable Power System
MGD	Master Gate Driver	VPS	Vacuum Pumping System
NBI	Neutral Beam Injection	WBS	Work Breakdown Structure

III. WBS ELEMENTS

1 Torus Systems

forces.

WBS Element 1.1 Plasma Facing Components: Component: Graphite & Carbon Fiber Composite Tiles

Function: The PFC (Inner Wall, Inboard Divertor, Outboard Divertor, and Passive Plate) tiles comprise the surface which

interacts with the plasma and forms the plasma boundary

diversion of plasma.

Failure Mode Tile overheating due to misalignment, or plasma misoperation (control system failure, CHI misoperation, etc.)	Effect Impurity influx into plasma, reduced performance	Detection Visible camera, Infra Red (IR) camera, Residual Gas Analyzer (RGA)	Recovery Control plasma shape and Scrape Off Layer (SOL) to avoid localized heating, repair tile when vacuum vessel accessible.	Probability UNLIKELY	Consequen MINOR
Partial (cracked tile) or complete tile detachment from mounting surface/backplate due to thermal shock and/or eddy currents and electromagnetic forces.	Loose tile piece will fall down in vacuum vessel, could bridge isolating gap (e.g. ceramic insulator, passive plate toroidal gap, etc.), leading to localized diversion of plasma.	Visible camera, IR camera (depending on effect).	Repair tile, remove broken piece(s) when vacuum vessel accessible.	UNLIKELY	MINOR
Tile support rail or T-bar or other mounting hardware detachment from mounting surface/backplate due to thermal shock and/or eddy currents and electromagnetic	Loose metallic piece will fall down in vacuum vessel, could bridge isolating gap (e.g. ceramic insulator, passive plate toroidal gap, etc.), leading to localized	Visible camera, IR camera (depending on effect).	Shutdown, vent vacuum vessel, repair	UNLIKELY	MAJOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 8 of 115

WBS Element 1.1 Plasma Facing Components Component: Passive Plates

Function: The Passive Plates provide transient stabilization of the plasma vertical position, and determine the plasma

outboard boundary.

Failure Mode	Effect	Detection	Recovery	Probability	Consequ
Loose connections leading to excessive contact electrical resistance on toroidal or poloidal segment-to-segment jumpers, or saddle jumpers	Electrical arcs, local copper melting, excessive resistance and reduction in current flow, impurity influx into plasma, reduced performance	Visible camera, Infra Red (IR) camera, Residual Gas Analyzer (RGA), magnetic diagnostics	Repair when vacuum vessel accessible	UNLIKELY	MINOR
Loose connections leading to excessive contact thermal resistance on toroidal segment-to-segment jumpers.	Increased thermal resistance, higher plate temperatures during operations, lower plate temperatures during bakeout., higher thermal gradients, higher stresses, reduced performance	Thermocouples, IR camera.	Repair when vacuum vessel accessible	UNLIKELY	MINOR
Mechanical deformation/failure of supports due to eddy currents and electromagnetic forces.	Misalignment and/or dislocation of plate structures into plasma envelope, loss of machine operability	Visible camera	Shutdown, vent vacuum vessel, repair	UNLIKELY	MAJOR
Cooling circuit leak	Release of heat exchanger fluid into vacuum vessel	Residual Gas Analyzer (RGA)	Shutdown, vent vacuum vessel, repair, bakeout	UNLIKELY	MAJOR

WBS Element 1.1 Plasma Facing Components Component: Inboard & Outboard Divertors

Function: The Inboard & Outboard Divertors provide Scrape Off Layer (SOL) heat flux and impurity targets for diverted

(X-point) plasmas. The Lower Inboard & Outboard Divertors provide the sink and source for the CHI current

drive.

Failure Mode	Effect	Detection	Recovery	Probability	Consequo
Outboard Divertor, Loose	Electrical arcs, local copper	Visible camera, Infra	Repair when vacuum	UNLIKELY	MINOR
connections leading to excessive	melting, impurity influx into	Red (IR) camera,	vessel accessible		
contact electrical resistance on	plasma, reduced performance	Residual Gas			
plate-to-ring connections.	-	Analyzer (RGA),			
		magnetic diagnostics			

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 9 of 115

WBS Element 1.1 Plasma Facing Components Component: Inboard & Outboard Divertors (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Conseque
Outboard Divertor, Mechanical deformation/failure of supports due to eddy currents and electromagnetic forces.	Misalignment and/or dislocation of plate structures into plasma envelope, loss of machine operability	Visible camera	Shutdown, vent vacuum vessel, repair	UNLIKELY	MAJOR
Outboard Divertor, Cooling circuit leak	Release of heat exchanger fluid into vacuum vessel	Residual Gas Analyzer (RGA)	Shutdown, vent vacuum vessel, repair, bakeout	UNLIKELY	MAJOR

See PFC Tile FMEA

WBS Element 1.1 Plasma Facing Components Component: NBI Protective Plates

Function: The Protective Plates consist of an array of graphite tiles mounted on a structure inside the NSTX vacuum vessel

centered about the midplane at bays H & I. The system is designed to absorb neutral beam energy that is not

absorbed by the plasma.

Failure Mode Tile overheating due to misalignment or non-conventional beam strike	Effect Impurity influx into plasma, reduced performance	Detection Visible camera, Infra Red (IR) camera, Residual Gas Analyzer (RGA) & Thermal couples	Recovery Terminate beam operation.	Probability UNLIKELY	Conseque MINOR
Partial (cracked tile) or complete tile detachment from mounting surface/backplate due to thermal shock and/or eddy currents and electromagnetic forces.	Loose tile piece will fall down in vacuum vessel, could bridge isolating gap (e.g. ceramic insulator, passive plate toroidal gap, etc.), leading to localized diversion of plasma.	Visible camera, IR camera (depending on effect).	Vent machine & Repair tile, remove broken piece(s) when vacuum vessel accessible. Consider limitation of beam operation.	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 10 of 115 ma Facing Components Component: NBI Protective Plates (cont'd)

WBS Element 1.1 Plasma Facing Components

Failure Mode Tile support rail or T-bar or other mounting hardware detachment from mounting surface/backplate due to thermal shock and/or eddy currents and electromagnetic forces.	Effect Loose metallic piece will fall down in vacuum vessel, could bridge isolating gap (e.g. ceramic insulator, passive plate toroidal gap, etc.), leading to localized diversion of plasma.	Detection Visible camera, IR camera (depending on effect).	Recovery Shutdown, vent vacuum vessel, repair	Probability UNLIKELY	Conseque MAJOR
Loose support connections leading to excessive contact electrical resistance	Electrical arcs, local copper melting, excessive resistance and reduction in current flow, impurity influx into plasma, reduced performance	Visible camera, Infra Red (IR) camera, Residual Gas Analyzer (RGA),	Repair when vacuum vessel accessible	UNLIKELY	MINOR
Loose tile connections leading to poor thermal contact.	Increased thermal resistance, higher plate temperatures during operations, lower plate temperatures during bakeout., higher thermal gradients, higher stresses, reduced performance	Thermocouples, IR camera & thermal couples	Repair when vacuum vessel accessible	UNLIKELY	MINOR
Mechanical deformation/failure of supports due to eddy currents and electromagnetic forces.	Misalignment and/or dislocation of plate structures into plasma envelope, loss of machine operability	Visible camera	Shutdown, vent vacuum vessel, repair	UNLIKELY	MAJOR
Cooling circuit leak	Release of heat exchanger fluid into vacuum vessel	Residual Gas Analyzer (RGA)	Shutdown, vent vacuum vessel, repair, bakeout	UNLIKELY	MAJOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 11 of 115

WBS Element 1.2 Vacuum Vessel & Support Structures Component: Vacuum Vessel (VV)

Function: The primary function is to provide a high vacuum boundary suitable for plasma operations. The secondary

function is providing structural support for vacuum ports/ducts, plasma heating, current drive and diagnostic

systems.

Failure Mode External leak during pump down. Cause: Failed port flange vacuum seal.	Effect Vacuum level not achieved.	Detection Residual Gas Analyzer Vacuum System Gauges	Recovery Repair seal.	Probability NORMAL	Conseque MINIMA
External leak during bakeout & normal operations. Cause: Failed port flange vacuum seal.	Loss of vacuum level.	Residual Gas Analyzer Vacuum System Gauges	Attempt temporary in situ repair, otherwise shutdown, vent VV, repair.	ANTICIPATE D	MINOR
Out of dimensional tolerance. Cause: Excessive VV deformation.	Misalignment of attached components.	Visible & IR Cameras Diagnostics	Shutdown, vent VV, repair.	UNLIKELY	MAJOR
External leak. Cause: Failed structural materials or welds.	Loss of vacuum level.	Residual Gas Analyzer Vacuum System Gauges	Provisions: Inspect welds annually. Recovery: Shutdown, vent VV, repair.	UNLIKELY	MAJOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 12 of 115

WBS Element 1.2 Vacuum Vessel & Support Structures Component: Support Structures (SS)

Function: The SS includes all components required to mechanical support the: Vacuum Vessel, Center Stack, PF Coils and TF Coil Outer Legs. In addition, the SS provides dielectric breaks where required.

Failure Mode Failed structural materials or welds. Cause: electromagnetic, vacuum and/or thermal loads.	Effect Misalignment of components: VV, CS, coils, diagnostics, etc. Perturbation of magnetic field, Possible: mechanical damage electrical damage Ground or turn to turn faults. Loss of vacuum integrity Water leaks / damage	Detection Monitor VV displacement. Maintenance Inspection, Visible & IR Cameras Diagnostics Residual Gas Analyzer System Pressure & Vacuum Gauges	Recovery Provisions: Maintenance Inspection. Recovery: Shutdown, vent VV, repair	Probability UNLIKELY	Conseque MAJOR
Failure: Outer PF sliding joint. Cause: excessive resistance to sliding.	Misalignment of outer PF coils, Perturbation of magnetic field, Possible mechanical and/or electrical damage to PF coil	Maintenance Inspection, Diagnostics, Ground fault detector.	Provisions: Maintenance Inspection. Recovery: Shutdown, vent VV, repair	UNLIKELY	MAJOR
Failure: Outer PF sliding joint. Cause: excessive resistance to sliding.	Excessive stress and/or deformation, and possible mechanical damage in VV & SS. Misalignment of components.	Maintenance Inspection, Visible & IR Cameras Diagnostics	Provisions: Maintenance Inspection. Recovery: Shutdown, vent VV, repair	UNLIKELY	MAJOR
Failure: During bakeout umbrella structure sliding joint. Cause: excessive resistance to sliding.	Excessive stress and/or deformation, and possible mechanical damage in umbrella, VV & SS. Misalignment of components.	Inspection, Visible & IR Cameras Diagnostics	Provisions: Maintenance Inspection. Recovery: Shutdown, vent VV, repair	UNLIKELY	MAJOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 13 of 115

WBS Element 1.2 Vacuum Vessel & Support Structures Component:

Support Structures (cont'd)

Excessive stress and/or deformation, and possible mechanical damage in support legs, VV & SS. Misalignment of components. Dislocation of VV, Loss of vacuum integrity	Detection Monitor VV displacement. Maintenance Inspection, Visible & IR Cameras Diagnostics Residual Gas Analyzer Vacuum	Recovery Provisions: Maintenance Inspection. Recovery: Shutdown, vent VV, repair	Probability UNLIKELY	Conseque MAJOR
Conducting electrical loops. Perturbation of magnetic field.	Inspection & Testing. Magnetic diagnostics,	Provisions: Maintenance Inspection. Recovery:	UNLIKELY	MINOR
	over current fault	Shutdown and repair		
Fault on CHI power supply, Electrical Damage.	Inspection & Testing. Magnetic diagnostics, System ground and over current fault	Provisions: Maintenance Inspection. Recovery: Shutdown and repair	UNLIKELY	MINOR
	Excessive stress and/or deformation, and possible mechanical damage in support legs, VV & SS. Misalignment of components. Dislocation of VV, Loss of vacuum integrity Conducting electrical loops. Perturbation of magnetic field. Fault on CHI power supply,	Excessive stress and/or deformation, and possible mechanical damage in support legs, VV & SS. Misalignment of components. Dislocation of VV, Loss of vacuum integrity Conducting electrical loops. Perturbation of magnetic field. Fault on CHI power supply, Electrical Damage. Monitor VV displacement. Maintenance Inspection, Visible & IR Cameras Diagnostics Residual Gas Analyzer Vacuum System Gauges Inspection & Testing. Magnetic diagnostics, System ground and over current fault detection. Inspection & Testing. Magnetic diagnostics, System ground and over current fault detection. System ground and over current fault detection. System ground and over current fault	Excessive stress and/or deformation, and possible mechanical damage in support legs, VV & SS. Misalignment of components. Dislocation of VV, Loss of vacuum integrity Conducting electrical loops. Perturbation of magnetic field. Fault on CHI power supply, Electrical Damage. Excessive stress and/or displacement. Monitor VV displacement. Maintenance Maintenance Maintenance Inspection. Recovery: Shutdown, vent VV, repair Chudown, vent VV, repair Provisions: Testing. Maintenance Inspection. Magnetic diagnostics, System ground and over current fault detection. Fault on CHI power supply, Electrical Damage. Testing. Magnetic diagnostics, System ground and Shutdown and repair	Excessive stress and/or deformation, and possible mechanical damage in support legs, VV & SS. Misalignment of components. Dislocation of VV, Loss of vacuum integrity Conducting electrical loops. Perturbation of magnetic field. Fault on CHI power supply, Electrical Damage. Excessive stress and/or displacement. Monitor VV displacement. Maintenance Inspection. Maintenance Inspection.

WBS Element 1.3 Magnets Component: Outer PF Coils (WBS 1.3.1)

Function: The Outer PF Coils contribute the magnetic field topology required for plasma position and shape control.

Failure Mode Blockage of cooling water circuit	Effect Reduction in cooling water flow, reduction in rate of cooling between pulses ¹ .	Detection Flow switches which are interlocked to prevent power supply operation	Recovery Shutdown & flush/ clear coolant passage.	Probability UNLIKELY	Conseque MINOR
Leak in cooling water circuit	Depending on extent of leak, reduction in cooling water flow, possible ground fault	Flow switches ² , power supply system ground fault detection, visual inspection	Shutdown and repair.	UNLIKELY	MINOR
Delamination/debonding of turn- to-turn insulation	Possible motion of conductors under load, abrasion, eventual electrical failure	None	None	UNLIKELY	MAJOR
Electrical failure of groundwall insulation at single location3	If non-CHI operations, or CHI operations and outer vacuum vessel grounded, small leakage current to ground (limited by high resistance grounding), and redistribution of voltage to ground. If CHI operations and outer vacuum vessel energized by CHI power supply, small leakage current between CHI and affected PF circuit.	Power supply system ground fault detector.	Shutdown, repair if possible, or replace.	UNLIKELY	MAJOR

During pulse, cooling is not significant and is not required

Flow switches are located on return manifold such that flow must pass through coil in order to reach flow switch

Multiple ground faults not considered herein

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 15 of 115

WBS Element: 1.3 Magnets Component: Outer PF Coils (cont'd)

Failure Mode Electrical failure of turn-to-turn insulation	Effect Fault current flow in shorted turns, opposite to direction of normal current flow to oppose flux produced by non-shorted turns, large internal repulsive forces between shorted and non-shorted turns, arcing, burning, and melting in region of failure, possible destruction of coil.	Detection Magnetic diagnostics, unusual electrical impedance and response to power supply excitation.	Recovery Shutdown, repair if possible, or replace.	Probability UNLIKELY	Conseque MAJOR
Loss of contact pressure leading to excess electrical contact resistance and /or open circuit condition under load at coil terminals or coil leads	Excess joint resistance and heating, arcing, melting, if lead(s) become physically disconnected, could be displaced from normal point of connection, possible diversion of current into other metallic path(s), possible destruction of coil ⁴ .	Maintenance (bolt torque), inspection (temperature stickers), test (joint resistance measurement); Magnetic diagnostics, unusual electrical impedance and response to power supply excitation.	Shutdown, repair if possible, or replace.	UNLIKELY	MAJOR

⁴ Maximum stored magnetic energy in any NSTX coil is 3.75 MJoule (NSTX-SRD-5X-019)

WBS Element 1.3 Magnets Component: Outer TF Coils (WBS 1.3.2)

Function: The Outer TF Coils provide the return path for the Inner Leg TF Bundle

Failure Mode Blockage of coolant circuit	Effect Reduction in coolant flow, reduction in rate of cooling between pulses ⁵ .	Detection Flow switches which are interlocked to prevent power supply operation	Recovery Shutdown and flush/clear coolant passage.	Probability UNLIKELY	Conseque MINOR
Leak in coolant circuit	Depending on extent of leak, reduction in coolant flow, possible ground fault	Flow switches ⁶ , power supply system ground fault detection, visual inspection	Shutdown and repair.	UNLIKELY	MINOR
Delamination/debonding of turn-to-turn insulation	Possible motion of conductors under load, abrasion, eventual electrical failure	None	None	UNLIKELY	MAJOR
Electrical failure of groundwall insulation ⁷	If non-CHI operations, or CHI operations and outer vacuum vessel grounded, small leakage current to ground (limited by high resistance grounding) and redistribution of voltage to ground. If CHI operations and outer vacuum vessel energized by CHI power supply, small leakage current between CHI and TF	Power supply system ground fault detector.	Shutdown, repair if possible, or replace.	UNLIKELY	MAJOR

During pulse, cooling is not significant and is not required

Flow switches are located on return manifold such that flow must pass through coil in order to reach flow switch

Multiple ground faults not considered herein

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 17 of 115 Outer TF Coils (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Conseque
Electrical failure of turn-to-turn	Fault current flow in shorted	Magnetic	Shutdown, repair if	UNLIKELY	MAJOR
insulation	turns, opposite to direction of	diagnostics, unusual	possible, or replace.		

turns, opposite to direction of normal current flow to oppose flux produced by non-shorted turns, large internal repulsive forces between shorted and non-shorted turns, arcing, burning, and melting in region of failure, possible destruction of coil.

Component:

diagnostics, unusual electrical impedance and response to power supply excitation.

possible, or replace.

Loss of contact pressure leading to excess electrical contact resistance and /or open circuit condition under load at coil terminals or coil leads

WBS Element 1.3

Magnets

Excess joint resistance and heating, arcing, melting, if lead(s) become physically disconnected, could be displaced from normal point of connection, possible diversion of current into other metallic path(s), possible destruction of coil8.

Maintenance (bolt torque), inspection (temperature stickers), test (joint resistance measurement); Magnetic diagnostics, unusual electrical impedance and response to power supply excitation.

Shutdown, repair if possible, or replace. UNLIKELY **MAJOR**

Maximum stored magnetic energy in any NSTX coil is 3.75 MJoule (NSTX-SRD-5X-019)

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 18 of 115

WBS Element 1.3 Magnets Component: TF Inner Leg Bundle (WBS 1.3.3.1)

Function: The TF Inner Leg Bundle current forms the toroidal field for plasma confinement.

Failure Mode	Effect	Detection	Recovery	Probability	Conseque
Blockage of coolant circuit	Reduction in coolant flow in blocked paths, differential temperature between turns in bundle, reduction in rate of cooling between pulses ⁹ .	Flow switches which are interlocked to prevent power supply operation	Shutdown and flush/clear coolant passage	UNLIKELY	MINOR
Leak in coolant circuit	Depending on extent of leak, reduction in coolant flow, possible ground fault	Flow switches ¹⁰ , power supply system ground fault detection, visual inspection	Shutdown and repair	UNLIKELY	MINOR
Delamination/debonding of turn-to-turn insulation	Possible motion of conductors under load, abrasion, eventual electrical failure	None	None	UNLIKELY	MAJOR
Electrical failure of groundwall insulation ¹¹	Small leakage current to ground (limited by high resistance grounding), and redistribution of voltage to ground.	Power supply system ground fault detector	Shutdown, repair if possible, or replace	UNLIKELY	MAJOR
Electrical failure of turn-to-turn insulation	Fault current flow in shorted turns, opposing current flow and flux produced by non-shorted turns, large internal repulsive forces between shorted and non-shorted turns, arcing, burning, and melting in region of failure, possible destruction of coil	Magnetic diagnostics, unusual electrical impedance and response to power supply excitation.	Shutdown, repair if possible, or replace	UNLIKELY	MAJOR

During pulse, cooling is not significant and is not required

Flow switches are located on return manifold such that flow must pass through coil in order to reach flow switch

Multiple ground faults not considered herein

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 19 of 115 Magnets Component: TF Inner Leg Bundle (cont'd)

WBS Element: 1.3 Magnets

Failure Mode	Effect	Detection	Recovery	Probability	Conseque
TF Flexes- Inner to Outer TF coil- laminates begin to develop cracks	If crack propagates through entire laminate- Outer laminate in particular- the laminate could short to the umbrella lid or adjacent TF flexes	During visual maintenance inspections	Replace damaged TF flex bus	UNLIKELY	MAJOR
Loss of contact pressure on flexible joints connecting inner TF Bundle to outer legs	Excess joint resistance and heating, possible contact surface melting, arcing, could lead to open circuit condition	Maintenance (bolt torque), inspection (temperature stickers), test (joint resistance measurement)	Shutdown and repair	UNLIKELY	MAJOR

WBS Element 1.3 Magnets

Component:

OH Solenoid (WBS 1.3.3.2)

Function: T

The OH Solenoid provides loop voltage for plasma initiation and flux swing for inductive generation of plasma current

Failure Mode Blockage of cooling water circuit during normal operations ^{12'13}	Effect Reduction in coolant flow and heat removal rate between pulses ¹⁴ , reduced performance (reduced pulse repetition rate)	Detection Flow switches which are interlocked to remove power supply permissive via PAUX relay	Recovery Monitor cooling water flows and temperatures, and OH coil groundwall temperatures, continue operations at reduced repetition rate or discontinue. Flush/clear coolant passage after shutdown.	Probability UNLIKELY	Conseque MINOR
Blockage of cooling water circuit during bakeout	Reduction in coolant flow and heat removal rate, interruption of bakeout or reduction in allowable bakeout temperature	Flow switches and thermocouples measuring temperature of water returning to outlet manifold, thermocouples measuring temperature of OH groundwall insulation.	Discontinue heat input and/or switch to cooling, monitor cooling water flows and temperatures, and OH coil groundwall temperatures, continue bakeout at reduced temperature or discontinue. Flush/clear coolant passage after bakeout shutdown.	UNLIKELY	MINOR

There are 8 parallel cooling water circuits; blockage of multiple circuits is not considered herein

Sources of heat are I2R losses in coil plus heat flow inward from center stack casing

During pulse, cooling is not significant and is not required

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 21 of 115

WBS Element: 1.3 Magnets Component: OH Solenoid (cont'd)

Failure Mode Leak in cooling water circuit	Effect Depending on extent of leak, reduction in cooling water flow, possible ground fault	Detection Flow switches ¹⁵ , power supply system ground fault detection, visual inspection	Recovery Shutdown and repair.	Probability UNLIKELY	Conseque MAJOR
Delamination/ debonding of turn-to-turn insulation	Possible motion of conductors under load, abrasion, eventual electrical failure	None	None	UNLIKELY	MAJOR
Electrical failure of groundwall insulation ¹⁶	Small leakage current to ground (limited by high resistance grounding), and redistribution of voltage to ground.	Power supply system ground fault detector.	Shutdown, repair if possible, or replace.	UNLIKELY	MAJOR
Electrical failure of turn-to-turn insulation	Fault current flow in shorted turns, opposite to direction of normal current flow to oppose flux produced by non-shorted turns, large internal repulsive forces between shorted and non-shorted turns, arcing, burning, and melting in region of failure, possible destruction of coil.	Magnetic diagnostics.	Shutdown, repair if possible, or replace.	UNLIKELY	MAJOR

Flow switches are located on return manifold such that flow must pass through coil in order to reach flow switch

Multiple ground faults not considered herein

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 22 of 115 OH Solenoid (cont'd)

Failure Mode Mechanical failure of in-line	Effect High resistance, overheating,	Detection Excessive coil	Recovery Shutdown, remove	Probability UNLIKELY	Conseque MAJOR
conductor ¹⁷ or conductor joint	arcs, burning, melting	impedance	center stack and OH coil, repair if possible, or replace		
Loss of contact pressure leading to excess electrical contact resistance and /or open circuit condition under load at coil terminals or coil leads	Excess joint resistance and heating, arcing, melting, if lead(s) become physically disconnected, could be displaced from normal point of connection, possible diversion of current into other metallic path(s), possible destruction of coil ¹⁸ .	Maintenance (bolt torque), inspection (temperature stickers), test (joint resistance measurement); Magnetic diagnostics, unusual electrical impedance and response to power	Shutdown, repair if possible, or replace.	UNLIKELY	MAJOR

supply excitation.

Component:

WBS Element 1.3 Magnets

¹⁷ OH coil conductor lifetime is fatigue limited (function of number of pulses at various load levels)

¹⁸ Maximum stored magnetic energy in any NSTX coil is 3.75 MJoule (NSTX-SRD-5X-019)

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 23 of 115

WBS Element 1.3 Magnets Component: Shaping Coils (PF1a, PF1b and PF1c) (WBS 1.3.3.3)

Function: The PF coils shall provide field nulling for plasma initiation and shall provide equilibrium and shape control during sustainment.

Failure Mode Blockage of cooling water circuit	Effect Reduction in cooling water flow, reduction in rate of cooling between pulses ¹⁹ .	Detection Flow switches which are interlocked to prevent power supply operation	Recovery Shutdown and flush/clear coolant passage.	Probability UNLIKELY	Conseque MINOR
Leak in cooling water circuit	Depending on extent of leak, reduction in cooling water flow, possible ground fault	Flow switches ²⁰ , power supply system ground fault detection, visual inspection	Shutdown and repair.	UNLIKELY	MINOR
Delamination/debonding of turn-to-turn insulation	Possible motion of conductors under load, abrasion, eventual electrical failure	None	None	UNLIKELY	MAJOR
Electrical failure of groundwall insulation ²¹	Small leakage current to ground (limited by high resistance grounding), and redistribution of voltage to ground.	Power supply system ground fault detector.	Shutdown, repair if possible, or replace.	UNLIKELY	MAJOR
Electrical failure of turn-to-turn insulation	Fault current flow in shorted turns, opposite to direction of normal current flow to oppose flux produced by non-shorted turns, large internal repulsive forces between shorted and non-shorted turns, arcing, burning, and melting in region of failure, possible destruction of coil.	Magnetic diagnostics.	Shutdown, repair if possible, or replace.	UNLIKELY	MAJOR

During pulse, cooling is not significant and is not required

Flow switches are located on return manifold such that flow must pass through coil in order to reach flow switch

Multiple ground faults not considered herein

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 24 of 115

Failure Mode	Effect	Detection	Recovery	Probability	Conseque
Loss of contact pressure leading	Excess joint resistance and	Maintenance (bolt	Shutdown, repair if	UNLIKELY	MAJOR
to excess electrical contact	heating arcing melting if	torque) inspection	possible or replace.		

to excess electrical contact resistance and /or open circuit condition under load at coil terminals or coil leads

1.3 Magnets

WBS Element:

Effect
Excess joint resistance and heating, arcing, melting, if lead(s) become physically disconnected, could be displaced from normal point of connection, possible diversion of current into other metallic path(s), possible destruction of coil²².

Component:

Maintenance (bolt torque), inspection (temperature stickers), test (joint resistance measurement); Magnetic diagnostics, unusual electrical impedance and response to power supply excitation.

Shaping Coils (PF1a, PF1b and PF1c) (cont'd)

Shutdown, repair if UNLIKELY possible, or replace.

WBS Element 1.3 Magnets Component:

Center Stack Casing (WBS 1.3.3.4)

Function: The Center Stack Casing provides the inner vacuum boundary, and is physically connected to the vacuum vessel but electrically isolated via ceramic insulator assemblies. The Inner Wall PFC's are attached to and supported by the Center Stack Casing. Thermal Insulation within the Center Stack Casing bore serves to thermally isolate the OH coil from the casing. Pedestal mounted to test cell floor provides support and dielectric breaks.

Failure Mode	Effect	Detection	Recovery	Probability	Conseque
Excessive deformation of structural	Misalignment of PFC	Visible Camera,	Shutdown, vent	UNLIKELY	MINOR
materials	components.	Infrared (IR) camera, magnetic diagnostics	vacuum vessel, repair		
Failure of structural materials or welds	Vacuum Leak	Residual Gas Analyzer (RGA), and Vacuum Pumping System pressure gauges	Shutdown, vent vacuum vessel, repair	UNLIKELY	MINOR

²²

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 25 of 115 nets Component: Center Stack Casing (WBS 1.3.3.4)

WBS Element 1.3 Magnets

Failure Mode	Effect	Detection	Recovery	Probability	Conseque
Failure of vacuum seal connections	Vacuum Leak	Residual Gas Analyzer (RGA), and Vacuum Pumping System pressure gauges	Provide temporary repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	UNLIKELY	MINOR
Electrical breakdown of ceramic insulator	During non-CHI operations, conducting electrical loops, perturbation of magnetic field. During CHI operations, fault on CHI power supply, arcing, burning, melting, possible loss of vacuum conditions	Power supply overcurrent and ground fault detection, Visible Camera, Infrared (IR) camera, magnetic diagnostics, Residual Gas Analyzer (RGA), and Vacuum Pumping System pressure gauges.	Shutdown, vent vacuum vessel, repair if possible or replace	UNLIKELY	MAJOR
Electrical breakdown of thermal insulation	If during CHI operations with center stack casing energized, fault current flow through OH coil ground plane and instrumentation mounted thereon, arcing, burning, melting, possible OH ground fault and possible destruction of OH coil.	OH and CHI power systems ground fault detection systems.	Shutdown, remove center stack assembly and OH coil, repair if possible or replace.	UNLIKELY	MAJOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 26 of 115

WBS Element 1.3 Magnets Component: Center Stack Casing (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Conseque
Degradation of thermal insulation due abrasion, heat, or coolant leak from coil system etc.	Low thermal resistance between center stack casing and OH/PF1a, excess temperature rise on OH/PF1a coil ground plane, reduced performance (reduced repetition rate and bakeout temperature).	Thermocouples on OH and PF1a coil ground planes.	Shutdown, remove center stack assembly and repair or replace thermal insulation	UNLIKELY	MAJOR

WBS Element 1.3 Magnets Component: Water Cooled Flexible Cable Leads

Function: The Water Cooled Flexible Cable Leads provide the electrical connection between the terminals of the WBS 5 air

cooled bus and the magnet coil terminals

Failure Mode	Effect	Detection	Recovery	Probability	Conseque
Water leak	Water on floor, depending on extent of leak, possibly draining to Liquid Effluent Collection (LEC) tank, possible ground fault, small leakage current to ground limited by high impedance grounding resistors	Depending on extent of leak, flow switch drop out, ground fault indication on power supply system ground fault detector	Repair or replace	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 27 of 115

WBS Element 1.3 Magnets Component: Water Cooled Flexible Cable Leads (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Conseque
Electrical breakdown of dielectric	Likely to occur on one conductor first, accompanied by a water leak, possible ground fault, small leakage current to ground limited by high impedance grounding resistors, prior to developing unnoticed into a line-line fault	Water leak and/or	Recovery Repair or replace	Probability UNLIKELY	MINOR
	Tuut	detector			

2 Plasma Heating and Current Drive Systems

WBS Element 2.1 High Harmonic Fast Wave (HHFW) Radio Frequency (RF) System

Function: High Harmonic Fast Wave (HHFW) Radio Frequency (RF) System provides plasma heating and current drive.

Failure Mode	Effect	Detection	Recovery	Probability	Conseque
Plasma strike on HHFW antenna loops	Could impress high voltage on antenna loops	Plasma TV	Plasma striking the antenna loops is prevented by Faraday shields	ANTICIPATED	MINIMAL
Faraday shield HHFW antenna loop ablated by severe plasma strike	Could impress high voltage on antenna loops	Plasma TV	In the unlikely event of a Faraday shield failure, current flowing on the transmission line inner conductor is prevented from getting out of the Test Cell area by the antenna's DC breaks	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 28 of 115

WBS Element 2.1 High Harmonic Fast Wave (HHFW) Radio Frequency (RF) System (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Conseque
Plasma strike on HHFW antenna loops	Could impress high voltage on antenna loops	Plasma TV	Plasma striking the antenna loops is prevented by Faraday shields	ANTICIPATED	MINIMAL
HHFW antenna's inner conductor DC breaks short out	Could impress high voltage on transmission line(s) center conductor(s)	Ground fault detector, routine vacuum vessel Hi-pot	Shunted via chokes between the inner and outer conductors in the antenna's Tuning and Matching components	UNLIKELY	MINOR
HHFW antenna's outer conductor DC breaks short out	Could impress high voltage on transmission line(s) outer conductor(s)	Ground fault detector, routine vacuum vessel Hi-pot	Shunted via grounding cables connecting transmission lines outer conductors to building steel and grounding mats along lines' entire path	UNLIKELY	MINOR
HHFW RF power transfer switch atop the RF Enclosure in the MockUp Building in ENABLED (unsafe) position while personnel are in the Test Cell	Could direct RF power into the Test Cell	NSTX Hardwired Interlock System (HIS)	HIS monitors the positions of all D-Site RF transfer switches and imposes RF global E-STOP should any switch be in the ENABLED position during access to the NSTX Test Cell.	EXTREMELY UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 29 of 115 High Harmonic Fast Wave (HHFW) Radio Frequency (RF) System (cont'd)

WBS Element2.1

Failure Mode	Effect	Detection	Recovery	Probability	Consequen
Mechanical damage punctures	Possible RF radiation	Pressure switches in	The HHFW	EXTREMELY	MINOR
outer conductor of HHFW	exposure of personnel in	transmission lines	hardwired control	UNLIKELY	
transmission line	vicinity of puncture		system monitors gas		
			pressure in the		
			transmission line. It		
			automatically		
			prohibits rf pulsing		
			should the pressure in		
			any line drop below		
			its set point		
HHFW transmission line flange	Possible RF radiation	Standard test	RF radiation survey	ANTICIPATED	MINOR
not tightened after servicing	exposure of personnel in	procedure	is performed		
	vicinity of loose flange		whenever the		
			transmission lines are		
			serviced. The survey		
			is also performed		
			annually. Any leaks		
			are immediately		
			repaired		
Anode DC-blocking capacitor in	Could impress high voltage	High Voltage Power	Shunted via chokes	UNLIKELY	MINOR
HHFW high power amplifier	on transmission line center	Supply (HVPS) over-	between the inner and		
shorts out	conductor	current interlocks	outer conductors in		
			the amplifiers' output		
			transmission lines		

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 30 of 115 2.1 High Harmonic Fast Wave (HHFW) Radio Frequency (RF) System (cont'd)

WBS Element:

Failure Mode	Effect	Detection	Recovery	Probability	Consequen
Lightning strike or other	Could impress high voltage	None	In the event that an	UNLIKELY	MINOR
phenomena that may cause	on Control wiring from D-		appreciable		
difference in potential between	Site to C-Site		difference in potential		
D-Site and C-Site building steel			occurs between the		
			building steel at each		
			Site, gas-filled spark		
			gaps limit "touch"		
			potential to < 15 volts		
			at either end of the		
			control wiring.		
Unplanned loss of AC power at	Possible loss of coordination	NSTX Hardwired	A loss of AC power	ANTICIPATED	MINOR
D-Site	between D-Site RF transfer	Interlock system (HIS)	at D-Site causes a		
	switches and NSTX Test	and HHFW local	loss in the "NOT E-		
	Cell access state	control system	STOP" Hardwired		
			Interlock System		
			signal to the HHFW		
			System. This		
			automatically		
			precipitates an		
			Emergency Stop to		
			the HHFW System,		
			opening <u>all</u> of its high		
			voltage power supply		
			circuit breakers		
Unplanned loss of water to NTC	Possible thermal stress or	RF PLC	Loss of water in NTC	ANTICIPATED	MINOR
HHFW Antenna	failure to HHFW antenna		causes RF controls to		
			inhibit high power		
			RF pulsing		

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 31 of 115

WBS Element 2.2 Coaxial Helicity Injection (CHI) System

Function:

The Coaxial Helicity Injection (CHI) Current Drive System provides non-inductive plasma current drive by providing a potential difference between the center stack casing and the outer vacuum and injecting a current. Components involved are the CHI buswork, the lower inboard and outboard PFCs (which act as electrodes, see WBS 1.1), the CHI power supply (see WBS 5) and the lower dome gas injection systems (see WBS 3.4). Only the buswork is covered in this section. The buswork is also used to carry current during ohmic heating of the center stack casing during bakeout operations.

Failure Mode Blockage or leakage of cooling water circuit during normal operations	Effect Reduction in cooling water flow in water circuit involving CHI and other water cooled cable conductors in same water circuit, reduction in rate of cooling, possible ground fault	Detection Flow switches which are interlocked to prevent power supply operation, ground fault detection	Recovery Shutdown normal operations and restore integrity of coolant passage.	Probability UNLIKELY	Consequenc MINIMAL
Blockage or leakage of cooling water circuit during bakeout	Reduction in cooling water flow in water circuit involving CHI and other water cooled cable conductors in same water circuit, reduction in rate of cooling, possible overheating of bus due to latent heat from center stack casing	Flow switches which are interlocked to prevent power supply operation, visual inspection	Shutdown bakeout operations and restore integrity of coolant passage.	UNLIKELY	MINIMAL
Electrical failure of insulation	If line to line, CHI power supply short circuit, overcurrent, large forces, heating, arcing, burning; if line to ground, CHI ground fault, small fault current, limited heating and burning of insulation.	Power supply system overcurrent and ground fault detection.	Shutdown, repair if possible, or replace.	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 32 of 115

WBS Element 2.2 Coaxial Helicity Injection (CHI) System (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequenc
Failure of structural support due	Possible open circuit, joint	Improper circuit	Shutdown, repair if	UNLIKELY	MINIMAL
to electromagnetic loads during	resistance heating, arcing,	electrical function	possible, or replace.		
normal operation	melting, possible ground	and/or ground fault,			
	fault, possible diversion of	visual inspection of			
	current into other metallic	impending condition			
	path(s).	during maintenance			
Fail to deliver CHI power on	Loss of pre-ionization	Transient digitizer	Troubleshoot and	UNLIKELY	MINIMAL
receipt of trigger signal from	function, reduced plasma	analysis	repair		
central control system	performance				

WBS Element 2.3 Electron Cyclotron Heating (ECH) System

Function: The ECH System provides pre-ionization of the plasma fuel gas to facilitate avalanche breakdown and inductive

current drive by the OH loop voltage. The ECH power supply and all waveguide/launcher components are located in the NSTX Test Cell. The input 480V AC circuit breaker is interlocked with the Hardwired Interlock System and

Test Cell access control.

Failure Mode Fail to deliver RF power on receipt of trigger signal from central control system	Effect Loss of preionization function, reduced plasma performance	Detection Transient digitizer analysis	Recovery Troubleshoot and repair	Probability ANTICIPATED	Consequenc MINIMAL
Delivery of RF power outside time window of trigger signal	If during pulse, minor deviation from expected auxiliary heating profiles, if outside pulse window (in vacuum) possible overheating of internal vacuum vessel wiring or damage to sensitive diagnostics	Transient digitizer analysis, RGA analysis	Troubleshoot and repair	ANTICIPATED	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 33 of 115

WBS Element 2.3 Electron Cyclotron Heating (ECH) System (Cont'd)

Failure Mode Fail to deliver RF power on receipt of trigger signal from central control system	Effect Loss of preionization function, reduced plasma performance	Detection Transient digitizer analysis	Recovery Troubleshoot and repair	Probability ANTICIPATED	Consequence MINIMAL
Delivery of RF power outside time window of trigger signal	If during pulse, minor deviation from expected auxiliary heating profiles, if outside pulse window (in vacuum) possible overheating of internal vacuum vessel wiring or damage to sensitive diagnostics	Transient digitizer analysis, RGA analysis	Troubleshoot and repair	ANTICIPATED	MINIMAL
Electrical breakdown of DC break	If CHI operations with outer vacuum vessel energized, ground fault for CHI power supply, small fault current flow through waveguide, arcing, burning, melting. Otherwise, ground loop eddy currents and very minor magnetic field perturbation.	If CHI operations, power supply ground fault detection. Otherwise, detected at time of next vacuum vessel hipot.	Repair if possible or replace	UNLIKELY	MINIMAL
Launcher/window vacuum leakage	Depending on leak, possible interruption of operations	Pressure instrumentation, rate of rise measurements	Depending on leak rate, shutdown, vent vacuum vessel, repair or replace	UNLIKELY	MINOR
RF leakage from power supply enclosure or waveguide	RF energy outside waveguide in test cell ²³ , possible malfunction of nearby electrical equipment	Periodic RF surveys	Repair waveguide/shielding	UNLIKELY	MINOR

_

²³Note: No personnel will be present in NSTX Test Cell during ECH operations

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 34 of 115 WBS Element 2.3 Electron Cyclotron Heating (ECH) System (cont'd)

Failure Mode Unplanned loss of water to ECH source equipment	Effect Possible thermal stress or failure of ECH klystrons	Detection RF PLC	Recovery Loss of water in NTC causes RF controls to remove high voltage from ECH klystrons	Probability ANTICIPATED	Consequenc MINOR
Attempted energization of ECH during personnel access in the Test Cell	Possible RF radiation exposure of personnel in Test Cell	NSTX Hardwired Interlock System (HIS)	HIS monitors status of the ECH PI 480VAC and imposes an RF global E-STOP should it be ENABLED during general personnel access in the NSTX Test Cell.	UNLIKELY	MINOR
480V AC main input circuit breaker failure to close	Unable to operate ECH	EPICs Process Control	De-energize AC input power at higher level, access NTC, troubleshoot and repair	ANTICIPATED	MINOR
480V AC main input circuit breaker failure to open	Indication to Hardwired Interlock System (HIS) preventing normal means of access to NSTX Test Cell (NTC)	HIS "unsafe" indication	De-energize AC input power at higher level, access NTC, troubleshoot and repair	UNLIKELY	MINOR
480V AC main input circuit breaker failure to open	Indication to Hardwired Interlock System (HIS) preventing normal means of access to NSTX Test Cell (NTC)	HIS "unsafe" indication	De-energize AC input power at higher level, access NTC, troubleshoot and repair	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 35 of 115

WBS Element 2.3 Electron Cyclotron Heating (ECH) System (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequenc
Leakage of Dielectric Fluid ²⁴	Fluid contained in collection	Maintenance	Repair leak and/or	UNLIKELY	MINOR
from HV Tank	tray with hose-connection to	inspection, or	electrical		
	drum below, possible	functional failure if	components		
	electrical breakdown if	significant quantity			
	significant quantity lost	lost			

WBS Element 2.4 Neutral Beam Injection (NBI) System Component: General

Function: The NBI System provides plasma heating via one TFTR beam line, consisting of three ion sources injecting 80keV

neutral particles at 5MW for pulses of 5 second duration, or up to 110 keV particles for pulses up to 1 second duration, into the NSTX plasma. In addition, brief (50mS) conditioning pulses are performed between NSTX

machine discharges, without plasma, with the NBI power being deposited on the protective plates.

Failure Mode Misoperation of Accel Power System, or Auxiliary Power System, Ion Sources, Beam Line Accelerating Systems, or Control System, NBI power waveform does not conform to pre- programmed request.	Effect One or more ion sources fails to deliver intended power vs. time to plasma.	Detection Physics waveforms	Recovery Troubleshoot and repair. Depending on cause of fault, could require access to NTC.	Probability ANTICIPATED	Consequenc MINIMAL
Misoperation of Control System, NBI power is injected outside of normal intended time interval.	Unintended NBI power is deposited on protective plates, possible overheating.	Physics waveforms	Troubleshoot and repair.	ANTICIPATED	MINIMAL
Failure of plasma permissive interlock, <i>NBI occurs in absence of plasma</i> .	Unintended NBI power is deposited on protective plates. ²⁵	Physics waveforms	Troubleshoot and repair.	UNLIKELY	MINIMAL

²⁵ Protective plate armor is designed to absorb 5MW-5sec without damage.

²⁴ "R-Temp" high flame temperature oil

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 36 of 115

WBS Element: Function:

2.4 Neutral Beam Injection (NBI) System Component: NBI Duct

The NBI Duct provides a means for connection to the NSTX vacuum vessel. Equipment consists of the flange connections to vacuum vessel, bellows assemblies and flanges, Torus Isolation Gate Valve (TIV), ceramic insulator assembly and flanges (on NSTX side of TIV), and protective scraper plates to protect the duct wall and TIV from beam divergence. The TIV provides a vacuum seal for the NBI at atmosphere with NSTX at vacuum, or vice-versa. Actuation time from open to closed position, or vice-versa, is 30 seconds.

Failure Mode Excessive deformation of structural materials	Effect Depending on extent, could involve buckling of duct, and/or vacuum leak, possible interruption of operations; in case of major vacuum leak, will result in automatic closure of TIV.	Detection Pressure instrumentation, rate of rise measurements	Recovery Provide temporary repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	Probability EXTREMELY UNLIKELY	Consequenc MINOR
Failure of structural materials or welds	ε ι	"	Provide temporary repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	EXTREMELY UNLIKELY	MINOR
Failure of vacuum seal connections	Vacuum leak, possible interruption of operations		Provide temporary repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 37 of 115 Neutral Beam Injection (NBI) System Component: NBI Duct (cont'd) WBS Element: 2.4 Neutral Beam Injection (NBI) System

Failure Mode Electrical breakdown of ceramic insulator	Effect If CHI operations, ground fault for CHI power supply, small fault current, arcing, burning. Otherwise, ground loop eddy currents and very minor magnetic field perturbation.	Detection If CHI operations, power supply ground fault detection. Otherwise, detected at time of vacuum vessel hipot.	Recovery Depending on leakage resistance, and need to operate CHI, shutdown, vent NSTX, repair.	Probability UNLIKELY	Consequenc MINOR
TIV Failure to Fully Open	Beam pathway to torus is partially or totally blocked preventing NBI operations.	No "beam ready to arm" indication	Troubleshoot and repair, depending on failure, could require venting NSTX.	UNLIKELY	MINOR
TIV Failure to Fully Close	Inability to seal NB duct and beam line from NSTX vacuum vessel.	Ion gauges read pressures from vessel activity	Troubleshoot and repair, depending on failure, could require venting NSTX.	UNLIKELY	MINOR
TIV Excess leakage across valve	"	Ion gauges read pressures from vessel activity	Troubleshoot and repair, depending on failure, could continue operations via vacuum pumping and cryopumping on NBI side of valve, could require venting NSTX.	UNLIKELY	MINOR
TIV Excessive leakage across valve during dTMB operation	Very small amounts of dTMB may be pumped on cryopanels if GDC extinguishes.	Ion gauges read increase during He pre-glow period in dTMB procedure.	Halt dTMB procedure. Cycle/repair valve or suspend dTMB operation.	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 38 of 115

WBS Element 2.4 Neutral Beam Injection (NBI) System Component: NBI Vacuum Vessel

Function: The NBI Vacuum Vessel provides the main vacuum envelope for the NBI Beam Line Accelerating Systems, and the NBI Cryopumping systems.

Failure Mode Excessive deformation of structural materials	Depending on extent, could involve buckling of duct, and/or vacuum leak, possible interruption of operations; in case of major vacuum leak, will result in automatic closure of TIV, possible fast regeneration of cryopumping system (see FMEA entry for NBI Cryopumping System).	Detection Pressure instrumentation, rate of rise measurements	Recovery Provide temporary repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	Probability INCREDIBLE	Consequence MINOR
Failure of structural materials or welds	" JII S J /		Provide temporary repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	INCREDIBLE	MINOR
Failure of vacuum seal connections	Vacuum leak, possible interruption of operations, possible fast regeneration of cryopumping system (see FMEA entry for NBI Cryopumping System).	··	Provide temporary repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 39 of 115

WBS Element: 2.4 Neutral Beam Injection (NBI) System Component: Beam Line Acceleration System

Function: The Beam Line Accel System consists of the Ion Sources, Neutralizers, Deflection Magnets, Ion

Dumps, Beam Scrapers, and the Calorimeter, and the associated water cooling system.

Failure Mode Incorrect aiming of beamline and/or abnormal divergence.	Effect Impingement of beamline onto duct scrapers and/or protective plates in duct, local melting/sputtering of metallic surfaces.	Detection Thermocouple monitoring	Recovery Steering alignment	Probability ANTICIPATED	Consequenc MINIMAL
Ion Source filament, arc, or accel grid misoperation.	Reduced generation of beam current; affected power supply shutdown, but continued operation of other ion sources.	Source waveforms	Troubleshoot and repair; if source hardware failure involved, repair or replace affected source during maintenance period.	ANTICPATED	MINIMAL
Neutralizer misoperation	Reduced neutralization, excess ion current, mismatch with deflection magnet current, ions are not efficiently deflected onto the ion dump but are sprayed on to the beam scrapers in the beam box and duct, local melting/sputtering of metallic surfaces.	Ion gauge waveform abnormal, loss of beam ready to arm due to magnet power supply controller	Reset bending magnet, repair beamline if required	ANTICIPATED	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 40 of 115 2.4 Neutral Beam Injection (NBI) System Component: Beam Line Acceleration System (cont'd) WBS Element:

Failure Mode Ion deflection magnet misoperation	Effect Ions are not efficiently deflected onto the ion dump but are sprayed on to the beam scrapers in the beam box and duct, local melting/sputtering of metallic surfaces.	Detection Ion gauge waveform abnormal, loss of beam ready to arm due to magnet power supply controller	Recovery Reset bending magnet, repair beamline if required	Probability ANTICIPATED	Consequenc MINIMAL
Loss of water cooling system to one or more beam line components	Low flow and/or high water exit temperature to affected component, NBI shutdown via interlocks, possible freezing of water lines, possible leak (see next FMEA entry) ²⁶ .	Flow and temperature interlocks.	Troubleshoot and repair; if beam line hardware failure involved, repair or replace affected components during maintenance period.	ANTICIPATED	MINIMAL
Water leak from ion source, ion dump, calorimeter, beam scraper, neutralizer, or deflection magnet.	Depending on size of leak, vacuum vessel pressure rise; shutdown of water system;, water condensation on cryopanels; cryopumping system shutdown; possible fast regeneration of cryopumping system (see FMEA entry for NBI Cryopumping System); possible closure of TIV, possible opening of pressure relief valve; discharge of water into local containers.	Pressure instrumentation, rate of rise measurements	Repair or replace component(s) during maintenance period.	ANTICIPATED	MINOR

²⁶ Water circulation systems use standby diesel generator power, plus an additional back-up electrical generator in case of failure of main standby diesel generator

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 41 of 115

WBS Element: 2.4 Neutral Beam Injection (NBI) System Component: Beam Line Acceleration System (cont'd)

Failure Mode SF ₆ leak in NTC or NBI Power Conversion Building ²⁷	Effect SF6 detectors sound alarm and close valves on SF6 supply skid, small quantity of SF6 released.	Detection SF6 detectors	Recovery Shutdown NBI operations and repair leak.	Probability ANTICIPATED	Consequence MINOR
SF ₆ leak into ion source.	Ion source misoperation and shutdown; possible closing of source isolation valve. If valve remains open, SF ₆ is trapped on cryopanels and subsequently pumped from machine when panels are regenerated. If valve closes, gas is pumped out via source roughing system.	Poor base pressure, rate of rise in source during regens, poor source performance	Repair or replace affected ion source during maintenance period	ANTICIPATED	MINOR
Calorimeter failure to raise	Beam pathway to torus is partially or totally blocked preventing NBI operations.	No ready to arm, no beam	Troubleshoot and repair; if necessary repair or replace affected assembly during maintenance period via venting of NBI vacuum vessel.	ANTICIPATED	MINOR
Calorimeter failure to lower	Inability to perform beam power calibration shots.	No ready to arm, no beam	Troubleshoot and repair; if necessary repair or replace affected assembly during maintenance period via venting of NBI vacuum vessel.	ANTICIPATED	MINOR

-

Leakage along route from NBPC through pump room and mechanical equipment room to NTC is considered extremely unlikely due to use of all-welded piping.

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 42 of 115

WBS Element 2.4 Function:

WBS Element 2.4 Neutral Beam Injection (NBI) System

Component: Cryopumping System

The cryopumping system assists the active pumping systems to maintain high vacuum in the NBI vacuum vessel and duct, and the NSTX vacuum vessel, via cryocondensation on to liquid helium (LHe) cooled panels guarded by liquid nitrogen (LN_2) cooled panels. System consists of the LHe and LN refrigeration systems, piping systems, and cryopanels in the NBI vacuum vessel.

Failure Mode Cryopumping system, cryogen supply low flow or high inlet temperature.	Effect Depending on nature/extent of reduction in supply, reduction in cryopumping effectiveness; possible NBI shutdown; possible regeneration (boil off) of absorbed gases (exhausted by vacuum pumping systems); possible fast regeneration of cryopumping system (see FMEA below).	Detection Operator annunciated fault condition by PLC, security, and procedural phone calls to cog engineer	Recovery Operator adjustments, repair refrigerator.	Probability ANTICIPATED	Consequence MINIMAL
Fast regeneration of Cryopumping System.	Rupture of pressure relief (burst) disks external to NBI vacuum vessel box, inside NTC; cryogen supply valves will close; cryogenic vapors will be released into NTC; boil-off of condensed gases from cryopanels, will be released to vacuum vessel and exhausted by vacuum pumping system; NBI TIV will close.	Operator annunciated fault condition by PLC, security, and procedural phone calls to cog engineer	Operator adjustments, repair refrigerator.	ANTICIPATED	MINIMAL
High H concentration in pumping exhaust during regeneration	Potential explosion hazard ²⁸	Vacuum gauge reading during regenerations	Pump out lines	ANTICIPATED	MINIMAL

Administrative procedures limit maximum allowable condensed H_5 . PLC control sequence includes N_2 purge before and after pumping gases liberated from both routine and emergency regenerations. These measures are taken to preclude potential development of explosive mixtures.

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 43 of 115

WBS Element: 2.4 Neutral Beam Injection (NBI) System Component: Cryopumping System (con't)

Failure Mode Cryogenic line inward leakage to vacuum jacketed supply lines and condensation of oxygen ²⁹	Effect Potential explosion hazard.	Detection Loss of thermal resistance of jacket, excess temperature rise of cryogens.	Recovery Pump out lines	Probability ANTICIPATED	Consequence MINOR
Cryogenic line rupture external to NBI vacuum vessel.	Release of cryogenic fluid and vapor into NTC, cryogen supply valves will close, NBI TIV will close, fast regeneration will occur (see prior FMEA entry).	Plumes	Repair lines	ANTICIPATED	MINOR
Cryogenic line rupture internal to NBI vacuum vessel.	• • • • • • • • • • • • • • • • • • • •	Ion gauge	Vent beamline, repair leak, or replace beamline cryo panels	ANTICIPATED	MINOR

WBS Element 2.4 Neutral Beam Injection (NBI) System Component: Local PLC Controller

Function: Provides PLC based operator interface and interlocks for NBI equipment protection.

Failure Mode Loss of PLC functionality	Effect Shutdown of NBI, all power supply systems, valves and pumps revert to safe state,	Detection Status signals to EPICS Process Control System	Recovery Troubleshoot and repair	Probability ANTICIPATED	Consequence MINIMAL
	interruption of machine operations	and PLC monitor			

Very unlikely due to all-welded pipe construction.

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 44 of 115

WBS Element 2.4 Neutral Beam Injection (NBI) System Component: Local PLC Controller

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
PLC I/O failure	Loss of action/reaction confirmation, PLC alarm	PLC logic	Troubleshoot and repair	ANTICIPATED	MINIMAL
	condition		1-p		

3. Auxiliary Systems

WBS Element: 3.1 Vacuum Pumping System Component: Main Pumping Duct

Function: The main pumping ducts, consisting of flange connections to the NB2 transition duct, bellows assembly and

flanges, ceramic insulator assembly and flanges, as well as tee ducts and flanges for connections to TMP and Roughing isolation valve assemblies, provides the physical means for connection of the pumping system to the

vacuum vessel, as well as provision for interface of diagnostics and vacuum pumping I&C [including the Residual

Gas Analyzer (RGA)].

Failure Mode Excessive deformation of structural materials	Effect Depending on extent, could involve buckling of duct, and/or vacuum leak, possible interruption of operations	Detection Pressure instrumentation, rate of rise measurements	Recovery Provide temporary repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	Probability EXTREMELY UNLIKELY	Consequence MINOR
Failure of structural materials or welds		"	Provide temporary repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	UNLIKELY	MINIMAL
Failure of vacuum seal connections	Vacuum leak, possible interruption of operations	"	Provide temporary repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 45 of 115

Component:

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Electrical breakdown of ceramic insulator	for CHI power supply, small	If CHI operations, power supply ground fault detection. Otherwise, detected at time of next vacuum vessel hipot.	Shutdown, vent vacuum vessel, repair if possible or replace	UNLIKELY	MINIMAL

Main Pumping Duct (cont'd)

WBS Element 3.1 Vacuum Pumping System Component: Turbomolecular Pumps (TMP)

3.1 Vacuum Pumping System

WBS Element:

Function: The Turbomolecular Pumps (TMP) and associated duct, bellows, isolation valve, backing valve, and flange which

connects to the main pumping duct provide the high vacuum pumping of the vacuum vessel.

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Vacuum leak on duct side of isolation valve	Vacuum leak, possible interruption of operations	Pressure instrumentation, rate of rise measurements	Provide temporary repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	UNLIKELY	MINIMAL
Vacuum leak on pump side of isolation valve	Vacuum leak, possible interruption of operations, or reduced pumping speed	"	Close valve, repair leak	UNLIKELY	MINIMAL
Isolation valve closed, vacuum leak across isolation valve seat	Depending on leak rate and state of TMP, possible interruption of operations	Pressure instrumentation	Depending on leak rate, back fill TMP volume with He, or shutdown, vent vacuum vessel, repair	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 46 of 115

WBS Element 3.1 Vacuum P	rumping System	Component: T	Curbomolecular Pumps	(TMP)	
Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Isolation valve fail to close	No immediate effect	PLC logic	Troubleshoot and repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	UNLIKELY	MINIMAL
Isolation valve fail to open	Reduction in pumping capability, reduced performance	PLC logic	Troubleshoot and repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	UNLIKELY	MINIMAL
TMP failure (fail to start, or trip)	Reduction in pumping capability, reduced performance	TMP instrumentation and/or PLC logi		UNLIKELY	MINOR
TMP foreline valve fail to open	-Loss of TMP and reduce pumping speed and post interruption of machine operations	sible	Close all TMP isolation and backing valves, repair	UNLIKELY	MINOR

WBS Element: 3.1 Vacuum Pumping System Component: Roughing Pump Skid

Function: Roughing Pump Skid and associated duct, bellows, isolation valve, nitrogen vent valve, and flange connect to the

main pumping duct to provide rough pumping of the vacuum vessel. Note: The roughing pump skid is shared

with the NBI system, and is controlled by the NBI PLC.

Failure Mode Vacuum leak on duct side of isolation valve	Effect Vacuum leak, possible interruption of operations	Detection Pressure instrumentation, rate of rise measurements	Recovery Provide temporary repair in situ if possible, otherwise shutdown, vent vacuum vessel, repair	Probability UNLIKELY	Consequence MINIMAL
Vacuum leak on pump side of isolation valve	"	"	Close valve, repair leak	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 47 of 115

WBS Element: 3.1 Vacuum Pumping SystemComponent: Roughing Pump Skid

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Isolation valve closed, vacuum leak across isolation valve seat	Depending on leak, possible interruption of operations	Pressure instrumentation	Depending on leak rate, back fill TMP volume with He, or shutdown, vent vacuum vessel, repair	UNLIKELY	MINIMAL
Isolation valve fail to open	Rough pumping not available, pump down and machine operations precluded	PLC logic	Troubleshoot and repair	UNLIKELY	MINIMAL
Isolation valve fail to close	Transition from rough pumping to high vacuum pumping not possible, machine operations precluded	PLC logic	Troubleshoot and repair	UNLIKELY	MINIMAL

WBS Element 3.1 Vacuum Pumping System Component: Backing Pump Skid

Function: Backing Pumps and associated duct, nitrogen vent valve, and flange connect to the TMPs backing isolation valve to provide low pressure conditions on back side of TMPs.

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Vacuum leak in foreline	Possible interruption of operations	Pressure instrumentation, rate of rise measurements	Close TMP backing isolation valve and TMP foreline valves, backfill TMPs with N ₂ , repair leak	UNLIKELY	MINIMAL
Pump failure (fail to start, or trip)	High vacuum pumping precluded, interruption of operations	Pressure instrumentation and/or PLC logic	Close isolation valve, backfill TMP volume with N ₂ , repair	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 48 of 115

WBS Element 3.1 Vacuum Pumping System Component: Backing Pump Skid (cont'd)

Backing skid valve fails to open TMP operations precluded, Pressure Backfill TMP with N₂ UNLIKELY MINIMAL

interruption of NSTX instrumentation and repair operations and/or PLC logic

WBS Element 3.1 Vacuum Pumping System Component: N2 Vent Valves

Function: Provide connections to N2 source for backfilling TMP, Backing, and Roughing volumes

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
N ₂ Vent Valve of TMP system	Automatic isolation of	Pressure	Troubleshoot and	UNLIKELY	MINIMAL
leaks or fails to stay closed	effected system, possible interruption of operations	instrumentation and PLC monitor	repair		
N ₂ Vent Valve of Backing	Automatic isolation of	Pressure	Troubleshoot and	UNLIKELY	MINIMAL
system leaks or fails to stay closed	effected system, possible interruption of operations	instrumentation and PLC monitor	repair		
N ₂ Vent Valve of Roughing	Automatic isolation of	Pressure	Troubleshoot and	UNLIKELY	MINIMAL
system leaks or fails to stay closed	effected system, possible interruption of operations	instrumentation and PLC monitor	repair		

WBS Element 3.1 Vacuum Pumping System Component: Vacuum Pumping System Local I&C

Function: Provides PLC based operator interface and interlocks for VPS equipment protection

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Loss of PLC functionality	Shutdown of VPS, all	Status signals to	Troubleshoot and	Anticipated	Minimal
	valves and pumps revert to	EPICS Process	repair		
	safe state, interruption of	Control System			
	machine operations	and PLC monitor			
PLC I/O failure	Loss of action/reaction	PLC logic	Troubleshoot and	Anticipated	Minimal
	confirmation, PLC alarm		repair		
	condition				

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 49 of 115

WBS Element 3.1 Vacuum Pumping System Component: Residual Gas Analyzer (RGA)

Function: Analysis of content of residual gasses.

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Measurement head failure	Temporary loss of RGA functionality	C	Revert to installed spare measuring head	Anticipated	Minimal
RGA monitor failure	Loss of RGA functionality, loss of information to machine operators	Loss of signal and status from RGA monitor	Troubleshoot and repair	Anticipated	Minimal

WBS Element 3.2 Cooling Water System

Function: Provides cooling to magnets during plasma operations and bakeout.

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Loss of cooling function during plasma operations	Interlock with power supply system via PAUX relay prevents plasma operations.	PLC interlock status on EPICS display pages in control room.	Troubleshoot and repair	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 50 of 115

WBS Element 3.2 Cooling Water System (cont'd)

Loss of cooling function during bakeout

Temperature of Center stack and outer PF coils will increase. Interlock with DC bakeout power supply system via water system PLC shuts down ohmic heating of center stack.

Operator monitoring of equipment status and temperatures. Shutdown bakeout **High Temperature** Skid (HTS). Continue operation of bakeout Low Temperature Skid (LTS) with reduced temperature setpoint to promote cooling and limit VV temperature. Troubleshoot and repair water cooling problem. If conditions warrant, switch to back-up water supply to maintain OH coil cooling.

UNLIKELY

MINIMAL

WBS Element 3.2 Cooling Water System Component: Coolant Distribution in Test Cell

Function: Distributes coolant from main manifolds to NSTX coils, coil leads, and detects loss of flow

Failure Mode Coil coolant circuit leak, supply side hose	Reduction/loss of flow to coil; large leak would result in flow into floor drain system, eventually to Liquid Effluent Collection (LEC) tank	Detection Depending on extent of leak, flow switch dropout ³⁰ , or low tank level, and PLC logic response (loss of flow removes PAUX permissive from power supply system, low tank level causes operator alarm)	Recovery Shutdown and repair	Probability UNLIKELY	Consequence MINIMAL
Coil coolant circuit leak, return side hose ³¹	Large leak would result in flow into floor drain system, eventually to Liquid Effluent Collection (LEC) tank	Depending on extent of leak, flow switch dropout ³² , or low tank level, and PLC logic response (loss of flow removes PAUX permissive from power supply system, low tank level causes operator alarm)	Shutdown and repair	UNLIKELY	MINIMAL

Every NSTX coil cooling water path is equipped with a flow switch

Most likely on coil side of flow switch since venturi and subsequent connection to return manifold consists of hard piping with predominantly welded joints

Every NSTX coil cooling water path is equipped with a flow switch

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 52 of 115 ing Water System Component: Coolant Distribution in Test Cell (cont'd)

WBS Element: 3.2 Cooling Water System

Failure Mode Coil connection hose electrical breakdown	Effect Small leakage current to ground (limited by high resistance grounding)	Detection Depending on failure, maintenance inspection & test (Megger/hipot), ground fault detected by power supply system ground fault detector	Recovery Troubleshoot and repair	Probability UNLIKELY	Consequence MINIMAL
Piping water leak	Water dripping on floor, possible reduction/loss of flow; large leak would result in significant flow into floor drain system and rapid reduction in tank level	Maintenance inspection, or low flow switch flow, or low tank level, and PLC logic response (loss of flow removes PAUX permissive from power supply system, low tank level causes operator alarm)	Shutdown and repair	UNLIKELY	MINIMAL
Venturi sensor tubing leak, low pressure side	Venturi pressure independent of flow, false indication of flow	PLC logic checks that all flow switches are dropped out prior to energizing pumps (not detected until pumps are de- energized)	Troubleshoot and repair	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 53 of 115 Cooling Water System Component: Coolant Distribution in Test Cell (cont'd) WBS Element: 3.2 Cooling Water System

Failure Mode Venturi sensor tubing leak, high pressure side	Effect Venturi pressure independent of flow, false indication of low flow	Detection PLC logic response as if low flow (remove PAUX permissive from power supply system)	Recovery Troubleshoot and repair	Probability UNLIKELY	Consequence MINIMAL
Flow switch stuck open	False indication of low flow	PLC logic response (removes PAUX permissive from power supply system)	Troubleshoot and repair	UNLIKELY	MINIMAL
Flow switch stuck closed	False indication of adequate flow	PLC logic checks that all flow switches are dropped out prior to energizing pumps (not detected until pumps are de- energized)	Troubleshoot and repair	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 54 of 115

WBS Element: 3.2 Cooling Water System Component: Pumps & Automatic Valves

Function: The Low Pressure Pump provides cooling water flow, the High Pressure Pump (and redundant back-up unit)

boosts the pressure for the OH coil. The Automatic Supply and Return Valves control the overall supply of cooling

water to the NTC.

Failure Mode Low Pressure Pump failure	Effect Loss of coolant flow to NTC	Detection Flow switch measurements, de-energize PAUX relay to power supply system permissives	Recovery Shutdown and repair or replace	Probability UNLIKELY	Consequence MINIMAL
High Pressure Pump failure	Loss of OH pressure, reduction of OH coolant flow	Flow switch measurements, de-energize PAUX relay to power supply system permissives	Switch to back-up unit	UNLIKELY	MINIMAL
Automatic Supply Valve failure to open	Delivery of coolant to NTC precluded, PLC logic prevents starting of pumps	PLC logic	Troubleshoot and repair or shutdown and replace	UNLIKELY	MINIMAL
Automatic Supply Valve failure to close	Loss of ability to isolate NTC water circuits from pump room, PLC logic prevents closing of Automatic Return Valve	PLC logic	Close manually, troubleshoot and repair or shutdown and replace	UNLIKELY	MINIMAL
Automatic Return Valve failure to open	Delivery of coolant to NTC precluded, PLC logic prevents opening of Automatic Supply Valve	PLC logic	Troubleshoot and repair or shutdown and replace	UNLIKELY	MINIMAL
Automatic Return Valve failure to close	Loss of ability to isolate NTC water circuits from pump room	PLC logic	Close manually, troubleshoot and repair or shutdown and replace	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 55 of 115

WBS Element: 3.2 Cooling Water System Component: Auxiliary Components

Function: The D-site HVAC cooling system provides chilled water for removing heat from the coil cooling water and the

Vacuum Pumping skids. The Deionizing System maintains high coil cooling water resistivity. Filters remove particulate from the coil cooling water system. Dew Point Detection System prevents operation of coils below dew

point temperature.

Failure Mode D-site HVAC cooling system failure	Effect Loss of chilled water, loss of cooling of Vacuum Pumping System, interruption of operations	Detection Vacuum Pumping System PLC loss of cooling water flow alarms, Cooling water PLC high temperature alarm, interlocked with PAUX relay to power supply system permissives	Recovery Shutdown and repair	Probability UNLIKELY	Consequence MINIMAL
De-ionizing System failure	Gradual decrease in cooling water resistivity, possibly leading to ground fault, small leakage current to ground	Daily hipot of coils prior to energization, power supply system ground fault detection	Troubleshoot and repair	UNLIKELY	MINIMAL
Blockage in filters	Reduced coolant flow, possibly leading to drop out of flow switches, interruption of operations	Pressure drop across filters is monitored by water system operators	Perform maintenance	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 56 of 115 **Auxiliary Components (cont'd)**

Component:

Failure Mode Dew Point Detection System failure	Effect Inaccurate dew point indication, possible condensation on coils, possible ground fault, small leakage current	Detection PLC logic indicating input out of normal range, power supply system	Recovery Troubleshoot and repair	Probability UNLIKELY	Consequence MINIMAL
	small leakage current	supply system			
	(limited by high resistance	ground fault			

of voltage to ground, Level 1 power supply fault (suppress/bypass)

grounding), redistribution

WBS Element: 3.2 Cooling Water System Component: Cooling Water Local I&C

WBS Element: 3.2 Cooling Water System

PLC system monitors flow switches, valve positions, temperatures, etc., provides interlocks to ensure proper **Function:**

detection

sequence of operations and configuration, and provides interlock to Power Supply System PAUX relay which is

required to issue power supply permissive to energize the coils.

Failure Mode Loss of PLC functionality	Effect Interruption of machine operations, PAUX relay drops out due to loss of "keep alive" ³³ . State of water system components depends on failure scenario, all components could stay in last	Detection Status signals to EPICS Process Control System and drop out of PAUX relay to power supply permissive interlock	Recovery Manually position all valves and pumps set to safe state, troubleshoot and repair	Probability UNLIKELY	Consequence MINIMAL
PLC I/O failure	commanded state Loss of action/reaction confirmation, PLC alarm condition	PLC logic	Troubleshoot and repair	UNLIKELY	MINIMAL

[&]quot;keep alive" signal is the regularly transmitted PLC scanning signal (approx. once per second) which, if not received by output module, will trip "scan loss detector" and cause PAUX relay dropout

WBS Element: 3.3 Bakeout System Component: High Temperature Skid (HTS), Low Temperature Skid (LTS), Associated

Piping, and DC Power Supply

Function: The Bakeout system heats the plasma facing components (PFCs) and vacuum vessel (VV) to elevated temperatures

(350°C and 150°C respectively) for cleaning, and provides heating and cooling during operations. The system consists of a high temperature skid (HTS) using helium to heat the PFCs to 350°C and to provide cooling during plasma operations, a low temperature skid (LTS) using water to heat and cool the outer vacuum vessel to 150°C, along with associated piping both internal and external to the vacuum vessel. In addition a DC power supply is used

to heat the center stack casing.

Failure Mode Failure of HTS heating during bakeout operations	Effect Loss of control of heat input to PFCs	Detection Operator monitoring of equipment status and temperatures	Recovery Troubleshoot and repair	Probability UNLIKELY	Consequence MINIMAL
Failure of HTS cooling during plasma operations	Loss of heat removal from PFCs	Operator monitoring of equipment status and temperatures	Troubleshoot and repair, limit NSTX pulse length, repetition rate and auxiliary heating power to avoid ratcheting of temperature of internal hardware.	UNLIKELY	MINIMAL
Failure of LTS cooling during bakeout operations	Loss of cooling of VV, excess temperature on VV	Operator monitoring of equipment status and temperatures	Shut down all heat inputs (HTS and DC power supply)	UNLIKELY	MINIMAL
Failure of LTS heating during plasma operations	Loss of ability to maintain specific VV temperature, possible degradation of plasma performance	Operator monitoring of equipment status and temperatures	Troubleshoot and repair	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 58 of 115 cout System Component: HTS, LTS, Piping, & DC Power Supply (cont'd)

WBS Element: 3.3 Bakeout System

Failure Mode Failure of DC power supply during bakeout operations	Effect Loss of ability to maintain or add heat directly to CS casing, reduction in bakeout effectiveness.	Detection Operator monitoring of equipment status and temperatures	Recovery Troubleshoot and repair	Probability UNLIKELY	Consequence MINIMAL
Excess temperature gradients during start-up or shutdown due to operator error	Excess thermally induced stress, possible mechanical failure of internal hardware, helium loop piping, or VV.	Operator monitoring of temperatures and control of HTS and LTS.	Vent machine and repair failure.	UNLIKELY	MINOR
Operation of HTS without LTS due to operator error	Excess temperature on VV, possible failure of appendages and seals on ports.	Operator monitoring of equipment status and temperatures	Troubleshoot and repair/restore proper conditions.	UNLIKELY	MINORL
Operation of LTS without HTS due to operator error	No consequence other than lack of ability to reach high bakeout temperature.	Operator monitoring of equipment status and temperatures	Troubleshoot and repair/restore proper conditions.	UNLIKELY	MINIMAL
Operation of LTS without magnet cooling water flow due to operator error	Outer PF coil temperature rises but to safe temperature (less than 100° C)	Operator monitoring of equipment status and temperatures	Troubleshoot and repair/restore proper conditions.	UNLIKELY	MINIMAL
Operation of HTS without magnet cooling water due to operator error and PLC Failure or Flow Switch Error	Excess temperature on center stack coils after several hours, possible damage to coil insulation.	Operator monitoring of equipment status and temperatures	Troubleshoot and repair/restore proper conditions. Repair/replace coil(s) if damaged.	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 59 of 115

WBS Element: 3.3 Bakeout System Component: HTS, LTS, Piping, & DC Power Supply (cont'd)

Failure Mode Leak in HTS helium Piping inside Vacuum Vessel	Effect If small leak, no consequence since helium is an inert gas. If large leak, vacuum pressure will rise, helium loop pressure	Detection RGA and/or skid pressure sensing.	Recovery Vent machine and repair leak.	Probability UNLIKELY	Consequence MINIMAL
Operation of LTS without	will fall, causing skid isolating valves to close, VV pressure remaining sub-atmospheric. ³⁴ If large leak, loss of high temperature bakeout and/or cooling capability. Outer PF coil temperature	Operator	Troubleshoot and	UNLIKELY	MINIMAL
magnet cooling water flow due to operator error	rises but to safe temperature (less than 100° C)	monitoring of equipment status and temperatures	repair/restore proper conditions.		

If isolating valves fail to close, then pressure of VV and helium loop would equilibrate at 11 psig; some of the VV windows may break under this condition, and machine may vent.

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 60 of 115

WBS Element: 3.3 Bakeout System Component: HTS, LTS, Piping, & DC Power Supply (cont'd)

Failure Mode Leak in HTS helium Piping outside Vacuum Vessel	Effect If small leak, helium leak checking is impacted. If large leak, potential safety hazard due to hot gas stream and/or oxygen depletion. ³⁵ If large leak, loss of high temperature bakeout and/or cooling capability.	Detection HTS skid detects low pressure, shuts isolation valves and shuts down heater and blower. Solenoid valve on gas bottle shuts to limit inventory of gas.	Recovery Troubleshoot and repair leak	Probability UNLIKELY	Consequence MINIMAL
Leak in LTS water Piping outside Vacuum Vessel	Hot water released into NSTX Test Cell, possible injury to personnel if in contact with hot liquid ³⁶	Expansion tank level detection	Troubleshoot and repair leak	UNLIKELY	MINIMAL

Personnel access in NSTX Test Cell and skid areas will be limited during bakeout, Thermal insulation on helium piping will diffuse gas stream exiting from most leaks. Inventory of helium (equivalent to 3 bottles of compressed helium @ 311 cu ft/cylinder)) is not sufficient to cause dangerous low oxygen conditions in NSTX Test Cell.

Personnel access in NSTX Test Cell and skid areas will be limited during bakeout.

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 61 of 115 cout System Component: HTS, LTS, Piping, & DC Power Supply (cont'd

WBS Element: 3.3 Bakeout System

Failure Mode Blockage in Pipeline	Effect Uneven heating and/or cooling	Detection Thermcouples on NSTX machine and IR Camera	Recovery If inside, vent VV and remove blockage; if outside, remove blockage	Probability UNLIKELY	Consequence MINIMAL
Contamination of Dielectric Breaks in manifolding	Loss of electrical isolation of outer VV	Hipot leakage measurements	Clean	UNLIKELY	MINIMAL
Electrical breakdown of Dielectric Breaks in manifolding	If CHI operations with outer vacuum vessel energized, ground fault for CHI power supply, small fault current flow through manifolding to ground. Otherwise, small ground loop eddy currents and resultant magnetic field perturbation.	If CHI operation, power supply ground fault detection.	Repair if possible or replace	UNLIKELY	MINIMAL
Loss of Heater Power in LTS	Loss of heat input to VV	Thermocouples on NSTX machine	Troubleshoot and repair	UNLIKELY	MINIMAL
Failure of Pump in High Temperature Loop in LTS	Loss of heat input to VV	Over-temperature switch trips off heater	Troubleshoot and repair	UNLIKELY	MINIMAL
Failure of Pump in Low Temperature Loop in LTS	Loss of heat removal from VV	Thermocouples on NSTX machine	Shutdown all heat inputs, including HTS. Troubleshoot and repair	UNLIKELY	MINIMAL
Loss of Nitrogen blanket in Expansion Tank in LTS	Expansion Tank level rises	Expansion tank level detection	Repair leak and restore blanket	UNLIKELY	MINIMAL
Reduction of HVAC cooling water flow and/or excess cooling water temperature in LTS	Reduction in cooling capability	Skid control panel logic, Thermocouples on NSTX machine	Shutdown all heat inputs and restore HVAC cooling water supply	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 62 of 115 keout System Component: HTS, LTS, Piping, & DC Power Supply (cont'd) WBS Element: 3.3 Bakeout System

Failure Mode Failure of Temperature Controller in LTS	Effect Temperature not per setpoint, if overtemperature, possible boiling of heat exchanger fluid, possible opening of pressure relief valve	Detection Over-temperature switch trips off heater	Recovery Troubleshoot and repair	Probability UNLIKELY	Consequence MINIMAL
Blower Seal Failure in HTS	Lubricating oil enters helium stream but trapped by filter	Float switch in oil reservoir reported to PLC.	Troubleshoot and repair	UNLIKELY	MINIMAL
Blower failure (seizure or other mechanical failure)	Loss of gas flow through system, heater control limits power to rods, low flow and high temperature interlocks shut off heater.	PLC interlocks	Troubleshoot and repair	UNLIKELY	MINIMAL
Heat Exchanger failure (gas to gas heat exchanger HE#1) due to blockage or contamination in HTS	Reduction in heat transfer capability, reduced performance	Reduced performance	Troubleshoot and repair	UNLIKELY	MINIMAL
Heat Exchanger failure (gas to water heat exchanger HE#2) due to valving error, blockage or contamination in HTS	Reduction in heat removal from gas stream output from VV into blower, thermocouples detect high blower inlet temperature and shut down blower and heater.	PLC interlocks	Troubleshoot and repair	UNLIKELY	MINIMAL
Heater failure in HTS	Loss of control of heat input to system, resulting in excess heat input and/or high heater temperature, or lack of demanded heat input. If high heater or NSTX return temperature, system shuts down heater and blower.	If high heater temperature or NSTX return temperature, PLC interlocks; if lack of heat input, reduced performance.	Troubleshoot and repair	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 63 of 115 keout System Component: HTS, LTS, Piping, & DC Power Supply (cont'd) WBS Element: 3.3 Bakeout System

Failure Mode Supply or Return valve misoperation (AV1-AV4) in HTS	Effect Excess pressure across blower, bypass valve opens and provides alternate flow path, high pressure interlock and/or motor overtemperature switch causes shutdown of heater	Detection PLC interlocks	Recovery Troubleshoot and repair	Probability UNLIKELY	Consequence MINIMAL
Blower bypass valve failure (CV1) in HTS	and blower. VFD limits blower rpm to limit pressure, high pressure interlock and/or motor overtemperature switch shuts down heater and blower.	PLC interlocks	Troubleshoot and repair	UNLIKELY	MINIMAL
Pressure regulating valve failure in HTS	If sticks open, equivalent to helium system leak. If sticks closed, helium pressure will rise, high pressure interlock will shut off heater and blower, relief valve will open to relieve pressure, and isolation valves will close to isolate skid from NSTX Test Cell.	PLC interlocks	Troubleshoot and repair	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 64 of 115 cout System Component: HTS, LTS, Piping, & DC Power Supply (cont'd)

WBS Element: 3.3 Bakeout System

Failure Mode Solenoid valve failure (SV1, SV2) in HTS	Effect If sticks open, system remains equalized with helium bottle regulator pressure. If sticks closed, loss of ability to replenish helium, low pressure interlock shuts down blower and heater.	Detection PLC interlocks	Recovery Troubleshoot and repair	Probability UNLIKELY	Consequence MINIMAL
Helium bottle regulator failure in HTS	If sticks open, high pressure interlock results in closure of solenoid valves. If sticks closed, low pressure interlock shuts down blower and heater.	PLC interlocks	Troubleshoot and repair	UNLIKELY	MINIMAL
HE1 bypass valve misalignment MV1, MV2) in HTS	If valves aligned for cooling during bakeout operations, excess temperature at blower inlet, high temperature interlock shuts down blower and heater. If valves aligned for bakeout during cooling operations, reduced cooling effectiveness. If both valves open or both valves closed, PLC interlock prevents system startup until MV1 and MV2 are in the proper configuration.	PLC interlocks	Reconfigure valves to proper position.	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 65 of 115

WBS Element: 3.3 Bakeout System Component: HTS, LTS, Piping, & DC Power Supply (cont'd)

Failure Mode Failure to drive current in CS casing in DC Power Supply	Effect Loss of heat input to CS casing, reduced bakeout effectiveness	Detection Operator monitoring of equipment status and temperatures.	Recovery Troubleshoot and repair	Probability UNLIKELY	Consequence MINIMAL
Failure to shut down in case of loss of cooling water indicated by water systems PLC in DC power supply	Excess temperature on OH, PF1a, and TF center stack coils, possible coil damage.	Interlock shuts down power supply automatically. Operator monitoring of equipment status and temperatures.	Troubleshoot and repair	UNLIKELY	MAJOR

WBS Element: 3.4 Gas Delivery System (GDS)

Function:

The Gas Delivery System provides storage of gases and delivers prescribed quantities of same at prescribed rates in pulses which are synchronized with the NSTX facility clock system. In addition the system provides vacuum pumping to remove and exhaust residual gases from gas delivery lines. Control is via the Vacuum Pumping System PLC.

Failure Mode TIV fails to close	Effect Inability to isolate pulse valve from vacuum vessel	Detection Valve status indication on PLC	Recovery Possible need to pump out and backfill volume. Troubleshoot and repair.	Probability UNLIKELY	Consequence MINIMAL
TIV fails to open	Inability to utilize injector	Valve status indication on PLC	Troubleshoot and repair.	UNLIKELY	MINIMAL
Piezoelectric injection valve failure to open	Gas delivery from failed valve precluded, reduced performance	Injection volume and vacuum vessel pressure instrumentation monitored via PLC	Troubleshoot and repair if possible, or replace during vacuum opening	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 66 of 115 WBS Element: 3.4 Gas Delivery System (GDS) (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Piezoelectric injection valve failure to close, or leakage across valve	Leakage of gas from injection volume into vacuum vessel, gas delivery from failed valve precluded, reduced performance	Injection volume and vacuum vessel pressure instrumentation monitored via PLC	Troubleshoot and repair if possible, or isolate and evacuate injection volume and replace during vacuum opening	UNLIKELY	MINIMAL
Vacuum pump failure	Inability to remove residual gases from portions of the GDS or gas injection assembly	Vacuum pump status indication, line pressure instrumentation monitored by PLC	Troubleshoot and repair	UNLIKELY	MINIMAL
Failure of GDS pumpout valve	Inability to remove residual gases from portions of the GDS or gas injection assembly	Vacuum pump status indication, line pressure instrumentation monitored by PLC	Troubleshoot and repair.	UNLIKELY	MINIMAL
Leakage in GDS due to faulty welds or leaky fittings	Inability to achieve required vacuum in gas delivery system	Pressure instrumentation monitored via PLC	Troubleshoot and repair	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 67 of 115

WBS Element: 3.4 Gas Delivery System (GDS) (cont'd)

Failure Mode Gas cylinder or supply piping leak, due to faulty valve or fittings	Effect Release of gas into NTC ³⁷	Detection Loss of gas pressure monitored via PLC	Recovery Repair or replace	Probability UNLIKELY	Consequence MINIMAL
Lower Dome Gas Injection System, excess gas pressure in forelines involving ceramic insulator break between center stack casing and ground	Electrical breakdown across ceramic, arcing, burning, melting	Pressure instrumentation monitored via PLC and interlocked with CHI power supply permissive	Repair/replace/adj ust malfunctioning components	UNLIKELY	MINIMAL
Lower Dome Gas Injection System, excess gas pressure in forelines involving ceramic insulator break between center stack casing and ground	Electrical breakdown across ceramic, arcing, burning, melting	Pressure instrumentation monitored via PLC and interlocked with CHI power supply permissive	Repair/replace/adj ust malfunctioning components	UNLIKELY	MINIMAL
Lower Dome Gas Injection System, excess gas prefill pressure in injection reservoir	If not detected, excess gas would be admitted to vacuum vessel leading to reduced dielectric strength across various ceramic insulator gaps	Pressure instrumentation monitored via PLC and interlocked with CHI power supply permissive	Repair/replace/adj ust malfunctioning components	UNLIKELY	MINIMAL

-

Hydrogen gas inventory less than 311 cubic feet (per cylinder), insufficient volume to develop an explosive concentration in the NTC

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 68 of 115

WBS Element: 3.4 Gas Delivery System Component: Lithium Evaporator (LITER)

Function: This is an analysis of the failure modes, effects, detection, and recovery for using the Lithium Evaporator (LITER) to evaporate lithium coatings on the plasma-facing surfaces in NSTX. This analysis has the following parts:

- Failure modes during LITER loading, transport to test cell, and installation on NSTX;
- Failure modes during LITER operation on NSTX; and
- Failure modes after the vessel is vented for maintenance

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
During LITER loading, the	Possible oxidation and	Argon flow stops, gas	Replace empty	UNLIKELY	MINOR
Argon Glove Box becomes	moisture interaction	cylinder gauge	Argon cylinder		
aerated due to emptying of the	with lithium.	indicates empty.	with full cylinder.		
Argon cylinder.			Dispose of all		
			exposed lithium.		
			Restart LITER		
			loading procedure		
			from beginning.		
During transport of LITER to	Possible oxidation and	The plug for LITER is	Return all exposed	UNLIKELY	MINOR
NSTX Test Cell in argon	moisture interaction	found to be loose or	lithium to waste		
atmosphere, argon is lost.	with the lithium.	missing.	container in Room		
			L-111, Argon		
			Glove Box. Restart		
			LITER loading		
			procedure from		
			beginning.		
During loading or transport of	Possible oxidation and	The plug for LITER is	Return all exposed	UNLIKELY	MINOR
LITER to NSTX Test Cell,	moisture interaction	found to be loose or	lithium to waste		
lithium-filled LITER is	with the lithium if	missing or damage to	container in Room		
dropped.	argon atmosphere is	LITER is noticed at	L-111, Argon		
	lost due to loosening of	point of impact with	Glove Box. Repair		
	plug or damage to	floor.	LITER if		
	LITER.		damaged. Restart		
			LITER loading		
			procedure from		
			beginning.		

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 69 of 115 Delivery System Component: LITER (cont'd)

WBS Element: 3.4 Gas Delivery System

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
LITER probe head is not properly aligned with divertor gap	LITER inward motion stopped by passive plate or divertor gap	Window with mirror allows direct visual observation of	Realign Bellows Motion Drive until LITER is observed	UNLIKELY	MINOR
	edges.	alignment.	to be properly aligned.		
Minor vessel leak occurs.	Possible oxidation and moisture interaction with lithium in LITER and films deposited on in-vessel surfaces.	Vessel vacuum instrumentation.	Fix leak. Restore good vacuum conditions as soon as possible.	UNLIKELY	MINOR
NBI TIV O-ring gets coated with lithium	Cannot close TIV sufficiently to allow associated appurtenance to be vented	Argon challenge procedure detects throughput leak.	Vent vessel and repair TIV.	UNLIKELY	MINOR
Li coating builds up on MPTS laser baffles	Excessive light reflection.	MPTS data analysis.	Vent vessel and clean baffles.	UNLIKELY	MINOR
Li coats MPTS windows	Window transmission decreases.	MPTS data analysis.	Vent vessel and clean windows.	UNLIKELY	MINOR
Lithium reacts with dTMB	Inert compounds unsuitable for particle pumping formed.	Poor density control. Analysis of sample coupons after run.	Deposit fresh lithium.	UNLIKELY	MINOR
Lithium deposits prevent TIV's from sealing properly	Cannot close TIV sufficiently to allow associated appurtenance to be vented.	Argon challenge procedure detects throughput leak	Vent vessel and repair TIV.	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 70 of 115 Delivery System Component: LITER (cont'd)

WBS Element: 3.4 Gas Delivery System

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Lithium coats CHI absorber	Upper and Lower CHI	Lower DC resistance	Apply CHI bias in	UNLIKELY	MINOR
insulator	Insulators are not in	across CHI gap.	presence of		
	direct line-of-sight of		deuterium fill gas		
	LITER output.		until sufficient		
	Secondary or tertiary Li		current is drawn to		
	bounces may result in		evaporate film		
	thin film coating on		and/or convert it to		
	nearest insulator		non-conducting		
	extremities.		compound.		
Lithium coats windows,	Windows will have	Data analysis will	Stop LITER	UNLIKELY	MINOR
insulators, and feedthroughs	reduced transmission.	indicate reduced	operation. If		
	Insulators and	window transmission.	additional non-		
	feedthroughs will have	Insulators and	lithium operation		
	increased conductance	feedthroughs will	does not erode		
	to "Category 4"	exhibit increased	lithium film from		
	(CAT4) ground.	conductance to CAT4	the windows, and		
		ground.	convert conducting		
			films on insulators		
			and feedthroughs		
			to non-conducting		
			films, vent vessel		
			and clean surfaces.		

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 71 of 115 Delivery System Component: LITER (cont'd)

WBS Element: 3.4 Gas Delivery System

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
LITER in vertical position	Liquid lithium drips	Available windows	Cool LITER to	UNLIKELY	MINOR
expels liquid lithium	from output aperture of	allow inspection of the	below Li melting		
	LITER.	LITER output aperture.	temperature and		
			remove from		
			NSTX to		
			determine cause of		
			expulsion.		
			Expelled lithium		
			to be passivated		
			and removed from		
			vacuum vessel		
			according to vent		
			procedure at next		
			scheduled opening.		
LITER seals fail	LITER Guard Vacuum	Vessel vacuum gauges	Withdraw LITER	UNLIKELY	MINOR
	pressure leaks to vessel	and RGA.	probe from vessel		
	and raises vessel		and fix broken		
	pressure.		seal. Reload and		
			reinsert LITER.		
Liquid clogs snout when	Evaporation of lithium	Clogging detected by	Turn off reservoir	UNLIKELY	MINOR
LITER is mounted in vertical	into NSTX ceases	real-time lithium	heater and unclog		
position		deposition monitoring	by evaporating		
		and/or unusual	lithium using		
		temperature and power	snout heaters only.		
		supply profiles.			

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 72 of 115 Delivery System (con't) Component: LITER (cont'd)

WBS Element: 3.4 Gas Delivery System (con't)

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Probe drive fails at high LITER operating temperature	Bellows Motion Drive will not withdraw probe	Bellows Motion Drive shaft encoder and TV observation indicate no motion.	Turn off all heater voltages. Wait until temperature indicators (multiple redundant thermocouples) indicate that LITER has cooled. Withdrawn LITER probe manually (probe designed to be operated safely by hand crank as well as drive motor.)	UNLIKELY	MINOR
Failure of guard vacuum pump	Raises base pressure in NSTX vacuum vessel if guard vacuum chamber develops leak.	LITER control system indicates pump failure and NSTX base pressure rises if guard vacuum develops leak.	Withdraw LITER and replace guard vacuum pump. Repair leak in guard vacuum chamber if detected.	UNLIKELY	MINOR
Software safety interlocks fail to prevent LITER overheating	Overheating or continuous operation occurs.	Performance noted by operators and associated indicators.	Redundant Hardwire Interlock System turns-off LITER. Diagnose, fix, and restart.	UNLIKELY	MINOR
Loss of air cooling capability	Loss of LITER temperature control leads to loss of lithium evaporation rate control.	LITER control system indicates loss of air cooling capability and thermocouples indicate loss of temperature control.	Turn off all heater voltages. Repair air cooling capability.	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 73 of 115

WBS Element: 3.4 Gas Delivery System

Component:

LITER (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Loss of electrical power	LITER unable to	Control system	Wait until electrical	UNLIKELY	MINOR
	maintain temperature for	indicates loss of	power is restored.		
	lithium evaporation.	electrical power at	Wait until LITER is		
	LITER cannot be	LITER and	cool (based on known		
	withdrawn manually.	thermocouples	cooling rate) prior to		
		indicate dropping	withdrawing manually		
		temperature.	if electrical power is		
			completely lost. Note		
			that probe is designed		
			to be operated safely		
			by hand crank as well		
			as drive motor.		
After venting and several	Eye, nose, and	Visual inspection	Sweep, vacuum, or	UNLIKELY	MINOR
days of ventilation,	inhalation hazard.	reveals surface	use damp fireproof		
hazardous dust or granules		coatings of dust or	cloth to remove as		
are found in lower region of		granules.	indicated in Vessel		
vessel.			Maintenance		
			Procedure using		
			appropriate personnel		
			protective equipment		
			(PPE), e. g., gloves,		
			face masks, face		
			shields, and goggles.		
After venting and several	Possible eye, nose, and	Visual inspection	Use damp fireproof	UNLIKELY	MINOR
days of ventilation, oxidized	inhalation hazard.	reveals surface	cloth to clean the work		
or nitrated lithium		coatings.	area using appropriate		
compounds are found on			PPE, e. g., gloves, face		
surfaces needing mechanical			masks, face shields,		
or welding work.			and goggles.		

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 74 of 115

WBS Element: 3.4 Gas Delivery System Component: Lithium Granule Injector (LGI)

Function:

This is an analysis of the failure modes, effects, detection, and recovery for using the Lithium Granule Injector (LGI) to deposit lithium coatings on the plasma-facing surfaces in NSTX. This analysis has the following parts:

- Failure modes during LGI loading, transport to test cell, and installation on NSTX;
- Failure modes during LGI operation on NSTX; and
- Failure modes after the vessel is vented for maintenance

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
During LGI loading, the	Possible oxidation and	Argon flow stops, gas	Replace empty Argon	UNLIKELY	MINOR
Argon Glove Box becomes	moisture interaction	cylinder gauge	cylinder with full		
aerated due to emptying of	with lithium.	indicates empty.	cylinder. Dispose of		
the Argon cylinder.			all exposed lithium.		
			Restart LGI loading		
			procedure from		
			beginning.		
During transport of LGI to	Possible oxidation and	The endcap for LGI is	Return all exposed	UNLIKELY	MINOR
NSTX Test Cell in argon	moisture interaction	found to be loose or	lithium to waste		
atmosphere, argon is lost.	with the lithium.	missing.	container in Room L-		
			111, Argon Glove		
			Box. Restart LGI		
			loading procedure		
			from beginning.		
During loading or transport	Possible oxidation and	The plug for shaker	Return all exposed	UNLIKELY	MINOR
of LGI to NSTX Test Cell,	moisture interaction	vessel is found to be	lithium to waste		
lithium-filled shaker vessel is	with the lithium if argon	loose or missing or	container in Room L-		
dropped.	atmosphere is lost due to	damage to shaker	111, Argon Glove		
	loosening of endcap or	vessel is noticed at	Box. Repair shaker		
	damage to shaker vessel.	point of impact with	vessel if damaged.		
		floor.	Restart LGI loading		
			procedure from		
			beginning.		

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 75 of 115 Delivery System Component: LGI (cont'd)

WBS Element: 3.4 Gas Delivery System

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Minor vessel leak occurs during operation.	Possible oxidation and moisture interaction with lithium in LGI and films deposited on invessel surfaces.	Vessel vacuum instrumentation.	Fix leak. Restore good vacuum conditions as soon as possible.	UNLIKELY	MINOR
Vessel viewport shatters and air rushes into vessel while graphite power handling surfaces are hot.	Possible oxidation and moisture interaction with lithium in LGI, and with lithium thin films deposited on vessel surfaces. Surface temperature rise is small (7.3x10 ⁶ J/[(0.71J/g/°K)x (1.3x10 ⁶ g)] = 7.9 °K) due to large surface area of vessel surfaces compared to amount of lithium deposited (see NSTX SAD for more details.)	Vessel vacuum instrumentation and TV cameras.	Fix or replace failed component. Restore good vacuum conditions as soon as possible. Remove LGI assembly and return to Room L-111 Argon Glove Box. Refill LGI with lithium and return to NSTX.	UNLIKELY	MINOR
Li coating builds up on MPTS laser baffles	Excessive light	MPTS data analysis.	Vent vessel and clean	UNLIKELY	MINOR
Li coats MPTS windows	reflection. Window transmission decreases.	MPTS data analysis.	baffles. Vent vessel and clean windows.	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 76 of 115 Delivery System Component: LGI (cont'd)

WBS Element: 3.4 Gas Delivery System

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Lithium reacts with dTMB	Inert compounds unsuitable for particle pumping formed.	Poor density control. Analysis of sample coupons after run.	Deposit fresh lithium.	UNLIKELY	MINOR
Lithium deposits prevent TIV's from sealing properly	Cannot close TIV sufficiently to allow associated appurtenance to be vented.	Argon challenge procedure detects throughput leak	Vent vessel and repair TIV.	UNLIKELY	MINOR
Lithium coats CHI absorber insulator	Upper and Lower CHI Insulators are not in direct line-of-sight of LITER output. Secondary or tertiary Li bounces may result in thin film coating on nearest insulator extremities.	Lower DC resistance across CHI gap.	Apply CHI bias in presence of deuterium fill gas until sufficient current is drawn to evaporate film and/or convert it to nonconducting compound.	UNLIKELY	MINOR
Lithium coats windows, insulators, and feedthroughs	Windows will have reduced transmission. Insulators and feedthroughs will have increased conductance to "Category 4" (CAT4) ground.	Data analysis will indicate reduced window transmission. Insulators and feedthroughs will exhibit increased conductance to CAT4 ground.	Stop LGI operation. If additional non-lithium operation does not erode lithium film from the windows, and convert conducting films on insulators and feedthroughs to non-conducting films, vent vessel and clean surfaces.	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 77 of 115 Delivery System Component: LGI (cont'd)

WBS Element: 3.4 Gas Delivery System

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
LGI in standard installed	Lithium powder falls	Available windows	Close the associated	UNLIKELY	MINOR
position expels lithium	from output aperture of	allow inspection of the	Bay I TIV and remove		
powder when not appropriate	LGI.	LGI output aperture	from NSTX to		
to do so.		during discharges.	determine cause of		
			expulsion. Expelled		
			lithium to be passivated		
			and removed from		
			vacuum vessel		
			according to vent		
			procedure at next		
			scheduled opening.		
LGI vacuum seals fail	Air leaks into NSTX	Vessel vacuum gauges	Close Bay I TIV and	UNLIKELY	MINOR
	and raises vessel	and RGA.	remove LGI from		
	pressure.		vessel to fix broken		
			seal. Reload and		
			reinstall LGI.		
Lithium powder starts to	The temperature of the	Powder temperature	Shut the Bay I TIV and	UNLIKELY	MINOR
react with ambient gases	lithium powder rises.	monitored by real-time	flood the LGI vessel		
(viz: deuterium, water vapor		monitoring of LGI	with Argon		
or air) when LGI is mounted		internal thermocouple			
on NSTX vessel					

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 78 of 115 3.4 Gas Delivery System (con't) Component: LGI (cont'd) WBS Element:

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
After venting and several	Possible eye, nose, and	Visual inspection	Use damp fireproof	UNLIKELY	MINOR
days of ventilation, oxidized	inhalation hazard.	reveals surface	cloth to clean the work		
or nitrated lithium		coatings.	area using appropriate		
compounds are found on			PPE, e. g., gloves, face		
surfaces needing mechanical			masks, face shields,		
or welding work.			and goggles.		

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 79 of 115

WBS Element: 3.4 Gas Delivery System Component: During Lithium Pellet Injection (LPI) Operation

Function: A Lithium Pellet Injector (LPI) is provided to inject lithium pellets into NSTX plasmas. In addition, the LPI is used as a versatile low-Z impurity injector for recycling, transport, and wall conditioning studies.

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
During LPI pellet	Possible oxidation and moisture	Argon flow stops,	Replace empty Argon	UNLIKELY	MINOR
fabrication, the Argon	interaction with the pellets and	gas cylinder gauge	cylinder with full		
Glove Box becomes aerated	exposed lithium.	indicates empty.	cylinder. Dispose of all		
due to emptying of the			exposed pellets and		
Argon cylinder.			lithium. Restart pellet		
			fabrication procedure		
			from the beginning.		
During transport of the LPI	Possible oxidation and moisture	The container lid is	Return all exposed	UNLIKELY	MINOR
pellets to the NSTX Test	interaction with the pellets.	found to be opened.	pellets to waste		
Cell in the Argon			container in Room L-		
atmosphere, the Argon is			111, Argon Glove Box.		
lost.			Restart pellet		
			fabrication procedure		
			from the beginning.		
During loading of the pellets	Possible oxidation and moisture	The numbered	Find missing cartridge.	UNLIKELY	MINOR
into the LPI, pellet-loaded	interaction with the pellets.	cartridge required for	Return all exposed		
cartridges are dropped.		a particular	pellets to waste		
		numbered barrel is	container in Room L-		
		missing.	111, Argon Glove Box.		
			Restart pellet		
			fabrication procedure		
			from the beginning.		
During transport of the LPI	Possible oxidation and moisture	The container lid is	Return all exposed	UNLIKELY	MINOR
pellets to the NSTX Test	interaction with the pellets.	found to be opened.	pellets to waste		
Cell in the Argon			container in Room L-		
atmosphere, the Argon is			111, Argon Glove Box.		
lost.			Restart pellet		
			fabrication procedure		
			from the beginning.		

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 80 of 115 elivery System Component: During Lithium Pellet Injection (LPI) Operation (cont'd) WBS Element: 3.4 Gas Delivery System

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
The loading of the pellets-	Possible oxidation and moisture	Note and record start	Return all exposed	UNLIKELY	MINOR
loaded cartridges into the	interaction with the pellets.	and completion time.	pellets to waste		
LPI takes longer than			container in Room L-		
specified in the procedure.			111, Argon Glove Box.		
			Restart pellet		
			fabrication procedure		
			from the beginning.		
Insufficient LPI propellant	Poor acceleration of cartridge.	Indicated by LPI	Replace gas cylinder or	UNLIKELY	MINOR
pressure.		velocity diagnostics.	malfunctioning gas		
			handling component.		
LPI Control malfunction.	Fill pressure, propellant	Indicated by LPI	Replace	UNLIKELY	MINOR
	triggering, or magazine rotation	control system	malfunctioning		
	inoperative.	sensors.	component.		
A minor vessel leak occurs	Possible oxidation and moisture	Vessel vacuum	Fix leak. Restore good	UNLIKELY	MINOR
during or after LPI	interaction with the pellets in the	instrumentation.	vacuum conditions as		
operations.	LPI and thin films deposited on		soon as possible.		
	vessel surfaces.				

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 81 of 115

WBS Element: 3.4 Gas Delivery System Component: During Lithium Pellet Injection (LPI) Operation (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
A vessel viewport shatters during	Possible oxidation and	Vessel vacuum	Fix or replace failed	UNLIKELY	MINOR
or after LPI operations, and air	moisture interaction with	instrumentation and	component. Restore		
rushes into the vessel while	the pellets in the LPI and	TV cameras.	good vacuum		
graphite power handling surfaces	thin films deposited on		conditions as soon as		
are hot.	vessel surfaces.		possible. Return all		
	Possible rapid oxidation of		exposed pellets to		
	small lithium granules.		waste container in		
	Essentially no (<1°K) rise		Room L-111, Argon		
	in graphite temperature. ³⁸		Glove Box and replace		
	Any lithium deuteride		with fresh pellets.		
	(LiD) generated & released				
	to the NTC should result in				
	room concentrations <				
	OSHA permissible				
	exposure limit (PEL). ³⁹				
The plasma current fizzles or fails	No LPI trigger.	Indicated by LPI	Await improved	UNLIKELY	MINOR
to exceed 100 KA during LPI		control system	discharge conditions.		
operations.		sensors.			
After venting and several days of	Eye, nose, and inhalation	Visual inspection.	Sweep, vacuum, or use	UNLIKELY	MINOR
ventilation following LPI	hazard.		damp fireproof cloth to		
operations, hazardous dust or			remove as indicated in		
granules are found in the lower			the Vessel Maintenance		
region of the vessel.			Procedure.		

20

³⁸ Reaction of lithium with water vapor in the inrushing air would produce LiOH and hydrogen. The energy released from this reaction and the burning of hydrogen would be about 90 kJ, which would raise the graphite temperature by about 0.1°K. The resulting temperature would be far below the ignition temperature of graphite (650°C). See Reference 24 for details.

³⁹ 0.025 mg/m³. See Reference 24 for details.

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 82 of 115

WBS Element: 3.4 Gas Delivery System

Component: During Lithium Pellet Injection (LPI) Operation (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
After venting and several days of	Possible eye, nose, and	Visual inspection.	Use damp fireproof	UNLIKELY	MINOR
ventilation following LPI	inhalation hazard.		cloth to clean the work		
operations, oxidized or nitrated			area.		
lithium compounds are found on					
surfaces needing mechanical or					
welding work.					

WBS Element: 3.4 Gas Delivery System Component: Materials Analysis Particle Probe (MAPP)

Function: This is an analysis of the failure modes, effects, detection, and recovery for using the MAPP to expose material samples to

NSTX plasmas.

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
MAPP head loses alignment	MAPP inward motion	Visual observation of	Realign Bellows	UNLIKELY	MINOR
with passive plate penetration.	stopped by passive plate	alignment.	Motion Drive until		
	or divertor gap edges.		MAPP is observed		
			to be properly		
			aligned.		
MAPP drive fails	Bellows Motion Drive	Bellows Motion Drive	Withdraw MAPP	UNLIKELY	MINOR
	will not withdraw probe	shaft encoder and TV	manually (probe		
		observation indicate no	designed to be		
		motion.	operated safely by		
			hand crank as well		
			as drive motor.)		
MAPP extends too far into	Disruption	NSTX diagnostics	Adjust probe drive	UNLIKELY	MINOR
NSTX scrape-off layer			limit switch		
Minor leak occurs during	Vessel base pressure	Vessel vacuum	Close TIV. Fix	UNLIKELY	MINOR
operation.	increases.	instrumentation.	leak. Restore good		
			vacuum conditions		
			as soon as		
			possible.		

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 83 of 115

WBS Element: 3.5 Glow Discharge Cleaning (GDC) System

Function: GDC provides conditioning of the vacuum vessel and PFCs via bombardment by particles from a diffuse plasma

in helium. Vacuum vessel and center stack casing will be grounded. The GDC system for 1 st plasma will consist of a retractable probe attached to a portable power supply.

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Short circuit between probe and	GDC power supply will	Loss of GDC current	Troubleshoot and	UNLIKELY	MINOR
vacuum vessel	trip on overcurrent. No	as indicated by GDC	repair		
	measurable potential rise	power supply			
	of grounded vacuum	instrumentation			
	vessel will occur due to				
	limited current delivery of				
	GDC power supply.				
Failure of GDC power supply	GDC power supply will	Loss of GDC current	Troubleshoot and	UNLIKELY	MINIMAL
current limiting resistor	trip on overcurrent. No	as indicated by GDC	repair		
	measurable potential rise	power supply			
	of grounded vacuum	instrumentation			
	vessel will occur due to				
	limited current delivery of				
	GDC power supply.				
Incorrect helium pressure	GDC current could	Visible arcing	Increase pressure to	UNLIKELY	MINIMAL
	become concentrated and		reduce arcing and		
	sputter metallic impurities		achieve uniform GDC		
	onto PFCs leading to loss				
	of conditioning				

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 84 of 115

WBS Element: 3.5 Glow Discharge Cleaning (GDC) System

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Glow stops during dTMB	dTMB does not break	PLC observes low	Restart GDC with He	ANTICIPATED	MINIMAL
injection.	down and deposit on	GDC current and	and return to operation.		
	surfaces. dTMB pumps	automatically shuts	If repeated failure of		
	through NSTX vacuum	down dTMB	system to maintain		
	system. Vent stack	injection.	GDC, trouble shoot		
	purged with nitrogen, so		system up to and		
	no possibility of		including aborting		
	combustion in vent stack.		dTMB operation.		
Vacuum window breaks or	The rise in vessel pressure	PLC interlocks	Troubleshoot and	UNLIKELY	MINIMAL
vacuum seal leaks during	due to in-rushing air		repair		
boronization under vessel bakeout	would trigger the pressure				
conditions	interlock to shut down gas				
	injection and close valves				
	to isolate the dTMB gas				
	delivery system. Little or				
	no in-vessel damage due				
	to possible auto-ignition				
	of dTMB would be				
	expected.				

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 85 of 115

WBS Element: 3.6 Deuterated Trimethylboron (dTMB) System

Function: Deuterated Trimethylboron (dTMB) is injected into a glow discharge in a process called boronization, and is intended to provide a hard, insulating coating of boron and carbon (as well as deuterium) to enhance the operational capability of NSTX-U.

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
TIV fails to close	Inability to isolate injection valve from vacuum vessel	Valve status indication on PLC	Possible need to pump out and backfill volume. Trouble shoot and repair	UNLIKELY	MINIMAL
TIV fails to OPEN	Inability to utilize injector	Valve status indication on PLC	Trouble shoot and repair	UNLIKELY	MINIMAL
Injection valve fails to open	Gas delivery from failed valve precluded, reduced performance	Mass flow controller (MFC) flow rate indication and vacuum vessel pressure instrumentation monitored by PLC	Possible need to pump out and backfill volume. Trouble shoot and repair	UNLIKELY	MINIMAL
Injection valve fails to close, or leakage across valve	Leakage of gas from injection volume into vacuum vessel possible, gas delivery from failed valve precluded, reduced performance	Vacuum vessel pressure instrumentation monitored by PLC	Possible need to pump out and backfill volume. Trouble shoot and repair	UNLIKELY	MINIMAL
Vacuum pump failure	Inability to remove residual gases from portions of the gas delivery or injection lines	Vacuum pump status indication, gas line pressure instrumentation monitored by PLC	Trouble shoot and repair	UNLIKELY	MINIMAL
Failure of dTMB pumpout valve	Residual gas pumpout from failed valve precluded, reduced performance	Line pressure instrumentation monitored by PLC	Trouble shoot and repair	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 86 of 115

WBS Element: 3.6 Deuterated Trimethylboron (dTMB) System (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
dTMB leakage due to welds, fittings, gas cylinder or supply piping leakage in gas cabinet or MFC box	dTMB leaking into gas cabinet or MFC box since the delivery line pressure is above ATM pressure. Inability to do gas injection	Toxic gas detector detecting dTMB presence. Line pressure instrumentation monitored by PLC	Close all pneumatically actuated valves on dTMB gas delivery line. Wearing SCBA and closing dTMB cylinder valve if dTMB level is above 7 PPM TLV. Pump all the residual dTMB out, perform leak check and repair	UNLIKELY	MINIMAL
Helium leakage due to faulty welds or leaky fittings in gas cabinet or MFC box	Helium leaking into gas cabinet or MFC box since the delivery line pressure is above ATM. pressure. Inability to do gas injection	Line pressure instrumentation monitored by PLC	Trouble shoot and repair	UNLIKELY	MINIMAL
Helium gas cylinder or supply piping leakage due to faulty valve or fittings	Helium leaking into NTC since the delivery line pressure is above ATM. pressure. Inability to do gas injection	Line pressure instrumentation monitored by PLC	Trouble shoot and repair	UNLIKELY	MINIMAL
Failure of the fixed dTMB gas leak detector	Inability to conduct dTMB gas injection	Automatic sensor self-testing indicating sensor needs to be replaced	Use a portable detector. Pump out dTMB from gas lines. Replace sensor and ensure self- testing is satisfied.	UNLIKELY	MINIMAL
Nitrogen purge at pump exhaust fails	Inability to conduct dTMB gas pumping	Pressure switch tripped indicating low nitrogen pressure	Halt NBI and dTMB operation as appropriate. Trouble shoot and repair. Once on line resume normal operation	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 87 of 115

WBS Element: 3.6 Deuterated Trimethylboron (dTMB) System (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Plasma discharge current stops during dTMB injection	dTMB does not break down and deposit on surfaces. dTMB pumps through NSTX vacuum system. Vent stack purged with nitrogen, so no possibility of combustion in vent stack	The plasma current interlock senses low plasma current and automatically shuts down dTMB injection	Restart plasma discharge and return to operation. If repeated failure of system to maintain plasma current, trouble shoot system up to and including aborting dTMB operation.	ANTICIPATED	MINIMAL
Ventilation air flow rate too low for gas cabinet or MFC box	Not enough ventilation for dTMB gas cabinet and MFC box. dTMB gas injection halted	Pressure differential switch tripped indicating high air pressure at the inlet of the exhaust duct	Trouble shoot and repair	UNLIKELY	MINIMAL
Compressed air pressure too low for the solenoid valve manifold	Inability to operate the pneumatic valves	Pressure switch tripped indicating low compressed air pressure at the inlet of the solenoid valve manifold	Trouble shoot and repair	UNLIKELY	MINIMAL
Coaxial jacket volume leakage	Inability to conduct dTMB gas injection	Coaxial jacket pressure instrumentation monitored by PLC	Abort dTMB operation. Evacuate all gas delivery and injections lines. Trouble shoot and repair the leaking line	UNLIKELY	MINIMAL
Gas pressure at vacuum pump exhaust too high	Inability to conduct dTMB gas pumping	Pressure switch tripped indicating high pressure at the outlet of the dry mechanical vacuum pump	Trouble shoot and repair	UNLIKELY	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 88 of 115

4 Plasma Diagnostics

WBS Element: 4X Diagnostics Component: Plasma Current Rogowski Coils See Footnote⁴⁰

Function: Two (2) Plasma Current Rogowski Coils provide redundant measurements of plasma current

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Shorted turns	Reduced voltage per unit of	Difference between	Adjust scaling, replace	LOW	MINIMAL - us
	plasma current derivative	redundant	coil if and when NSTX		redundant senso
		measurements	center stack removed		and continue
			and disassembled		plasma operation
Open circuit	Loss of signal	Difference between	Revert to single	LOW	MINIMAL - us
		redundant	measurement, replace		redundant senso
		measurements	coil if and when NSTX		and continue
			center stack removed		plasma operation
			and disassembled		
Groundwall insulation failure	Common mode voltage	Noisy signal	Revert to single	LOW	MINIMAL - us
to OH ground plane	electrically coupled into		measurement, replace		redundant senso
	integrator circuitry		coil if and when NSTX		and continue
			center stack removed		plasma operation
			and disassembled		

A large variety of diagnostics are planned for NSTX. The diagnostic components evaluated herein are those which are essential for machine operations

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 89 of 115

WBS Element: 4X Diagnostics Component: Plasma Current Rogowski Coils (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Groundwall insulation failure to center stack casing ⁴¹	If non-CHI operations or CHI operations with center stack casing grounded, common mode voltage electrically coupled into integrator circuitry. If CHI operations with center stack casing energized, fault path for CHI power system, possible destruction of coil, arcing, burning, melting of leads to integrator rack and/or integrator circuit board	If non-CHI operations or CHI operations with center stack casing grounded, noisy signal. If CHI operations with center stack casing energized, CHI power supply system ground fault and/or overcurrent detection	Revert to single measurement, replace coil if and when NSTX center stack removed and disassembled	LOW	MINIMAL - us redundant senso and continue plasma operation
Integrator failure	Signal error	Difference between redundant measurements	Troubleshoot and repair/replace	LOW	minimal - us redundant senso and continue plasma operation

WBS Element: 4X Diagnostics Component: Flux Loops

Function: Single turn flux loops (redundant pairs, each loop wired to instrument rack, one instrumented) installed at approx.

50 locations inside/outside vacuum vessel. Used for plasma control (shape reconstruction) and calculation of eddy

currents in conducting passive structures.

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Open circuit	Loss of signal	Abnormal magnetic	Revert to spare loop,	LOW	MINIMAL - us
		reconstruction	replace failed loop when		redundant senso
			accessible		and continue
					plasma operation

See FMEA for Center Stack Casing (WBS 1.3.3) for electrical failure of center stack thermal insulation

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 90 of 115 $\,$

WBS Element: 4X Diagnost	ics Component:	Flux Loops			
Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Groundwall insulation failure to structure at same circuit common as instrumentation	Small common mode voltage electrically coupled into integrator circuitry	Noisy signal	Revert to spare loop, replace failed loop when accessible	LOW	MINIMAL - us redundant senso and continue plasma operation
Center stack flux loop (around OH coil ground plane) groundwall insulation failure to center stack casing ⁴²	If non-CHI operations or CHI operations with center stack casing grounded, small common mode voltage electrically coupled into integrator circuitry. If CHI operations with center stack casing energized, fault path for CHI power system, possible destruction of loop, arcing, burning, melting of leads to integrator rack and/or integrator circuit board	If non-CHI operations or CHI operations with center stack casing grounded, noisy signal. If CHI operations with center stack casing energized, CHI power supply system ground fault and/or overcurrent detection	Diagnose extent of failure and damage, repair and replace as required.	LOW	MINIMAL - us redundant senso and continue plasma operation
Integrator failure	Signal error	Abnormal magnetic reconstruction	Troubleshoot and repair/replace	LOW	MINIMAL - us redundant senso and continue plasma operation

WBS Element: 4X Diagnostics Component: Thermocouples

Function: Thermocouples (approx. 50 in vessel, 20 ex-vessel) installed on PFC backplates, vacuum vessel, center stack casing,

and OH groundwall insulation. In general, toroidal redundancy is provided (for each poloidal location, several

toroidal locations are instrumented).

Failure Mode Open circuit or short circuit	Effect Loss of signal	Detection Signal outside normal range, alarm via EPICS Process Control	Recovery Use nearby thermocouples or others in same poloidal location	Probability LOW	Consequence MINIMAL - use redundant sensor and continue plasma operation
Groundwall insulation failure to structure at same circuit common as instrumentation	Small common mode voltage electrically coupled into monitoring circuitry, signal noisy during pulse	Noisy signal during pulse	Ignore noisy signal during pulse	LOW	MINIMAL - us redundant senso and continue plasma operation
Center stack thermocouple (around OH coil ground plane) groundwall insulation failure to center stack casing ⁴³	If non-CHI operations or CHI operations with center stack casing grounded, small common mode voltage electrically coupled into monitoring circuitry. If CHI operations with center stack casing energized, fault path for CHI power system, possible destruction of thermocouple, arcing, burning, melting of leads to instrument rack and/or monitoring circuitry board	If non-CHI operations or CHI operations with center stack casing grounded, noisy signal. If CHI operations with center stack casing energized, CHI power supply system ground fault and/or overcurrent detection	Ignore noisy signal during pulse. If failure, diagnose extent of failure and damage, repair and replace as required.	LOW	MINIMAL - us redundant senso and continue plasma operation
Monitoring electronics failure	Signal error	Signal outside normal range, alarm via EPICS Process Control	Troubleshoot and repair/replace	LOW	MINIMAL - us redundant senso and continue plasma operation

⁴³

See FMEA for Center Stack Casing (WBS 1.3.3) for electrical failure of center stack thermal insulation

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 92 of 115

5 Power Systems

WBS Element: 5X Power Systems Component: AC Power Systems (WBS 5.1)

Function: AC Power Systems receives power from the 138kV utility grid and supplies all electrical power to the NTSX

experiment - this includes Auxiliary (House) AC Power and Experimental AC Power.

Failure Mode Loss of 138kV AC power to PPPL	Effect Interruption of NSTX operations, Vital loads supplied immediately by UPS power: - NTC Fire Protection Panel - NTC Emergency Lighting - HIS Critical loads supplied by Standby Diesel Generator after start up delay of approximately 10 seconds: - NTC Cooling Water Skids & PLC - NTC Vacuum Pumping Skids & PLC - NTC Lighting - NSTX Control Room - NBI Helium Refrigeration and Water Systems	Detection Various	Recovery Await restoration of power	Probability NORMAL	Consequence MINIMAL
Loss of AC power to any/all components of Cooling Water System	If pumps, cooling water flow ceases; if automatic valves, valves remain in last position, all valves remain manually operable	PLC and EPICS Process Control	Await restoration of power	NORMAL	MINIMAL
Loss of AC power to any/all components of Vacuum Pumping System and Gas Delivery System	All components revert to safe state	PLC and EPICs Process Control	Await restoration of power	NORMAL	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 93 of 115

WBS Element: 5X Component: AC Power Systems (cont'd) Power Systems

Failure Mode
Standby Diesel Generator
failure during 138kV utility
outage

Effect All components revert to safe Loss of power state. If bakeout underway⁴⁴, revert to alternate 26kV line to PPPL or, if 26kV not available, configure cooling water system valves to circulate municipal water supply through OH coil. Loss of power to Helium Refrigeration System; regeneration of cryopanels, possible rupture of burst disks, possible freezing of water cooling lines (see NBI FMEA).

Detection

Recovery Await restoration of power

Probability NORMAL

Consequence MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 94 of 115

WBS Element: 5X Power Systems Component: AC/DC Power Supply Converters

Function: The AC/DC Power Supply Converters (a.k.a. Transrex power supplies) convert AC power to controlled DC power

in the TF, PF, OH, and CHI circuits.

Failure Mode

Thyristors failure to block voltage when system has been disarmed (requires that ≥ 2 Master Gate Drivers suffer spurious missfire, or ≥ 4 thyristors suffer spurious missfire without MGD pulse). Note: since the permissive relay contacts directly disable the MGD optodriver boards, control failures (firing generator, Central I&C, etc.) cannot cause this fault.

Effect

Voltage applied to output terminals, unintended flow of current in the coils if SDS line switches closed and SDS ground switches open. Will result in Level 1 fault, followed by Level 2 fault and AC breaker trip

Detection

Power supply fault detector will detect loss of permissive during pulse, (internal power supply Level 1 faults), and failure to suppress firing (Level 2 fault and AC circuit breaker trip).

RecoveryTroubleshoot and repair

Probability
ANTICIPATE

Consequence MINIMAL

D

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 95 of 115

AC/DC Power Supply Converters (con't) WBS Element: 5X Power Systems Component:

T	•	B 4	-
H'OI	lure	N/I 4	$\Delta \mathbf{r}$
r ai	ıuı c	TAT	Juc

Loss of normal thyristor gate pulse control due to:

- miscellaneous power supply internal fault conditions detected by power supply fault detector
- firing generator malfunction
- master gate driver malfunction
- loss of incoming 13.8kV
- loss of 120V control power

Effect

Output voltage waveform not in accordance with PSRTC software command, load (coil) current not controllable, possible overcurrent or excessive duration of current. After detection of fault. shutdown by suppress, bypass action with delivery of additional volt-seconds to load depending on AC sine wave phase angle at time of fault initiation, possible AC feeder breaker trip. Current waveform after fault depends on time delay to suppress/bypass, phase angle at time of suppress/bypass initiation, and load inductance, as well as shutdown sequence of mutually coupled circuits⁴⁵

Detection

PSRTC software branch and/or load overcurrent detection, Power supply fault detector including section overcurrent, module overcurrent, and overtime detection (internal power supply Level 1 faults), DCPS) overcurrent and fi²(t)dt detection (external Hardwired Control System (HCS) Level 1 faults), AC feeder breaker overcurrent and overtime detection

Recovery

Troubleshoot and repair or swap power supplies if spare available

Probability

Consequence

ANTICIPATE MINIMAL D

⁴⁵ PSRTC shuts down circuits individually, whereas HCS faults result in common shutdown amongst mutually coupled circuits

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 96 of 115 er Systems Component: AC/DC Power Supply Converters (con't) WBS Element: 5X Power Systems

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Failure to suppress/bypass	Continued flow of current in	Power supply fault	Troubleshoot and repair	ANTICIPATED	MINIMAL
after internal Level 1 fault	converter transformer and	detector Level 2 fault	1 1 11		
	application of voltage to load	detection and AC	if spare available		
	following initial fault	feeder breaker			
	detection, transition to power	overcurrent and			
	supply internal Level 2 fault	overtime detection			
	state, command to trip AC				
	feeder breaker, AC feeder				
	breaker trip				
Ground fault	Shift in voltage to ground	Power supply system	Troubleshoot and repair	ANTICIPATED	MINIMAL
	around circuit, small leakage	ground fault	or swap power supplies		
	current to ground (limited by	detection	if spare available		
	high resistance grounding),				
	suppress/bypass per HCS				
	Level 1 fault				
CHI power supply delivers	This interlock yet to be	Absence of TF	Diagnose and	ANTICIPATED	MINIMAL
current without B_{tf} > threshold	provided	current above	troubleshoot		
due to control failure		threshold and of			
		correct polarity			

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 97 of 115

WBS Element: 5X Power Systems Component: Safety Disconnect Switches

Function: The Safety Disconnect Switches (SDS) provide two pole no load line disconnect switches and two pole grounding

switches which connect the power supply system to the load. They serve to isolate the NTC from electrical hazards due to the power supply system during access to the NTC via interlocks in the Safety Lockout Device (SLD). They

include spark gaps and non-linear resistors (surge arrestors) connected to ground.

Failure Mode Line switch fail to open	Effect Unable to effect normal isolation of power supply system from load, unable to place SLD in "safe" state, unable to access NTC	Detection Limit switch detectors monitored by EPICS Process Control, HCS, SLD, and HIS	Recovery Provide alternate means of isolating energy source (e.g. rack out AC feeder breakers), troubleshoot and repair	Probability ANTICIPATED	Consequence MINIMAL
Line switch fail to close	Unable to connect power supply system to load	Limit switch detectors monitored by EPICS Process Control, HCS, SLD, and HIS	Troubleshoot and repair	ANTICIPATED	MINIMAL
Ground switch fail to close	Unable to effect normal grounding of power supply system, unable to place SLD in "safe" state, unable to access NTC	Limit switch detectors monitored by EPICS Process Control, HCS, SLD, and HIS	Provide alternate means of isolating energy source (e.g. rack out AC feeder breakers), troubleshoot and repair	ANTICIPATED	MINIMAL
Ground switch fail to open	Unable to place power supply system in operating configuration (unable to "arm")	Limit switch detectors monitored by EPICS Process Control, HCS, SLD, and HIS	Troubleshoot and repair	ANTICIPATED	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 98 of 115

WBS Element: 5X Power Systems Component: Safety Disconnect Switches (cont'd)

Fail	ure	Mo	de

Line switch limit switch failure, or short or open in wiring

Effect

Disparity between status of the two limit switches mounted on the two line switch poles actuated by common pneumatic mechanism; if line switches are open and failed limit switch indicates closed, unable to place SLD in safe state, and data highlighted as erroneous on EPICs display. If line switches are closed and failed limit switch indicates open, data highlighted as erroneous on EPICs display.

Detection
Limit switch detectors
are monitored by
EPICS Process Control
and SLD

Recovery

Troubleshoot and repair

ProbabilityANTICIPATED

Consequence MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 99 of 115

WBS Element: 5X Power Systems Component: Safety Disconnect Switches (cont'd)

Failure Mode

Ground switch limit switch failure

Effect

Error in status reported by the single limit switch mounted on the common pneumatic mechanism which actuates the two ground switch poles; if ground switches are open and failed limit switch indicates closed, SLD electrical interlock would not block transition to the safe state with switches open⁴⁶. If ground switches are closed and failed limit switch indicates open, could close line switches and arm power supplies with ground and short circuit on system, possible ground and overcurrent condition

Detection

If fail to indicate open, would close (audible event in FCPC building) upon venting SLD. If fail to indicate closed, ground fault and overcurrent detection, HCS Level 1 fault

Recovery

Troubleshoot and repair

ProbabilityANTICIPATED

Consequence MINIMAL

Probability of overall event sequence leading to SLD transition to safe state with switches open is remote because, in addition to the electrical interlock, the air supply is cut off and vented and the ground switches, which require air pressure to remain open, will be forced closed by mechanical springs and will remain closed even if commanded to open.

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 100 of 115 ver Systems Component: Safety Disconnect Switches (cont'd) WBS Element: 5X Power Systems

Failure Mode Pressure switch failure, or short or open in wiring	Effect Error in status reported by pressure switch on the pneumatic reservoir; if reservoir is vented and failed switch indicates pressure, unable to place SLD in safe state. If reservoir is not vented and failed switch indicates vented, SLD could transition to safe state with pressure remaining in reservoir. If ground or line switches changed state as a result of this pressure being available, electrical interlocks in SLD would issue an E-Stop condition, all ground switches would close, all line switches would open, and all AC feeder circuit breakers would open.	Detection If pressure switch status stuck indicating vented condition, would report erroneous data when pressurized (would be noticed on EPICs mimic display if failure affected EPICs signal). If pressure switch status stuck indicating pressurized condition, unable to place SLD into safe state.	Recovery Troubleshoot and repair	Probability ANTICIPATED	Consequence MINIMAL
Ground switch fail to open	Unable to place power supply system in operating configuration (unable to "arm")	Limit switch detectors monitored by EPICS Process Control, HCS, SLD, and HIS	Troubleshoot and repair	ANTICIPATED	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 101 of 115

WBS Element: 5X Power Systems

Component:

Safety Disconnect Switches (cont'd)

Failure Mode Loss of contact pressure on line switch blades	Effect High contact electrical resistance, possible arcing, melting, burning	Detection Maintenance (mechanical adjustment and joint resistance measurement) and inspection (temperature stickers)	Recovery Troubleshoot and repair	Probability ANTICIPATED	Consequence MINIMAL
Spark gap electrical breakdown ⁴⁷	Ground fault, small leakage current (limited by high resistance grounding), redistribution of voltage to ground, Level 1 (power supply suppress/bypass) shutdown	Power supply system ground fault detection	Troubleshoot and readjust	ANTICIPATED	MINIMAL
Surge arrestor electrical breakdown (due to energy overload)	Arcing and burning within SDS metal enclosed cabinet (or, in case of CHI, within metal enclosure containing additional protection unit located in NSTX Test Cell)	Depending on cause, Power supply system ground fault detection and/or power supply overcurrent condition	Replace	ANTICIPATED	MINIMAL
DC Potential Transducer (DCPT) failure	Error in measurement of voltage to ground (information only signal: not used for control or interlocking)	Abnormal signal	Troubleshoot and repair	ANTICIPATED	MINIMAL

4-

Spark gaps are not required for NSTX but cannot be removed (built into the ground switches); they will be adjusted out of normal range of voltage

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 102 of 115

WBS Element: 5X Power Systems Component: DC Current Transducers

Function: The DC Current Transducers (DCCTs) measure the branch currents in the power supply system, which sum to the

load currents in the NSTX coils and CHI circuit. They consist of, in most cases "Halmar" zero flux non-contact transducers, and in some cases "shunts" (current viewing resistors) whose voltage drop is transmitted to ground potential using a fiber optic v/f-f/v link. The signals are received by a "Halmar Signal Conditioner" which provides buffering and fan out to the various destinations. Redundant measurements of load current provided in all cases.

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Excessive drift or failure of electronics	Measurement error, possible current control error (control in PSRTC shifts to signal with largest magnitude), interruption of pulse via	Comparison with redundant measurement in PSRTC software (alarm) and in DCPS (HCS Level 1 fault)	Troubleshoot and repair	ANTICIPATED	MINIMAL
Loss of AC power	PSRTC or HCS Level 1 suppress/bypass shutdown Loss of AC Power to DCCT; HCS will invoke a	"	···	NORMAL	MINIMAL
	Level 1 Fault"				

WBS Element: 5X Power Systems Component: DCPS

Function: The DCPS receives the output of redundant DCCTs from coil circuits. It compares redundant signals and performs

single time constant exponential $\int 2(t)dt$ simulation (heating and cooling) to detect current/time overloads, and detects overcurrents. Performs force computations. DCPS code is redundant in FCC PCS computer and junction

area computer. DCPS uses a fail safe design

Failure Mode Fail to detect DCCT discrepancy	Effect None, redundant DCPS	Detection Operational diagnosis of system fault response or maintenance/test	Recovery Troubleshoot and repair	Probability NORMAL	Consequence MINIMAL
Fail to detect overcurrent	None, overcurrent detected in redundant, DCPS, power supply fault detectors, AC	Operational diagnosis of system fault response or	Troubleshoot and repair	UNLIKELY	MAJOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 103 of 115

Fail to detect fi2(t)dt overload	feeder protective relaying None, detected in redundant	maintenance/test Operational	Troubleshoot and repair	UNLIKELY	MAJOR
during pulse	detection in DCPS, power supply fault detectors, AC feeder protective relaying	diagnosis of system fault response or maintenance/test	Troubleshoot and repair	ONLINELI	WI GOK
Fail to detect fi2(t)dt overload caused by repetition rate error by operators	Abnormally high temperatures before and after pulse trip water PLC issues L1 fault		Troubleshoot and repair	UNLIKELY	MAJOR
Fail to detect excessive forces	None, condition detected in redundant DCPS algorithms	Operational diagnosis of system fault response or maintenance/test	Troubleshoot and repair	UNLIKELY	MAJOR
PDP timer failure	Wrong signal or sequence of signals from the PDP timer. DCPS SW indication only.	Hardware checks for proper input from the PDP timer. Faulty input cause a L1 fault	Troubleshoot & repair	ANTICIPATED	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 104 of 115

WBS Element: 5X Power Systems Component: DCPS (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Water Sys. PLC failure	Wrong signal or permissive	DCPS hardware checks for proper input from the water system PLC. Faulty input cause a L1 fault	Troubleshoot & Repair	Anticipated	Minor
DCPS software exception	System mis-operation or system is rendered inoperable	Detected by software and/or OS. Software exceptions will stop the system heartbeat causing a L1 fault	Troubleshoot & Repair	Anticipated	Minor
Computer PS failure	System rendered inoperable	Detected in hardware. Redundant power supplies automatic switchover	Troubleshoot & Repair	Anticipated	Minor
Computer HDD mis- operation or failure	System rendered inoperable	Detected in hardware. System uses 2 HD's configured for RAID 1 (mirroring)	Troubleshoot & Repair	Anticipated	Minor
DCPS computer OS misoperation or failure	System mis-operation or system is rendered inoperable	Computer system crash. OS crashes will stop the system heartbeat causing a L1 fault	Troubleshoot & Repair	Anticipated	Minor
Network failure	Inability to get or write DCPS data via the network	Software detection. A network failure during the shot has no effect. At all other times a network failure will not allow a shot to start	Troubleshoot & Repair	Anticipated	Minor

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 105 of 115

WBS Element: 5X Power Systems Component: DCPS (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Input AC power failure	Loss of input AC power would render system inoperable, especially serious during a shot	Detected by UPS system. UPS system can supply power for some time (longer than shot cycle) and initiate a clean system shutdown	Troubleshoot & Repair	Anticipated	Minor
Mode mismatch	System inputs are configured for test-mode when we are in OPS mode	Mode configuration consistency bit is input to DCPS and checked against run mode. System will not allow a shot in the case of a mode mis-match. L1 fault.	Troubleshoot & Repair	Anticipated	Minor
Shot sequence failure (RCIM input failure)	Faulty shot sequence	DCPS software checks for proper shot sequence. DCPS heartbeat failure will result in watchdog timer timeout results in L1 fault	Troubleshoot & Repair	Anticipated	Minor
Mode mismatch	Inconsistent setup detected by interface system	Consistency check performed in the interface system. L1 fault is generated by the interface system	Troubleshoot & Repair	Anticipated	Minor

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 106 of 115

WBS Element: 5X Power Systems Component: Analog Coil Protection (ACP)

WBS Element: 5X Power Systems Component: Ground Fault Detection

Function: The Ground Fault Detection system monitors the current through the high resistance grounding resistors located

in the SDS cabinets. The current is sensed via an electromagnetic relay as well as an electronic level detector.

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Electromagnetic relay	Overall I vs. T limits based on	Maintenance testing	Troubleshoot and repair	UNLIKELY	MAJOR
malfunction	electronic level detector only				
Electronic sensor malfunction	Overall I vs. T limits based on	Maintenance testing	Troubleshoot and repair	UNLIKELY	MAJOR
	electromagnetic relay level				
	only				

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 107 of 115

WBS Element: 5X Power Systems Component: Power Supply Real Time Controller (PSRTC)

Function: The Power Supply Real Time Controller (PSRTC) provides control of the voltage and current delivered by the power supply system to the NSTX coils and CHI circuit. It includes the computer processors and I/O equipment located in and associated with the "Skybolt/DAS" computer system as well as the "Power Conversion Link" (PC Link) which delivers the PSRTC commands to the individual AC/DC converters.

Failure Mode Delivery of excess current magnitude due to, software, computer, or I/O failure	Effect Overcurrent (level depends on failure mechanism, circuit in question, protection settings), HCS Level 1 fault (suppress bypass), possible AC feeder breaker trip	Detection DCPS, power supply fault detector, AC feeder protective relaying	Recovery Diagnose, troubleshoot and repair if required	Probability NORMAL	Consequence MINIMAL
Delivery of excess \(\int 2(t) \) dt due to, software, computer, or I/O failure	Excessive temperature rise in load (level depends on failure mechanism, circuit in question, protection settings), HCS Level 1 fault (suppress bypass), possible AC feeder breaker trip	DCPS (exponential heating/cooling simulation), (overtime), power supply fault detector (overtime), AC feeder protective relaying (overtime)	Diagnose, troubleshoot and repair if required	NORMAL	MINIMAL
Delivery of excess rms current due to operator error (repetition rate too high)	Excessive ratcheting of load temperature (level depends on failure mechanism, circuit in question, protection settings), HCS Level 1 fault (suppress bypass), possible AC feeder breaker trip	DCPS(exponential heating/cooling simulation), (overtime), AC feeder protective relaying (thermal replica)	Diagnose, troubleshoot and repair if required	NORMAL	MINIMAL

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 108 of 115

WBS Element: 5X Power Systems

Component:

PSRTC (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
Delivery of OH and PF1b current combination producing excess axial force in (+) z direction (launching load) due to software or I/O failure	-DCPS indicates Ioh > threshold in appropriate direction and initiates Level 1 Fault	Absence of PF1b current	Diagnose and troubleshoot	ANTICIPATE D	MINOR

WBS Element: 5X Power Systems Component: Hardwired Control System

system, Level 1 HCS Fault

(suppress/bypass)

Function: The Hardwired Control System (HCS) provides interlocks which prevent misoperation/misconfiguration of the

power supply systems and which interface with the overall Hardwired Interlock System (HIS). Two fault levels (1 and 3) are communicated throughout each system using both series and parallel loops, referred to as L1S, L1P,

L3S, L3P.

Failure Mode Power Supply Arm Permissive interlock chain, one or more input contact states invalid (do not reflect true equipment state)	Effect Possible power supply operation in invalid configuration or with equipment status not ready, possible overcurrent or	Detection DCPS, power supply fault detector, ground fault detector, AC feeder protective relaying	Recovery Diagnose, troubleshoot and repair if required	Probability ANTICIPATE D	Consequence MINOR
	ground fault on power supply	-			

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 109 of 115

WBS Element: 5X Power Sy	estems Component:	Hardwired Contr	rol System (cont'd)			
Failure Mode Configure Permissive interlock chain, one or more input contact states invalid (do not reflect true equipment state)	Effect Possible SDS operation in invalid configuration, possible overcurrent or ground fault on power supply system, Level 1 HCS Fault (suppress/bypass)	Detection DCPS, power supply fault detector, ground fault detector, AC feeder protective relaying	Recovery Diagnose, troubleshoot repair if required	and	Probability ANTICIPATED	Consequence MINOR
Level 1 or Level 3 fault line, series loop short circuit results in bypass of status from power supplies to HCS	None, redundant parallel lines	Disagreement between L1S and L1P (or L3S and L3P) states.	Diagnose, troubleshoot repair if required	and	ANTICIPATED	MINOR
Level 1 or Level 3 fault line, parallel loop open circuit results in disconnect of status to/from power supplies & HCS	Redundant series lines, but slower fault response of PS to HCS (approx 50 mS), disconnected power supplies g to fault state upon open circuit and report to HCS via series loop	L1P (or L3S and L3P) states.	Diagnose, troubleshoot repair if required	and	ANTICIPATED	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 110 of 115

6 Central Instrumentation and Control (I&C)

WBS Element: 6X Central I&C Component: EPICS Process Control System

Function: The Experimental Physics Instrumentation and Control System (EPICS) Process Control System provides the

operator interface for non-real time control and monitoring of the NSTX device

Failure Mode Any failure mode	Effect No deleterious effect on equipment or personnel safety; all NSTX systems required to be immune to failure of Central I&C in this regard. Operations will be interrupted. Information regarding status of facility, beside that reported via the HIS, may not be available to	Detection Various	Recovery Diagnose, troubleshoot and repair if required	Probability UNLIKELY	Consequence MINOR
	the operators.				

WBS Element: 6X Central I&C Component: MDS+ Data Acquisition System

Function: The Modular Data Systems Plus (MDS+) Data Acquisition System provides the operator interface for diagnostics control and

monitoring of the NSTX device, and provides facility for archiving experimental data

monitoring of the NSTX device, and provides facility for archiving experimental data								
Failure Mode	Effect	Detection	Recovery	Probability	Consequence			
Any failure mode	No deleterious effect on equipment or personnel safety; all NSTX systems required to be immune to failure of Central I&C in this regard. Operations will be interrupted. Information regarding status of facility, beside that reported via the HIS, may not be available to the operators.	Various	Diagnose, troubleshoot and repair if required	UNLIKELY	MINOR			

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 111 of 115

WBS Element: 6X Central I&C Component: Safety System

Function: The Safety System consists of the Hardwired Interlock System (HIS) and the Safety Lockout Device (SLD). The

HIS provides permissives to the power supply, RF, and NBI systems which enable them to be configured and operated. The SLD monitors the status of the power supply system safety disconnect switches and provides a "Safe" signal only when all switches are in the safe position and the compressed air supply (which actuates the switches) has been vented. Two search and secure loops are provided, one for the NSTX Test Cell and one for the

cable spread room. These loops must be armed in order for permissives to be issued.

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
HIS UPS failure	E-stop condition, permissives to power supply, RF, and NBI systems removed, search and secure loops drop out, status indications in control room not functional.	Loss of indications on HIS control panel in NSTX control room	Troubleshoot and repair	LIKELY	MINOR
SLD electrical interlock failure indicating SDS ground switches in safe condition when in unsafe state	Overall SLD "Safe" status not achieved, since SDS ground switches cannot be open without air supply, and SLD"Safe" status not issued if air supply still available	EPICs Process Control in combination with SLD status indicator lamps	Troubleshoot and repair	VERY UNLIKELY	MAJOR
SLD electrical interlock failure indicating SDS ground switches in an unsafe condition when in safe state	Unable to achieve "Safe" status required for area access	EPICs Process Control in combination with SLD status indicator lamps	Troubleshoot and repair	VERY UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 112 of 115

WBS Element: 6X Central I&C Component: Safety System (cont'd)

Failure Mode	Effect	Detection	Recovery	Probability	Consequence
SLD electrical interlock failure indicating SDS line switches in safe condition when in unsafe state	Loss of one level of isolation. However, permissive to power supply AC/DC converters not issued in "Safe" state. Even if AC/DC converters failed to block, closed ground switches would prevent high voltage from appearing on bus bars in NSTX Test Cell	EPICs Process Control in combination with SLD status indicator lamps	Troubleshoot and repair	VERY UNLIKELY	MINOR
SLD electrical interlock failure indicating SDS line switches in unsafe condition when in safe state	Unable to achieve "Safe" status required for area access	EPICs Process Control in combination with SLD status indicator lamps	Troubleshoot and repair	VERY UNLIKELY	MINOR
SLD electrical interlock failure indicating compressed air vented when pressure still present	Loss of one level of prevention of SDS line or ground switch changing state to unsafe position. However, electrical interlocks still in effect. In case a switch changed state, an E-stop would result.	EPICs Process Control in combination with SLD status indicator lamps	Troubleshoot and repair	VERY UNLIKELY	MINOR
SLD electrical interlock failure indicating compressed air not vented after venting has occurred	Unable to achieve "Safe" status required for area access	EPICs Process Control in combination with SLD status indicator lamps	Troubleshoot and repair	VERY UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 113 of 115

WBS Element:	6X Cent	ral I&C Compone	ent: Safety Syst	em (cont'd		
Failure Mode HIS interface wiring permissive, status, s secure, etc.) open ci short circuit	earch and	Effect None, receiving end will revert to safe condition since all signals are 120VAC sourced and energized in saf state	8	Recovery Troubleshoot and repair	Probability VERY UNLIKELY	Consequence MINOR
Search and secure lo stuck in armed posit		Search and secure procedure which first drops the loop, will reveal the deficiency	Loop does not drop when door to area is opened.	Troubleshoot and repair	VERY UNLIKELY	MAJOR

9 Operations

WBS Element: Operations

Function: Operations personnel (Chief Operations Engineer (COE), Power Supply Engineering In Charge (EIC), and Field

Coil Power Conversion (FCPC) operators) set the configuration of the power supply system and program the

PSRTC.

Failure Mode Programming of input data leading to excess current magnitude, $\int i2(t)dt$, or duration	Effect Fault detected by PSRTC, suppress/bypass shutdown	Detection PSRTC	Recovery Correct programming error	Probability UNLIKELY	Consequence MINOR
Programming of CHI operation with incorrect Btf magnitude and polarity	None; Master Gate Drivers (MGDs) of CHI power supplies are blocked unless RIS indicates Itf > threshold	Absence of CHI current	Correct programming error	UNLIKELY	MINOR
Programming of OH and PF1b current combination producing excess axial force in (+) z direction (launching load) due to operator error	Fault detected by PSRTC, suppress/bypass shutdown	PSRTC	Correct programming error	UNLIKELY	MINOR

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 114 of 115

WBS Element: Operations (cont'd)

Failure Mode Excess applied voltage due to operator error, too many power supply sections connected in series (administrative procedures not correctly followed) ⁴⁸	Effect Safety Disconnect Switch (SDS) surge arrestor voltage limiting, possible surge arrestor energy overload and short circuit, short circuit on power supplies, overcurrent, suppress/bypass per HCS Level 1 fault	Detection Power supply module and section overcurrent detection	Recovery Replace arresters	Probability UNLIKELY	Consequence MEDIUM
Voltage unbalance in parallel or antiparallel configurations due to operator error (administrative procedures not correctly followed), unequal number of power supply sections in parallel or antiparallel strings	Short circuit current circulating between antiparallel strings, possible electrical breakdown of thyristors/snubber components, suppress/bypass per HCS Level 1 fault	Power supply fault detector section and module overcurrent	Reconfigure, replace modules if damaged	UNLIKELY	MEDIUM
CHI power supply connected (line switches closed) but PSRTC not in normal (plasma) mode	Pulse inhibited	PSRTC	Open switches or switch PSRTC modes	UNLIKELY	MINOR

Kirk Keys which permit the insertion of power supplies not planned for NSTX use will be removed and stored elsewhere via administrative procedures (e.g. in the D-site Shift Supervision lock box); therefore the probability of this failure is considered to be remote

NSTX Failure Modes & Effects Analysis / NSTX-FMEA-71-10 / p. 115 of 115

WBS Element: Operations (cont'd)

Failure Mode Upper/lower PF coil currents opposite polarity due to operator error (administrative procedures not correctly followed) ⁴⁹ , incorrect SDS bus link configuration (PF1aU/L, PF2aU/L, PF3aU/L)	Effect Repulsive instead of attractive axial forces between coils, possible mechanical damage to coil supports, coil displacement, possible coil damage	Detection Abnormal magnetic topology and coil impedance	Recovery Reconfigure links, repair damage (if any)	Probability UNLIKELY	Consequence MEDIUM
Attempt to operate power supply system with SDS ground switches closed	None, prevented by HCS interlock	No response to command to HIS arm permissive	Open ground switches	UNLIKELY	MINOR
Attempt to open SDS line switches under load	None, prevented by HCS interlock (power supply and configure permissives are mutually exclusive)	No response to EPICS process control command	Disarm power supplies, place HIS system into "configure"	UNLIKELY	MINOR

**** END OF FMEA ****

Reconfiguration of bus links is a lengthy procedure typically performed by one or more technicians under the supervision of the FCPC EIC via administrative procedures; therefore this failure mode would require incorrect action on the part of several individuals over a period of several hours. On this basis the probability of this failure is considered to be small.