

Systems Requirements Document for the FCPC New Fault **Detector for the NSTX Upgrade Projects**

Revision 0

(NSTX-SRD-5X-116-00)

REVIEWED BY:____

J. E. Lawson

REVIEWED BY: S. Ramakrishnan

REVIEWED BY:_____ R. Marsala

APPROVED BY: C. Neumeyer

Table of Contents

1. Overview	W	1		
2. General	Specifications	1		
2.1. Me	chanical	1		
2.2. Ana	log Inputs	1		
2.2.1.	Input Voltage Range	1		
2.2.2.	Input filtering to provide for proper Nyquist-Shannon sampling	1		
2.3. DC	CT	2		
2.4. Use	r Interface	2		
2.4.1.	Front Panel	2		
2.4.2.	Web Server	2		
2.4.3.	EPICS Compatibility	2		
2.4.4.	Configuration Files	2		
2.4.5.	Removable Storage	2		
2.4.6.	Real World Values	2		
2.5. Dig	ital Inputs	3		
2.6. Ana	log Outputs	3		
2.7. Dig	ital Outputs	3		
2.7.1.	Electrical Characteristics	3		
2.7.2.	Fault Outputs	3		
2.8. Mo	nitoring and Data Storage	3		
2.8.1.	Limits	3		
2.8.2.	Internal Testing	3		
2.8.3.	Test Points	3		
2.8.4.	Analog Value Storage	3		
2.8.5.	Change of State Storage	4		
2.9. Fac	ility clock interface	4		
3. Fault De	etection Scenarios	6		
4. Chassis connectors				
5. Simplified Block Diagram				

Listing of Figures

Figure 1 – Fault Detection Scenarios	6
Figure 2 – Chassis Connectors	7
Figure 3 – Existing Connectors	8
Figure 4 - Simplified Block Diagram of the New Fault Detector	9

Note: This SRD has also been reviewed by: R Hatcher, J. Corl, Xin Zhao, Weigeo Que and G. Baker.

1. Overview

This proposal is to replace the existing fault detector and all associated CAMAC modules used in the existing Transrex power supplies. The new fault detector will consist of two independent sections, one for each rectifier section and a common communications section, see block diagram on page 10. The new unit will use all existing cables and connectors for existing signals, but can add new connectors for new signals, such as Ethernet communications. New signals can also be added to unused pins on the existing connectors. The new unit can use the existing DC voltages for power as long as it draws no more current from these lines than the existing unit uses. Optionally 110VAC can be supplied to the new fault detector for new internal power supplies.

2. General Specifications

2.1. Mechanical

The new fault detector shall be mounted in a standard 19" relay rack. The unit can be no larger than $12^{1}/4$ " high and $23^{1}/2$ " deep. All connectors required for operation will be on the rear panel. Test and diagnostic connectors can be mounted to the front panel. The unit shall be designed to operate from 0°C to 50°C.

2.2. Analog Inputs

The analog inputs to the fault detector must have the following characteristics.

2.2.1. Input Voltage Range

• ± 10.0 volt and ± 0.200 volts

2.2.2. Input filtering to provide for proper Nyquist-Shannon sampling .

- 4kHz 5 pole low pass filter (Gaussian)
- 16 times oversampling when digitizing inputs with a decimation filter implemented.
- ± 150 volt common mode voltage range
- $200k\Omega$ input impedance
- One pole 2MHz RF filter
- 300 volt overvoltage on input without damage
- Programmable self test voltage for each analog input.
- 14 bit ADC with simultaneous sample and hold on all inputs
- All analog inputs differential and independent of each other
- Channel gain customization must not require tools.
- Gain and offset corrections applied in the digital processing chain.

2.3. DCCT

The existing FW Bell IF5004M DCCTs require 24 channels of independent current sources, one per DCCT. The nominal output current for each of these sources will be 40mA per channel. There shall be individual output enables for each channel. There will be individual status bit for each channel. All DCCT inputs must also have the option of optionally using a LEM LF2005-S or equivalent unit in place of any or all of the existing FW Bell units.

2.4. User Interface

2.4.1. Front Panel

The front panel display will be either a set of indicators (as on the current system) as well as a multi-line alpha-numeric display and associated keypad. Optionally a graphical display and keypad can be used where the indicators will be drawn on the display. In either case the display/keypad can be used to change parameters, with suitable protection (password/ key switch), run self-test routines, review system status and provide any other utility functions as they become needed. If a graphical display is included it would be useful to have the ability to view stored analog waveforms.

2.4.2. Web Server

Each fault detector will have a web server implemented, which will allow for monitoring of all signals and status indicators. The web server will not be able to change any settings.

2.4.3. EPICS Compatibility

The fault detector will be able to interface with the existing data acquisition system either as an EPICS server or as an EPICS IOC. In addition other communication protocols such as MODBUS/TCP can be implemented.

2.4.4. Configuration Files

All operational settings will be saved in one data file. This will allow for an easy setting of operational profiles.

2.4.5. Removable Storage

The fault detector will have some form of removable storage usable for data logging purposes as well as providing storage for software that may need to be installed in either the communications computer or firmware such as might be used in an FPGA.

2.4.6. Real World Values

All monitored points and limit settings must be in scaled engineering units.

2.5. Digital Inputs

All digital inputs will be optically isolated with a selectable input voltage. The maximum input current will be 7.4ma. The inputs will be switchable for a nominal 5V input (3.85V minimum) or a 12-24V input (10.5V minimum).

2.6. Analog Outputs

The analog outputs will be able to provide 250ma at $\pm 10V$ with a 62.5 Ω resistor provided in series with the output leg and the ground return leg.

2.7. Digital Outputs

2.7.1. Electrical Characteristics

The digital outputs will be able to source 24ma at greater than 4.5V and sink 24ma at less than 0.5V.

2.7.2. Fault Outputs

The fault outputs will toggle at a 1 milli second rate along with a clock signal. The exclusive OR of these two signals will be the actual fault signal. These signals will also be the inputs to watchdog timers, which will also be able to fault the system.

2.8. Monitoring and Data Storage

2.8.1. Limits

Trip levels will have fixed upper and lower values which can not be exceeded. Trip levels, offset and gain values will be stored with an overall CRC value. This will be checked periodically. Limits can only be changed after a suitable security protocol has been met, such as activating a key-switch or providing a password.

2.8.2. Internal Testing

All removable boards will have power supply voltage checks and board inserted checks.

2.8.3. Test Points

All input and output signals shall be available on easily accessed test points. These can be behind an easily opened panel.

2.8.4. Analog Value Storage

Analog signal storage: 4,194,304 word storage (16 bit words) for each section and for common signals. Each rectifier section is able to store 32 analog signals (18 ACCT, 12 DCCT, Input current, and output voltage) plus 2 auxiliary internal channels that can be assigned to internal signals in the FPGA under operator control. For the common signals there are eight analog signals (2 alpha inputs, 2 alpha limits and 2 primary voltages). This allows for 15.4 seconds of data recording with the starting point defined by the facility clock system. This will be expandable up to 16,777,216 words.

2.8.5. Change of State Storage

The fault detector will provide a 64 word FIFO with change of state input for fault storage, includes a 1 μ second resolution time stamp. Each word is 40 bits wide for the fault status and 24 bits wide for the time stamp.

2.9. Facility clock interface

The functions of a 404 timing module will be included in the fault detector. This shall be a two channel unit. This will be compatible with the existing 1MHz facility clock and the proposed 10MHz facility clock. It will have options for fiber-optic and twisted pair inputs and outputs.

3. Fault Detection Scenarios

Figure 1 below displays the fault detection scenarios.

CATEGORY	DESCRIPTION	DESCRIPTION DETECTION METHOD		SCALE OF	ADJUSTABLE		
		LEVEL 0 Alarm Indication Only	DEVICES	DEVICE	RANGE		
04	Power module imbalance	13-phase ACCT sum > threshold	ACCT x 36	0.3125\/ per_kA	0-1 76V/ / 0-3 38kA		
08	Bypass leg imbalance	Highest - Lowest > Threshold	DCCT x 24	50-100m\/ per kA	N/A		
00	Dypass leg imbalance	Purpage log not conducting when Not/Plack	DCCT x 34 and	SO-TOOTTV PET KA	DUA		
00	Bypass leg fail to conduct	Bypass leg not conducting when Not(block	DCPT v 2	1 5\//KA	465A FIXED		
00	Firing Generator Not Ready	TBD	FG	N/A	N/A		
05	MGD PS OK	MGD box	MGD Box	N/A	N/A		
02		1100 000	Flow switch and				
0F	Loss of Cooling Water	Flow switch	timer	N/A	10 - 70 GPM		
0G	PT failure	PT undervoltage relav	2 x UV relav	14400KV/120V	20V - 200V		
	I EVEL	1 - Suppress Power Modules Fire Bypass Mo	dules				
1A	Power Module Overcurrent	Any leg > trip level	ACCT x 36	0.3125V per_kA	0-10 25V / 0-6 57ka		
	r ower medale evenearient	any log a mp lovol	Rectified	0.01201 por 101	0 10.2017 0 0.0714		
			secondary				
1B	Section Overcurrent	Id > trip level	ACCT x 2	+30kA / +15V	2.5kA - 27.5kA		
		Any of bypass module currents greater than					
1C	Bypass Fail to Block	limit and no bypass command	DCCT x 24	50-100mV per kA	0.0kA - 1.0kA		
		Flow switch indicates for > adjustment time and	Flow switch and		10 - 70 GPM 0 - 10		
1D	Loss of Cooling Water w/Permissive	Permissive	timer	N/A	seconds		
1E	AC Ckt Breaker Advance Trip Signal	CB ADV trip coil enegized	Relay	N/A	N/A		
1F	AC OV Suppressor Fuse Blown	AC suppressor Assembly / blown fuse	Microswitch	N/A	N/A		
			Rectified				
			secondary				
1G	Section Current Overtime	Id duration > overtime setting	ACCT x 2	N/A	0 - 18sec		
		One or both PT undervoltage relays w/o Adv					
1H	Loss of AC w/o Ckt Brkr Advance Trip Signal	Trip	2 x UV relay	14400KV/120V	20V - 200V		
			125VDC F1P				
11	External Level 1 Fault	Descrete input	and HCS input	N/A	N/A		
1J	Permissive Sequence Fault	(Permissive)*(Fault Detector Not Ready)	logic	N/A	N/A		
	DC power voltage error +24V, +15V, -15V,				1		
1K	+5V	voltage>upper limit, voltage <lower limit<="" td=""><td></td><td>N/A</td><td>±5% - ±10%</td></lower>		N/A	±5% - ±10%		
10	Loss of Command Link while Permissive On	(Link Not Ready)*(Permissive On)	Logic	N/A	N/A		
1P	Loss of Permissive during Pulse	(Permissve Off)*(Convert On)	Logic	N/A	N/A		
		LEVEL 2 - Open AC Feeder Circuit Breaker					
		Any Power Module ACCT <> limit 1/2					
2A	Failure to Suppress Firing	cycle after suppression	ACCT x 36	0.3125V per kA	0.0kA - 1.0kA		
LEVEL 3 - Suppress Power Modules, Fire Bypass Modules, Close DC Ground Switch							
3A	Bypass Leg Overcurrent	Bypass Leg Current > threshold	DCCT x 24	50-100mV per kA	0.0kA - 6.67kA		
		Not(Bypass Block) + All Bypass Leg Current =			1		
		0 Negative bridge voltage sensed after BB			0 - 500V, 350V		
3B	All Bypass Fail to Conduct	command issued	Voltage Xdcr	1V/150V	nominal		
			125VDC F3P		1		
3C	External Level 3 Fault	Descrete input	and HCS input	N/A	N/A		

TRANSREX PWR SUPPLY LIST OF FAULTS AND STATUS LIGHTS

STATUS INDICATION

Signal	Quantity	Description
Permissive	1	Status of Permissive
Internal L1	1	Status of Internal Level 1 Fault Line
Internal L3	1	Status of Internal Level 3 Fault Line
External L1	1	Status of External Level 1 Fault Line
External L3	1	Status of External Level 3 Fault Line
Reset	1	Status of Reset
Command L	1	Status of input data command link
		Command input controlling gate pulses to power module
Convert Bit	2	thyristors
		Command input controlling gate pulses to bypass
Bypass Bit	2	module thyristors
CB Adv Trip	1	Status of Circuit Breaker Advance Trip Signal
AC PT	2	Status of PT undervoltage relays
Firing Gener	1	Status of Firing Generator
Cooling Wat	1	Status of flowmeter
MGD OK	4	Status of MGD Box
+24V OK	1	Status of local low voltage power supply
+15V OK	1	Status of local low voltage power supply
-15V OK	1	Status of local low voltage power supply
+5V OK	1	Status of local low voltage power supply

Figure 1 – Fault Detection Scenarios

4. Chassis connectors

Figure 2 below shows the current chassis connector pin assignments. Pins that go to the current CAMAC system are grayed out, and are currently not to be used.

Connector Pin	J37	J38	J39	J40	J41	J	42
1	RESET card H - 16	ACCT CTA1A -	DCCT 1A out+		ACCT CTA1B-	DCCT 1B	out+
3	CB ADV card H - 11	ACCT CTC1A -	DCCT 3A out+	+15V in	ACCT CTC1B -	DCCT 3B	out+
4	RESET +15V	ACCT CTA1A +	DCCT 1A in +		ACCT CTA1B +	DCCT 1B	in +
5	PS PERM +15V	ACCI CIB1A +	DCCI 2A in +		ACCI CIB1B +	DCC1 2B	in +
7	CB ADV +15V	ACCT CTC1A +	DCCT 3A in +	+15V in	ACCT CTC1B +	DCCT 3B	in +
8	RESET gnd	ACCT CTA1A gnd	DCCT 1A out -	I sect A + in card M-1	ACCT CTA1B gnd	DCCT 1B	out -
10	CB ADV and	ACCT CTC1A and	DCCT 2A out - DCCT 3A out -	+15V in	ACCT CTC1B and	DCCT 2B	out - out -
12	L O AC card H - 9	alpha 2 from FG	DCCT 1A in -	I sect A - in card M-M	..	DCCT 1B	in -
13	PT FAIL card L - 15		DCCT 2A in -	I sect B - in card M-12		DCCT 2B	in -
14	CICADA RDY H - 6		DCCT 3A in -	+15V in		DCCT 3B	in -
15	L O AC +15V	ACCT CTA2A -	DCCT 1A gnd	+15V	ACCT CTA2B -	DCCT 1B	gnd
16 17	PTFAIL +15V CICADA RDY +15V	ACCT CTB2A - ACCT CTC2A -	DCCT 2A gnd DCCT 3A gnd	+15V +15V	ACCT CTB2B - ACCT CTC2B -	DCCT 2B	gnd and
			g				3
18	L O AC gnd	ACCT CTA2A +	DCCT 1A gnd	card I - D FD ready*	ACCT CTA2B +	DCCT 1B	gnd
20	CICADA RDY and	ACCT CTB2A +	DCCT 3A and	card I - B CB Trip	ACCT CTC2B +	DCCT 2B	and
22	120V card N - 3	ACCT CTA2A gnd	DCCT 4A out+	+15V	ACCT CTA2B gnd	DCCT 4B	out+
23	WATER card H - 12	ACCT CTB2A gnd	DCCT 5A out+	+15V	ACCT CTB2B gnd	DCCT 5B	out+
24	WATER2 card H - 15	ACCT CTC2A and	DCCT 6A out+	+15V	ACCT CTC2B and	DCCT 6B	out+
25	120V +15V		DCCT 4A in +	card I - E Level 3 fault		DCCT 4B	in +
26	WATER +15V		DCCT 5A in +	card I - F Mod OC*		DCCT 5B	in +
27	WATER2 +15V	ACCT CTA2A -	DCCT 6A in +	card I - H CB advance trip*	ACCT CTA2R	DCCT 6B	in +
20	120V grid	ACCI CIASA -	DOCT 4A OUL-	+15V	ACCT CTASE-	DCC1 4D	out -
29	WATER gnd	ACCT CTB3A -	DCCT 5A out -	+15V	ACCT CTB3B -	DCCT 5B	out -
31	AC SUPR card H - 7	ACCT CTC3A -	DCCT 4A in -	card I - P CICADA ready	ACCT CTA3B +	DCCT 6B	in -
32	MGD OK card L - J	ACCT CTB3A +	DCCT 5A in -	card I - N PS permissive	ACCT CTB3B +	DCCT 5B	in -
33	LEVEL 1 in card G - 4	ACCT CTC3A +	DCCT 6A in -	card I - M Loss Water	ACCT CTC3B +	DCCT 6B	in -
34	AC SUPR +15V	ACCT CTA3A gnd	DCCT 4A gnd	+15V	ACCT CTA3B gnd	DCCT 4B	gnd
35	MGD OK +15V	ACCT CTB3A gnd	DCCT 5A gnd	+15V	ACCT CTB3B gnd	DCCT 5B	gnd
36	LEVEL 1 in +15V	ACCT CTC3A gnd	DCCT 6A gnd	+15V	ACCT CTC3B gnd	DCCT 6B	gnd
38	MGD OK gnd		DCCT 5A gnd	card I - K AC supress fail		DCCT 5B	gnd
20	EVEL 1 in and		DCCT 6A and	card L. LLovortimo*			and
40	LEVEL 3 in card G - 3	ACCT CTA4A -	DCCT 7A gnd	+15V	ACCT CTA4B -	DCCT 7B	gnd
41	LEVEL 1 out card G - K	ACCT CTB4A -	DCCT 8A gnd	+15V	ACCT CTB4B -	DCCT 8B	gnd
42	LEVEL 3 out card G-R	ACCT CTC4A -	DCCT 9A gnd	gnd in	ACCT CTC4B -	DCCT 9B	gnd
45		A001 01A4A +	DOCT TA gild	calut - T bypass tail	ACCI CIA4D +	DCCT7B	gnu
44	~SUPPR card G - N	ACCT CTB4A +	DCCT 8A gnd	card I - V Bypass rev.*	ACCT CTB4B +	DCCT 8B	gnd
45	LEVEL 3 in and	ACCT CTC4A +		gna in +15V	ACCT CTG4B +	DCCT 7B	gna
47	LEVEL 1 out gnd	ACCT CTB4A gnd	DCCT 8A out+	+15V	ACCT CTB4B gnd	DCCT 8B	out+
48	LEVEL 3 out gnd	ACCT CTC4A gnd	DCCT 9A out+	gnd in	ACCT CTC4B gnd	DCCT 9B	out+
49	SUPP BP card G - L		DCCT 7A in +	card I - U Bypass OC		DCCT 7B	in +
50	gnd		DCCT 8A in +	card I - S Bypass fail to conduct		DCCT 8B	in +
51	OPEN CB gnd	100T 0T151	DCCT 9A in +	gnd in	ACOT OT AFR	DCCT 9B	in +
52	gnd (stp 55,56)	ACCT CTB5A -	DCCT 8A out -		ACCT CTR5B -	DCCT 8B	out -
		1007 07051	5007 AL		1007 07050	B007 05	
55	Id ret	ACCT CTC5A -	DCCT 7A in -	gna in	ACCT CTA5B +	DCCT 9B	in -
56	ld card M - 11	ACCT CTB5A +	DCCT 8A in -		ACCT CTB5B +	DCCT 8B	in -
57	~INV LIMIT card H - 13	ACCT CTC5A +	DCCT 9A in -	gnd in	ACCT CTC5B +	DCCT 9B	in -
58		ACCT CTASA ghd	DCCT TUA gnd	I sect A out gnd	ACCT CTASE gnd	DUCTIOE	s gna
59		ACCT CTB5A gnd	DCCT 11A gnd		ACCT CTB5B gnd	DCCT 11E	gnd
60 62	and (twp w 63)	ACCT CTC5A gnd	DCCT 12A gnd DCCT 10A gnd	Lsect A out card M-10	ACCT CTC5B gnd	DCCT 12E	s gna 3 and
63	ld>0 card M - 6		DCCT 11A gnd			DCCT 11E	gnd
64	BP Block card L - S		DCCT 12A gnd	B voltage out		DCCT 12E	gnd
65	FG READY card I - 14	ACCT CTA6A -	DCCT 10A out+	I sect B out card M-9	ACCT CTA6B -	DCCT 10F	8 out+
66	SUPRESS card N - L	ACCT CTB6A -	DCCT 11A out+	A voltage out	ACCT CTB6B -	DCCT 11E	3 out+
67 70	CYCLIC bypass	ACCT CTC6A -	DCCT 12A out+ DCCT 10A in +	gnd (twp w 64) Pri CT3 in +	ACCT CTC6B -	DCCT 12E	S OUT+
71		ACCT CTB6A +	DCCT 11A in +	I sect B out gnd	ACCT CTB6B +	DCCT 11E	3 in +
72			DCCT 12A in +	-15V in		DCCT 125	tin⊥
73		ACCT CTA6A gnd	DCCT 10A out -	Pri CT3 in -	ACCT CTA6B gnd	DCCT 10E	out-
74		ACCT CTB6A gnd	DCCT 11A out -	gnd (twp w 66)	ACCT CTB6B gnd	DCCT 11E	3 out -
75		ACCT CTC6A gnd	DCCT 12A out -	-15V in Pri CT1 in +	ACCT CTC6B gnd	DCCT 12E	out -
10			DOCTION IN-	FIIGTTIII †		DUCT TUE	, iii -
77			DCCT 11A in -	Pri CT2 in +		DCCT 11E	3 in -
78		gnd (twp w 82)	DCCT 12A in -	-15V in Pri CT1 in -	gnd (twp w 82)	DCCT 12E	3 in -
80				Pri CT2 in -			
82		A voltage card O - A		-15V in	B voltage card O - 9		
			Figu	ure 2 – Chassis	Connectors		

The existing connectors are shown in the following drawing (Figure 3), and will be used for exiting signals used by the new system.

NSTX-SRD-5X-116-00 New Fault Detector

L13-MUG-97 15:44:43 amp40973 /home/ssrv426d/dsk04/dept4023/amp40973/edmoo

Figure 3 – Existing Connectors

5. Simplified Block Diagram

Figure 4 below shows a simplified block diagram of the new fault detector.

