

NSTX TF OUTER LEG ANALYSIS

Han Zhang

NSTX Center Stack Upgrade Peer Review LSB, B318 August 13, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA. Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. UC Davis **UC Irvine** UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

College W&M

CompX

INEL

LANL

LLNL

Lodestar

Colorado Sch Mines Columbia U

General Atomics

Johns Hopkins U

1

2

NSTX

Stainless steel rings are added to take the in-plane force. But how to take the out-of-plane load is still problematic:

Idea 1: adding stainless steel case to increase the stiffness of the TF coil and tie bars linked to vacuum vessel to take the load.

Tie bars

- Analysis is done with symmetric PF current
- Stainless steel case is not effective
- Total force at the Al. block reduced by 20%
- Out-of-plane force at the Al. block reduced by 36% (from -166KN to 106KN)
- Vertical force increased from 11KN to 45KN.
- But the tie bars will constrain the coil during vacuum vessel bake out

5

Office of

Science

U.S. DEPARTMENT OF

NFRG

 Supported by

Type I: unipolar, upper and lower coils in series (PF4, PF5) Type II: unipolar, midpoint connection between upper and lower coils allowing difference current (PF2)

U.S. DEPARTMENT OF

Office of

Science

Type III: bipolar, upper and lower coils in series (OH)

Type IV: bipolar, midpoint connection between upper and lower coils allowing difference current (PF1a, PF1b, PF1c, PF3)

	Type III		Type IV	Type IV		ric currents (no t)	to be reacted against the vessel)		
Coil	Turns	Min Curr	Min Curr	Max Curr	Max Curr	worst case sym PF curr	m worst case	worst case asym PF curr	
		(kA)	(kA-Turn)	(kA)	(kA-Turn)	(kA-turn)	(kA· upper	-turn) lower	
OH	508	-24.0	-12191.2	24.0	12191.2	-12191.2	-12191.2	-12191.2	
PF1a	88	-0.7	-58.9	8.1	715.5	-58.9	-58.9	715.5	
PF1b	20	-3.6	-71.7	4.2	84.1	-71.7	-71.7	84.1	
PF1c	20	-3.1	-62.4	8.2	164.1	-62.4	-62.4	164.1	
PF2a	14	0.0	0.0	20.0	280.0	0.0	0.0	280.0	
PF2b	14	0.0	0.0	20.0	280.0	0.0	0.0	280.0	
PF3a	15	-16.0	-240.0	8.0	120.0	-240.0	-240.0	120.0	
PF3b	15	-16.0	-240.0	8.0	120.0	-240.0	-240.0	120.0	
PF4b	8	-20.0	-160.0	15.0	120.0	-160.0	-160.0	-160.0	
PF4c	9	-20.0	-180.0	15.0	135.0	-180.0	-180.0	-180.0	
PF5a	12	-32.0	-384.0	0.0	0.0	-384.0	-384.0	-384.0	
PF5b	12	-32.0	-384.0	0.0	0.0	-384.0	-384.0	-384.0	

Warat again up down agummat

Office of

Since the machine has a lot of ports and full diamond bracing cannot be added everywhere:

U.S. DEPARTMENT OF

FNERGY

Office of

Science

• Full 360° model is built with diamond bracing added at the exact places

• Aluminum blocks connected to springs to simulate umbrella structure

• Standard (full or partial) diamonds have intersections at exactly the TF coil center. Non-standard (shorter) diamond don't.

• Rings are exactly at the position of existing turn buckle.

Symmetric PF current

9

With welded rings: max theta displacement reduced to 18mm (0.7") but the non-uniform effect still exists.

Vacuum vessel bake out (from Peter Titus)

NSTX

NSTX Ce TF=130,0H=-24, PF=12.2, 13, 3, 5, -0.7, 2, 3, 5, 9//21, -14//14, -16//-16//-34, plasma=0

Office of Science

Symm PF curr:

radius rod load Max: 81.5KN (18.4 klbs) Min: 19.8KN (4.5 klbs)

Vessel stress at the radius rod support area 139 MPa (20ksi) Asym PF curr:

radius rod load Max: 90.2KN (20.3klbs) Min: 17.8KN (4klbs)

Vessel stress at the radius rod support area 146 MPa (21ksi)

U.S. DEPARTMENT OF

Summary

- •Rings were added to reduce the pull-out (in-plane) loads at the Umbrella Structure
- Various Trusses were tried to reduce Out-of-Plane Loads from the outer TF legs
- •Interferences were a severe problem limiting the addition of trusses
- •Up-Down Asymmetric Currents and Resulting Net Twist Required an attachment to the Vessel
- •Tangential Radius Rods Took the Net Twist and provided adequate OOP support for Symetric Case
- •Tangential radius rods use the existing territory of turn buckle and there is enough room for them
- •Loads in the Tangential Radius Rods Allow Attachment to the Vessel with only Modest Modifications

• Vessel Stresses in the Umbrella Structure and Equatorial Plane Port Region are Acceptable or require only Modest modification.

Office of

Science