

Supported by



# TF Flex Joint and TF Bundle Stub

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin** 

**Tom Willard** 

NSTX Center Stack Upgrade Peer Review LSB, B318 August 13, 2009





Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec



1

# **Study Goals**

• Purpose:

To determine if the baseline TF flex joint and bundle stub design are adequate to meet the requirements of the NSTX Structural Design Criteria, specifically, the fatigue requirements of Section I-4.2 for 3000 full power and 30,000 two-thirds full power pulses without failure.

- Laminations
  - Stresses
  - Buckling
- Joints
  - Thread shear stress
  - Contact pressure



2

### NSTX Upper Umbrella Assembly Upgrade Design





### Single Segment 3-Strap Assembly with Supports: Version 3.0





**NSTX Center Stack Upgrade Peer Review** 

August 13, 2009

#### Laminated Strap Assembly with Applied Fields and Current Version 3.0





**NSTX Center Stack Upgrade Peer Review** 

August 13, 2009

# **Calculated Worst-Case EMAG Loads**

(Assuming uniform current distribution)

#### **Out-of-Plane Load (z-direction)**

$$F_{op} = 2*I*B_{pol}*R$$
  
 $F_{op} = 2 \times 130,000 \text{ A}/ 38 \times .3 \text{ T} \times 5.688/39.37 \text{ m}$   
 $F_{op} = 296.4 \text{ N} = 66.6 \text{ lbf}$  [Outer lamination]



#### In-Plane Load (y-direction)

$$F_{ip}/L = I^*B_{tor}$$
  
 $F_{ip}/L = 130,000 \text{ A}/38 \text{ x} 1 \text{ T}$  [Outer lamination] If  
 $F_{ip}/L = 3,421 \text{ N}/\text{ m} \text{ x}$  .2248 lbf/ N x 1 m/ 39.37 in  
 $F_{ip}/L = 19.53 \text{ lbf/ in}$   
 $press_{ip} = (F_{ip}/L)/w$   
 $press_{ip} = 19.53 \text{ lbf/in}/2$  in  
 $press_{ip} = 9.77 \text{ lbf/ in}^2$  (applied to inside cylindrical face)





#### Single Lamination FEA Model: Mesh and Boundary Conditions (Outer-most lamination)





**NSTX Center Stack Upgrade Peer Review** 

7

### Single Lamination Linear Results: von Mises Stress

(Loads: Combined Thermal Displacements, Emag Press. (In Plane) and Forces (OOP))





# Single Lamination Nonlinear Results: von Mises Stress

(Loads: Combined Thermal Displacements, Emag Press. (In Plane) and Forces (OOP))





9

#### 3 Lamination FEA Model: Mesh and Boundary Conditions (Outer-most laminations)





# **3 Lamination Nonlinear Results: von Mises Stress**

(Loads: Combined Thermal Displacements, Emag Press. (In Plane) and Forces (OOP))





# **3 Lamination Nonlinear Results: Contact Status**

(Loads: Combined Thermal Displacements, Emag Press. (In Plane) and Forces (OOP))





# **Optimized Laminations Linear Results: von Mises Stress**

(Non-uniform current distribution; combined loads including torsional displacement)





#### C11000 Copper Stress-Strain Curves versus % Cold Work





### C110000 Copper Fatigue S-N Curves versus % Cold Work





#### Copper Alloy Material Properties (Outokumpu Poricopper Oy)

| (Outokumpu Poricopper Oy)            |        |         |                                                 |                                                   |                                                 |                                          |                                                                              |
|--------------------------------------|--------|---------|-------------------------------------------------|---------------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------|
| Name                                 | CDA    | Acronym | Thermal<br>Conductivity<br>at 20 C<br>[W/(m*K)] | Electrical<br>Resistivity<br>at 20 C<br>[µOhm*cm] | Yield Strength<br>Cold Worked<br>84% 24 C [MPa] | Yield Strength<br>Annealed<br>24 C [MPa] | Fatigue Strength<br>Cold Worked<br>Number of<br>Cycles[300x10 <sup>6</sup> ] |
| Oxygen-free Copper                   | C10200 | Cu-OF   | 394                                             | 1.7241-1.70                                       | 341                                             | 54.5                                     | 117                                                                          |
| Silver-Bearing<br>Oxygen-free Copper | C10400 | Cu-OFS  | 394                                             | 1.74-1.71                                         | 373                                             |                                          | 103                                                                          |
| Electrolytic<br>Tough-Pitch Copper   | C11000 | Cu-ETP  | 394                                             | 1.7241-1.70                                       | 345                                             | 49.6                                     | 117                                                                          |
| Copper-Chromium                      | C18200 | Cu-Cr1  | 301-343                                         | 2.3-2.0                                           | 520                                             |                                          | 193                                                                          |
| Cadmium Copper                       | C16200 |         | 360                                             | 1.92                                              | 474                                             | 83                                       | 205                                                                          |
| Cupro-Nickel                         |        | Cu Ni25 | 33.5                                            | 34                                                | 530                                             | 140                                      | 269                                                                          |
| Aluminum Bronze                      |        | Cu Al5  | 75.4-83.7                                       | 10                                                | 441                                             | 186                                      | 131                                                                          |
| Zirconium Copper                     | C15000 | Cu-Zr   | 367                                             | 1.86                                              | 414                                             | 80                                       | 241                                                                          |

Effect of temperature on the softening of copper alloys



# ANSYS and MathCAD Lamination Stress Analysis: Conclusions and Recommendations

- Good agreement between MathCAD and ANSYS results.
  - MathCAD model, corrected for non-uniform current distribution, was used to optimize lamination design.
- $\sim 3/4$  overall in-plane bending stiffness due to Inner Strap Assy.
- OOP torsional stress dominates in Outer Strap Assy.
- Thermal displacement bending dominates in Inner Strap Assy.
- Deflection force inversely proportional to radius.
- Maximum lamination stress of 38 kpsi exceeds the NSTX Structural Design Criteria fatigue limit requirement of 2x stress level or 20x number of cycles for 3000 full-power cycles and 30,000 half power cycles using C10700 copper.
- Proposed Design:
  - Outer Flex Strap Assembly: 12X .090" thick, 2.0" wide laminations
  - Inner Flex Strap Assembly: 19X .060" thick, 2.0" wide laminations
  - Mat'l: Fully-hardened C15000 Cu-Zr or better.



# Single Lamination Pre-Stressed Linear Buckling Results

Load multiplier factor LMF applies to all Emag loads and thermal displacements





#### Single Lamination Nonlinear Buckling: Y-Deformation at Onset (1) Load multiplier factor LMF applies only to Out-of-Plane Emag load





**NSTX Center Stack Upgrade Peer Review** 

19

#### 3 Lamination Results: Linear Buckling Mode Multiplier Load Multiplier factor LMF applies to all Emag loads and thermal displacements





# **Buckling Analysis Conclusions**

- Buckling due mostly to out-of-plane load. In-plane load (pressure outward) reduces buckling; thermal displacements slightly increase buckling.
- Good agreement between linear and nonlinear buckling results with load multiplier factor applied to both Emag loads and to thermal displacements.
- Load multiplier factor over 14 for nonlinear analysis with constant inplane load and increasing out-of-plane load (conservative) exceeds nonlinear buckling factor of 2 specified in NSTX Structural Design Critieria.



#### **Previous Joint Design: Development Tests**



**Coefficient of Friction Test** 



Contact Resistivity vs Pressure Test



### **Previous Joint Design: Tap-Lok Threaded Insert Design**

- Tap-Lok 3/8-16 medium-length insert used.
  - OD = .562", length = .562"
- Loading:
  - The stud preload of 5,000 lbf results in an average shear stress of 10,069 psi in the copper threads based on Tap-Lok effective shear area = .497 in<sup>2</sup>.
  - Thermal + Mechanical loading adds a cyclic load of ~1,800 psi
- Material: C10700 Silver Bearing Copper, Hard Drawn (50% Cold Worked).
  - Per the inspection certification, the Cu tensile strength = 38 kpsi and yield strength = 36 kpsi.
- Values of 34 kpsi used for yield to account for observation of slight degradation in hardness after thermal cycling.



#### **Previous Joint Design: Tap-Lok Cyclic Pull Tests**

- Samples heated to 100 C during cycling.
- Six medium-length insert test pieces were cycled from 5,000 to 6,000 lbf for 50,000 cycles or greater.
  - Test levels reflect the 1,000 cycle thermal loading case.
  - Cycled with 1 Hz Sine Wave.
  - No failures during cycling.
- Two samples were cycled at 5,000 to 7,360 lbf to test at the 2x stress at design life condition.
  - No failures during cycling.
- After cycling, static pull tests determined if pull out strength had degraded.
  - No degradation in pull strength after cycling.



### **Previous Joint Design: Leverage Successful Experience**

- Flag Material: C10700 H002, Silver Bearing Copper, Half Hard or better.
  - Keep copper average thread shear stress below 10,069 psi to reduce need for retesting.
- Tap-lok inserts.
  - Use longest insert possible: insert allows load sharing between threads.
- Bolt Material: Inconel 718.
  - Pretension stress much less than .75 yield strength (copper thread shear stress dominates). Bolt should extend full length of insert.
- Use Belleville washers.
  - As Direct Tension Indicating (DTI) washers to monitor bolt pretension, to reduce cyclic stress amplitude, and to maintain bolt tension with thermal cycling and creep.
- Load bolts in tension only.
  - Separate shear load and compression load functions.
    - Rely on friction or separate feature to take shear load.
  - Prevent bending.
- Monitor joint electrical contact resistance.
  - Minimum average contact pressure in previous design = 3850 psi.



## Single Segment with Center Strap Only: Version 3.1





#### Single Segment Center Strap-Only FEA Model: Mesh Version 3.1





# Single Segment Center Strap-Only Results: von Mises Stress

(Assumes non-uniform current distribution)





#### Single Segment Center Strap-Only Results: von Mises Stress (2) Version 3.1





**NSTX Center Stack Upgrade Peer Review** 

29

#### Single Segment Center Strap-Only Results: Contact Pressure Version 3.1





### Strap-to-Stub Joint Sub-model: Solid Model





#### Strap-to-Stub Joint Sub-model Results: von Mises Stress

Loads from Single Segment Center Strap-Only Results





#### Strap-to-Stub Joint Sub-model Results: Max. Shear Stress

Loads from Single Segment Center Strap-Only Results





### Strap-to-Stub Joint Sub-model Results: Contact Pressure

Loads from Single Segment Center Strap-Only Results





#### Strap-to-Stub Joint Sub-model Results: Contact Status

Loads from Single Segment Center Strap-Only Results





#### Figure 10A – Strap-to-TF Coil Outer Leg Joint: Solid Model





#### Strap-to-Flag Joint Sub-model Results: von Mises Stress

Loads from Single Segment Center Strap-Only Results





### Strap-to-Flag Joints Sub-model Results: Contact Pressure

Loads from Single Segment Center Strap-Only Results





### TF Coil Outer Leg Joint Sub-model Results: Contact Pressure

Loads from Single Segment Center Strap-Only Model Results





**NSTX Center Stack Upgrade Peer Review** 

39

### Strap-to-Flag Joints Sub-model Results: Contact Status

Loads from Single Segment Center Strap-Only Model Results





#### **ANSYS Full Multiphysics Analysis Flow Diagram**





### Single Segment 3-Strap Assembly: Version 3.2





#### Single Segment 3-Strap Assembly FEA Model: Mesh Version 3.2





#### Single Segment 3-Strap Model Results: Total Current Density Version 3.2





#### Single Segment 3-Strap Model Results: Temperature Profile Version 3.2





# **Next Steps**

- Complete full-multiphysics analysis.
  - Version 3.1Single Segment 3-Strap Assembly design.
- Investigate alternatives to C10700 copper.
  - Candidates are: C15000 Cu-Zr, with twice the high temperature fatigue strength of C10700; and C18150 Cu-Cr-Zr.
  - Perform stir weldability tests of candidate materials.
  - Repeat subset of cyclic pull-out tests of candidate materials.
- Optimize design.
  - Reduce number of joints if possible.



# Appendix A – Assembly Strength vs Helicoil Insert Length







### Appendix B- Shear Key Copper Threads, Static Results

- Correlation between pull out force and the number of threads pulled explains scatter
- By design shear key bolt will catch 8-9 threads





A-1 12,500lbs peak, 8 Threads A-2 12,620lbs peak, 8.5 Threads A-3 13,120lbs peak, 9 Threads A-4 12,500lbs peak, 8 Threads A-5 10,880lbs peak, 7 Threads A-6 12,380lbs peak, 8 Threads

