

Supported by

Neutral Beam Upgrade

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Martin Denault

NSTX Upgrade FDR LSB, B318 June, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Introduction

- Refurbishment 2440
- Relocation 2425
- Beam Services 2450
- Beam / TVPS Duct 2480

Supported by

Refurbishment

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Martin Denault

NSTX Upgrade FDR LSB, B318 June, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Neutral Beam Refurbishment Scope

- Disassemble, inspect, refurbish, reassemble, and prepare NB parts for installation
- Replace seals and o-rings
- Replace thermocouples and wire
- Fabricate and install new ion dump
- Update calorimeter

Refurbishment

New Ion Dump Fabrication

Updated Calorimeter

Questions?

Supported by

Relocation

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC Irvine** UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Martin Denault

NSTX Upgrade FDR LSB, B318 June, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

- Move NB and ancillary equipment into NSTX test cell
- Fabricate legs for NBI 2
- Align and install NBI 2

Relocation Items

TFTR Test Cell

- Door Lintel
- Floor Plug (3 HVE's and 3 Transmission Lines)

NSTX Test Cell

- NBI Box
- NBI Lid
- NBI Components (6)
- Source Platform
- Sources (3)
- High Voltage Enclosures (3)
- Labyrinth Shield Block

Relocation Path

Clear Door Remove duct work and lintels

NSTX Upgrade PDR

- Lift fixture design started for all components
- Re-entrant hook design for box

Legs for NBI BL2 identical to BL1

Calorimeter Lift Fixture

•Extensions for updated design

Neutral Beam Lift Fixture

Lid Movement

Lid Relocation Path

NBI Box Path

Questions?

College W&M

CompX

INEL

LANL

LLNL

MIT

ORNL

PPPL

PSI

SNL

Lodestar

Colorado Sch Mines Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

UCLA

UCSD

Supported by

Services

Martin Denault

NSTX Upgrade FDR LSB, B318 June, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

NSTX

- Provide mechanical service to NBI 2
- Install platform for NB and VV access

- High Voltage Enclosure Cooling Water
- Ion Dump Cooling Water
- Ion Source Cooling Water
- SF6
- Vacuum Backing
- Gas Injection System
- Liquid Nitrogen
- Liquid Helium

Pump Room HVE

NSTX Test Cell Basement (MER)

NBL2 HVE Penetration

NSTX Upgrade PDR

Pump Room Source and Dump

NSTX

NBL2 Penetrations

Mechanical Equipment Room (NSTX Test Cell Basement)

NBL2 Penetrations

SF6 System

() NSTX

Vacuum Backing System

NSTX Upgrade PDR

Gas Injection System

Liquid Nitrogen NSTX Test Cell

- Paths chosen to minimize pipe runs and heat loads
- Calculations show we can use current refrigeration system for two beam lines.

Cryogenic System Heat Loads

•	Existing Supply	207W
•	Return Estimate	250W
•	Transfer Lines Supply	21W
•	Transfer Lines Return	25W
•	Valves X4	16W
•	Bayonets X4	12W
•	Total Heat Load	567W
•	Refrigerator Capacity	700W
•	Spare Refrigeration	133W
Liquid Helium Penetrations

Liquid Helium TFTR & NSTX Test Cell

He SUPPLY LINE

Liquid Helium Valves

Cryogenic Valves

NBI 1 Cool Down

NBI 2 Cool Down

NBI 1 & 2 Operations

New Platform

New Platform

New Platform Stairs and Ladders

New Platform Stairs and Ladders

New Platform Beam Access

New Platform

Labyrinth

- All NBI components identified and movement paths determined.
- All services accounted for, optimized, and routings approved.
- Platform requirements identified and supported by design.

Questions?

Supported by

NBI 2 Duct and Vessel Interface

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Martin Denault

NSTX Upgrade FDR LSB, B318 June, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

- Provide duct to connect NBI2 to NSTX
- Accommodate vessel pumping
- Modify NSTX vessel to accept 2nd NBI's alignment

NSTX with 2 NBI's

NBI Tangency Radii

() NSTX

Vessel Cap

- •Temporary in vessel bracing
- •Bracing remains in place until installation of cap is finished

NSTX Upgrade PDR

- •Bay K and J diagnostics removed,
- •TF coil between J and K removed
- •RWM coils/Vessel Bake out lines removed

•Bay K nozzle removed (plasma cut) as close to vessel as practical

NSTX Upgrade PDR

•Setup containment box and perform cut

NSTX Upgrade PDR

•J/K Cap fabricated

Final Cap Installation

Bay J/K Cap

NSTX Upgrade PDR

Vessel Cutting

- Plasma Cutting
 - Gas-shielded plasma cutter
 - Rapid cutting maintains relatively low heat to bulk of vessel

Plasma Cutter Offset

Cap Mockup

Cap Alignment Methodology

- Initial installation
 - Test fit cap and grind as needed for slip fit into opening
 - Use jack screw brackets to achieve desired alignment
 - Tack weld cap into place
 - Monitor alignment until fully constrained

Vessel Cutting

- Use guide for repeatable cut
- High speed, 2 ft long, 5/8" cut 304
 SS
 - Similar to VV material completed in one minute
- Less than 1/16" ripple eliminated by grinding
- Containment system to be installed to catch debris
 - Sheet metal box with elephant trunk exhaust

Actual Vessel Cut

Vessel Cutting

Raw Cut SST edge view

Wire brushing of cut

Raw Cut SST face view (1/32" scale)

Resulting finish

NSTX Upgrade PDR
Welding Joint Design

Flux Cored Welding

Vessel Reinforcement

4/16/2011 4:41 PM

A Fixed Support Pressure: 14.7 psi Moment: 3.e+007 lbf in

Inside

Outside

Reinforcement Plates

- Perimeter stitch welds
- Plug welds

76

Gussets around T-FIDA

Bolt on stiffeners between ports

Pressure Load and Torque Load sc 79

NSTX Upgrade PDR

79

Pressure Load and Torque Load sc 79

Pressure Load and Torque Load sc 79

() NSTX

Port Extension Assembly

Port Extension Assembly

Vacuum Loads on Extension

Extension Features

•Brings flanged interface out beyond TF coils

•Provides thin-profile vacuum boundary near coils

•Provides additional diagnostic ports

83

Stress Tresca * 2 Ibf/(in^2) 32000

28800.43 25600.86 22401.3 19201.73 16002.16 12802.59 9603.023 6403.455 3203.886 4.318284

Rectangular Bellows Assembly

PPPL fabricated stamped convolutions

Primarily to allow thermal growth of vessel ~0.30"On site fabrication of parts has started

84

Transition Duct Updates

NB2 Transition Duct

- Transition Duct
 - Adapts from 1m TIV to NB rectangular flange
 - Contains bellows and ceramic break similar in design to NSTX NB1
- Port Extension
 - Permanently bolted up to NSTX
 - Extends NB2 Duct and Vessel
 Pump Duct interface past TF coils

Conclusion

Vessel Cap

- Installation solutions exist
 - Plasma Cutting
 - **TF Coil removal Replacement**

• Beam Duct

- Internal molybdenum shielding added (greater protection than NB1)
- Bellows Fabrication concerns alleviated
 - On-site fabrication of a spare

Questions?

•Supported by

NB Armor Install

K. Tresemer, M. Denault

NSTX Upgrade FDR LSB, B318 June, 2011

 Culham Sci Ctr •U St. Andrews York U Chubu U •Fukui U •Hiroshima U •Hyogo U •Kyoto U •Kyushu U •Kyushu Tokai U NIFS Niigata U •U Tokyo JAEA Hebrew U loffe Inst RRC Kurchatov Inst •TRINITI KBSI •KAIST POSTECH ASIPP •ENEA, Frascati •CEA, Cadarache •IPP, Jülich •IPP, Garching ASCR, Czech Rep U Quebec

Armor Support System

Weldments

Cooling Lines and TC Wires out Bay H

Questions?

~fin~

