

Supported by

NSTX NBIU Power System & Controls

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

J. Edwards/ M. Cropper S. Ramakrishnan/ Timothy N. Stevenson

> **NSTX Upgrade Project Final Design Review LSB B318** June 23, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

NSTX NBIU Power & Controls - Introduction

- Update on the NBI Power System
- Work Scope to connect N4 NBPS ABC to BL2 ion sources
- Procurements
- Routing and Installation
- Grounding
- Update on the NBI Controls
- Work Scope to control NBI BL2 and inject NBI into NSTX plasma
- Conclusion

NSTX NBIU Power & Controls - Battery Diagram

Neutral Beam Power System Work Scope

- Same design as original power systems but updated to present BL1 configuration
- Recommission N4 power systems A,B, & C (all still available):
 - Accel (with some new electronics in Surge Room & Mod/Reg)
 - ✓ Grad Grid (build new air cooled resistive dividers per BL1 design)
 - ✓ Decel (with new tube control and regulator electronics)
 - ✓ Arc
 - ✓ Filament
 - ✓ Bending Magnet
- Run both beamlines from MG set for 13.8 kV feed (same as we did on TFTR)

 adding remotely controlled motorized actuation to 13.8 kV switches
- Reuse existing N4 Arc and Filament low voltage cabling to TFTR TC Basement as is
- Add junction boxes and route new cables from TCB through TC to NTC
- Move N4 HVEs from TCB to NTC
- Reuse transmission lines with clamshell arrangement in NTC (like BL1)
- Reuse existing telemetry and fiber optic cables salvaged from TFTR
- Reuse existing NBPS Deionized Water Skids in the pump room (still attached)

NSTX NBIU Power & Controls - Road Map

NSTX NBIU Power & Controls - One Line Diagram

NBI NBPS One Line Diagram

NSTX NBIU Power & Controls - NBPS N4 available

NBI NBPS Switchgear and Transformers

NSTX NBIU Power & Controls - Layouts complete

New penetration in NTC West wall

NB Upgrade Tray layout in NSTX Test Cell Existing penetration in TC floor

NSTX NBIU Power & Controls - Layouts complete

NB Upgrade

Tray Layout TFTR Test Cell Basement

NSTX NBIU Power & Controls - HVEs & Xmsn Lines

Saving N4 Xmsn line for reuse

NSTX NBIU Final Design Review

NSTX NBIU Power & Controls - New Cable

Procurements required are standard items for NBPS Operations and Maintenance

- NEW TRIAX CABLE TO BE PROCURED FOR ACCEL 20-26 weeks ARO
 - SOW TO BE ISSUED FOR PROCUREMENT
 - SUPPLYING THE CABLE
 - TERMINATING AND TESTING THE CABLE
- NEW 600V 4/C-500 MCM CABLES TO BE PROCURED FOR ARC/FILAMENT/MAGNET
 - Cost has nearly doubled since last estimate due to Cu price increase
- COAXIAL CABLE RG218U FOR DECEL TO BE PROCURED
- PARTS FOR GRADIENT GRID RESISTORS & HARDWARE TO BE ORDERED
- CABLE TRAY

Nothing unusual...

NSTX NBIU Power & Controls

- TOTAL CABLES TO BE INSTALLED
 - THREE TRIAX CABLES PROJECTED LENGTHS 300*3 FEET
 - THREE CABLES 600V 4C/500MCM & GRD WIRE ARC
 - THREE CABLES 600V 4C/500MCM & GRD WIRE FILAMENT
 - THREE CABLES 600V 4C/500MCM & GRD WIRE MAGNET*
 - *STANDARDIZE THE CABLES FOR EASE OF PROCUREMENT
 - THREE CABLES 600V 4C/#8 & GRD WIRE 208V FEED
 - THREE COAXIAL CABLES RG218U FOR DECEL
 - ALL POWER CABLES OF ARMORED CONSTRUCTION
 - FIBER-OPTIC CABLES
 - 6 CABLES WITH 8 FIBERS FOR EACH HVE TOTAL 18 FOR HVEs
- ROUTING PROPOSED
 - ROUTE ALL CABLES VIA TFTR TEST CELL BASEMENT, TFTR TEST CELL AND ON TO NSTX TEST CELL VIA PENETRATIONS
- INSTALL THE TRANSMISSION LINES
- INSTALL AUXILLIARY POWER CIRCUITS

Routing and Installation well known and ready to go...

NSTX NBIU Power & Controls

NBI Grounding scheme will conform to TFTR and NSTX design and operating experience

- GROUNDING BASED ON SINGLE POINT PRINCIPLE
- PROVIDE 24"X18"X3/8" CU PLATE ON INSULATORS IN WEST WALL NTC
- CONNECT THE 500 KCMIL GROUND WIRES (FROM 2 TRAYS) TO PLATE
- CONNECT PLATE TO BUILDING STEEL VIA THE EXISTING TFTR TEST CELL GROUND.
- BEAMBOX WITH STAND TO BE INSULATED FROM FLOOR DOUBLE BREAK
- TRIAX RETURN (HVE) TO BE CONNECTED TO THE SOURCE BOX PER EXISTING SCHEME
- PROVIDE GROUND WIRE AROUND TRANSMISSION LINE CONNECT THIS TO THE PLATE
- CONNECT SOURCE BOX TO GROUND VIA THE GROUND WIRE AROUND THE TRANSMISSION LINE
- RUN GROUND WIRE FROM EACH HVE TO THE GROUND PLATE
- CONNECT THE ARMOR OF EACH TRIAX TO THE HVE IN NTC
- CONNECT THE ARMOR OF EACH TRIAX TO MODREG GROUND IN NBPC
- CONNECT HVE SEGMENTS WITH GROUND JUMPERS
- FOR TESTING THE GROUND WIRE CAN BE DISCONNECTED FROM GROUND PLATE AND THEN TESTED

SAME AS FOR NB1

NSTX NBIU Power System - Status

- All electrical design work for installation purposes has been completed
- Routing of cables has been optimized to meet the requirements
- Penetrations required have been identified and shown in drawings
- All installation drawings for raceways and cables have been completed
- Draft installation procedures with Bill of Materials have been prepared

Neutral Beam Injection Control System Work Scope very similar to BL1 with updates to current status

- Mimic existing NSTX BL1 Control scheme for BL2 but move NTC racks
- Reactivate N4 Local Control Centers, CAMAC, Hardwired Interlock System
- Turn BL2 Plasma Current Interlocks on (chassis still in use for BL1)
- Add additional plasma interlock to prevent long pulse into armor- Ip & IpR
- Expand I/O for PLC control of BL and Services but use existing PLC
- Expand Thermocouple Scanning System to include BL2 & the ARMOR
- Fold BL2 into EPICS & timing pages
- Update NBOS LabView Operator interface so existing staff can run 2 BLs
- Pyrometer not yet feasible... no sight lines so tile upgrade to take the heat. (still under consideration.)

More sources, more buttons... but not more operators

Neutral Beam Control System & Interfaces to NSTX

NBI Ops Supervisor & Operators

NSTX Ops

- •Block Diagrams of each segment of the control scheme complete
- •Signal lists have been prepared to determine I/O requirements

Drawing lists have been prepared to determine requirements for new drawings and P&IDs
53 Drawings identified 52 completed.
608 CWD's identified 75 of them are commercial cables and do not need drawings generated, 470 require new drawings, 460 completed.
Test Cell/Gallery portion complete, 138' level not started.

- •Rack contents and layouts have been evaluated to determine new space requirements
- •NBOS LabView Controls will be updated to current technology like BL1
- •Interfaces are well understood and can be replicated for BL2 control
- •Test Cell cable trays lay out has not been started last major effort for controls

Controls design is on track...

NSTX NBIU Controls - PLC Block Diagram

NSTX NBIU Controls - NB Network, Remote LCC System

() NSTX

NSTX NBIU Controls - Gas Inj Sys, RGAs

NSTX NBIU Controls - TC Scanner, NTC Racks

NSTX NBIU Power & Control - Conclusion

- NBI Power System -
 - Reuse major portions of N4 power supply with updates
- Work Scope to connect N4 NBPS ABC to BL2 ion sources known
- Procurements similar to TFTR and NSTX BL1
- Routing and Installation a clear path forward identified
- Grounding same or similar
- NBI Controls repeat for BL2
- Work Scope to control NBI BL2 known

Conclusion - BL2 Power and Control design is well known and tested

And ready to run another BL again ...

Turn some breakers back ON for NBPS N4 A,B, & C systems...

NBPS Pov	ver Requir	rement								
		Volts	Amps	kWdc	Eff	kW	kVA	Pulse	Cycle	Duty Factor
								sec	sec	
Filament		10	4000	40	0.5	80	100	10	300	0.033
Arc		100	1000	100	0.5	200	250	6	300	0.020
Decel		2500	15	37.5	0.9	42	52	5	300	0.017
Accel		110000	65	7150	0.9	7944	9931	5	300	0.017
Water skid		480	50	24	0.8	30	38	CW	CW	1.000
Magnet		20	700	14	0.8	18	22	CW	CW	1.000
						8314	10392			
						Total kVA from MG per source				9931
						Total kVA from MG per BL				29792
						Total kVA from Grid per source			e	461
						Total kVA from Grid per BL				1384
Note: BL	Nechancia	l Systems r	not include	d						
Note: Assun	ned PF of 0.8	8								

