College W&M

Columbia U CompX

INEL

LANL

LLNL

ORNL

PPPL PSI

SNL

Lodestar

Colorado Sch Mines

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

Think Tank, Inc.

New York U

Princeton U

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

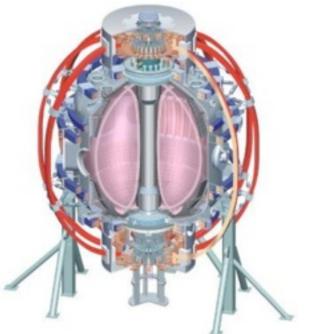
U Wisconsin

U Washington

U Illinois

UCLA

UCSD



Office of

NSTX CSU Upgrade Overview

L. Dudek

NSTX Upgrade Project Conceptual Design Review LSB, B318 October 28-29, 2009

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst TRINITI KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

Culham Sci Ctr

U Quebec

Outline

- Introduction
- Scope
 - Central Core Mods
 - Structural Improvements
 - Electrical System Upgrades & Auxiliary Systems
- Peer Review Results
- Major Milestones
- Cost Estimates
- Risk
- Summary

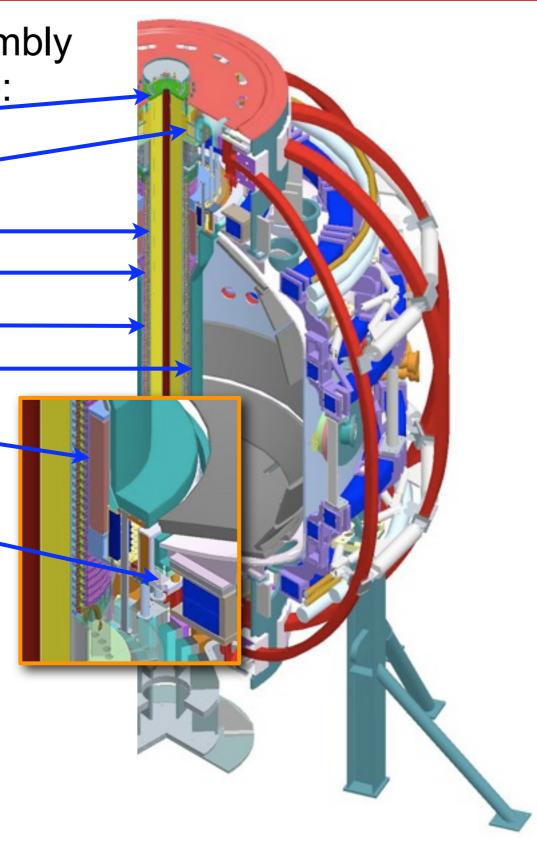
Introduction

Purpose

- To expand the NSTX operational space and thereby the physics basis for the next-step ST facilities
- To achieve higher levels of performance and pulse duration

Requirements Summary

	NSTX	NSTX-CSU
Plasma Major Radius [m]	0.8540	0.9344
Aspect Ratio	1.266	1.500
Plasma Current, I _P [MA]	1.0	2.0
Toroidal Field B _t [T]	0.6	1.0
Pulse Length, T _{pulse} [s]	0.5	5.0
Rep Rate Trepetition [s]	600	2400
Center Stack RadiusRcenterstack [m]	0.1849	0.3148
Antenna Rad, R _{antenna} [m]	1.5740	1.5740


NSTX Upgrades Scope

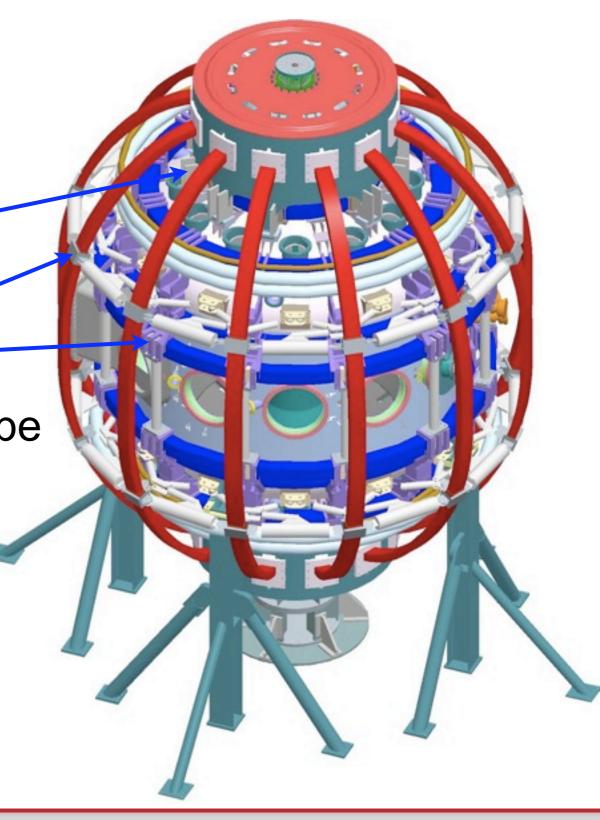
- Changes to the Central Core (Chrzanowski / Titus / Willard):
 - Toroidal Field (TF) inner leg bundle including flags, hubs, and flexible connectors
 - Ohmic Heating (OH) coil
 - Poloidal Field (PF) coils PF1A Upper, PF1A Lower, and PF1B
 - Microtherm thermal insulation
 - Center Stack Casing (CSC)
 - Plasma Facing Components (PFC) associated with CSC including the Inboard Divertor (IBD)
 - TF, OH, PF1A Upper (PF1AU), PF1A Lower (PF1AL), and PF1B Lower (PF1BL) coil electrical leads
 - CS and Supply piping for heating and cooling of CSC and IBD
- Structural Improvements (Dudek / Titus)
 - TF outer leg supports
 - PF coil supports
 - Pedestal which supports Center Stack Assembly from floor
 - Vacuum vessel if required (VV)
- Electrical Systems (Ramakrishnan)
 - Power Systems
 - CS Bakeout system
 - I&C systems
- Center Stack Diagnostics Sensors
- Auxiliary Systems
 - Cooling water system mods
 - CS and Supply piping for inboard gas injection

Changes to Central Core

- Design, Build and Install New CS Assembly including (Chrzanowski / Titus / Willard):
 - New TF Hub Assembly
 - New TF Stub and Flex Assemblies
 - New Inner TF Bundle
 - New Ohmic Heating Coil
 - New Inconel Casing & Insulation
 - New PFC Tiles
 - New Poloidal Field 1a, b & c Coils
 - New Ceramic Break
- R&D Activities to support above work
 - TF electrical joint testing
 - OH braze joint testing
 - Stir Welding Tests

Structural Improvements Required

 Design Build and Install (Mangra / Dudek / Titus):


Reinforcement to existing coil structures to handle higher magnetic loads

Umbrella Structure

Outer TF Legs & Vacuum Vessel

Outer PF Coil

 Vacuum Vessel reinforcement may be necessary in localized areas (eg Passive Plate supports)

Electrical System Upgrades & Diagnostics

- Power Feed Upgrades (Ramakrishnan)
 - Upgrade TF power supply to support full field capability of
 1T. (At ~1T, ~2.5s flattop every 20 min and up to ~5 s every 40 min)
 - Existing cables will be reconnected for TF use. Thus there will be a total of 8 cables per pole for TF.
- Replace Centerstack Diagnostics
 - -Rogowski Coils
 - -Mirnov Coils
 - -Flux Loops
 - Langmuir Probes
 - Thermocouples

Auxiliary Systems

Gas Injection Systems

 Relocate existing center stack gas injection system to the new center stack

Coil Cooling water modifications

- Increase in cooling water pressure by upgrading the pump for the OH coil to provide 600 psig (up from 400 psig)
- Upgrade the existing cooling water system to cool the outer TF coil legs separately from the inner

Peer Review

- A peer review of this design was held in mid August
- The reviewers included engineers from outside the lab
- Presentations included technical details on the analysis and the design concept
- At this review 40 Chits were generated and have been dispositioned
 - Most of the chits were written in the area of analysis recommendations and TF Inner to outer joint design (Willard)
 - Project has responded to these chits and the closeout is being tracked
 - There were no "show stoppers"

Major Milestones for Center Stack Upgrade

FY 09 **FY 10 FY 11** FY 12 **FY 13** FY 14 CD-0 CD-1 CD-2 CD-3 **Center Stack** CD FD PD **Upgrade** Component Copper proc. **Fabrication** Assembly CD+4 **Installation Testing** Conting ISTP

Cost Estimates

- Cost estimates were generated by the Job Managers with input from engineers closest to the work
- Estimates are conservative
- Depending on the work estimated, they are based on
 - Previous NSTX construction
 - Quotes from Vendors or suppliers
 - Engineering Judgement
 - Published cost data (eg RS Means)
- Additional detail to be presented by R. Strykowsky

Centerstack Upgrade Risks at CD-0

- Risk: The ability to find a cost effective TF Joint that works at higher fields.
 - The selected design has been verified through analysis to be far superior to the existing design for current capacity and liftoff (Willard presentation)
- Risk: Little room to re-enforce outer TF Legs and Umbrella Structure to handle higher loads.
 - The original concept of a diamond brace has evolved to a "radius rod concept"
 - Uses space utilized by existing support to transfer the loads back to the VV

Centerstack Upgrade Risks at CD-1

- The latest Risk Registry now has 34 risks identified
 - Vendor Performance (9)
 - Coil Fabrication (8)
 - Installation Difficulty (7)
 - Design error (4)
 - Analysis (3)
 - Other (3)
- Risk: OTF and PF Support Installation Difficulty
 - Design is being tailored to improve installation
 - Modular
 - Utilize space occupied by existing supports
 - Careful planning
 - Coordinate carefully with NB upgrade
 - Methodical removal of existing equipment

Summary

- The upgrade requirements are challenging but a conservative conceptual design is being presented
- The design is well defined and is ready to proceed to the preliminary design level
- The upgraded TF joint, which was problematic with the original design, has evolved into a robust design with major improvement in margin
- The cost estimates are based on the conservative design which is being presented

