

Supported by

Motivation for NSTX Upgrade and selection of design point

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI Princeton U Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Jon Menard, Charles Neumeyer

NSTX Upgrade Project Conceptual Design Review LSB, B318 October 28-29, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep U Quebec

- Physics Motivation
- Design Point Selection Process
- General Requirements Document, Design Point Info
- Assessment of Impact of Operational Scenarios

Access to reduced collisionality is needed to understand underlying causes of ST transport, scaling to next-steps

- Higher toroidal field & plasma current enable access to higher temperature
- Higher temperature reduces collisionality, but increases equilibration time
- Upgrade: Double field and current for 3-6× decrease in collisionality → require 3-5× increase in pulse duration for profile equilibration

Increased auxiliary heating and current drive are needed to address ST start-up, sustainment, and boundary issues

- Need additional heating power to access high temperature and β at low v^{*} \rightarrow 4-10MW, depending on confinement scaling
- Need increased <u>current drive</u> to access and study 100% non-inductive
 → 0.25-0.5MA current drive compatible with ramp-up, sustainment plasmas
- Need to learn to manage \geq ITER \rightarrow FNSF-level high-heat-flux challenge
 - \rightarrow high divertor power density (P/R \leq 20MW/m) + flexible divertor PF coil set
- Upgrade: Double neutral beam power + more tangential injection

-More tangential injection \rightarrow up to 2 times higher efficiency, current profile control

- q(r) profile very important for global stability, electron transport, Alfvénic instability behavior
 - Variation of mix of NBI tangency radii would enable core q control

Upgrades provide major step along ST development path (next factor of 2 increase in current, field, and power density)

	NSTX	NSTX Upgrade	High Heat Flux Facility	Fusion Nuclear Science Facility
Aspect Ratio = R_0 / a	≥ 1.3	≥ 1.5	≥ 1.7	≥ 1.5
Plasma Current (MA)	1	2	3.5	10
Toroidal Field (T)	0.5	1	2	2.5
P/R, P/S (MW/m,m ²)	10, 0.2*	20, 0.4*	40, 0.7	40-60, 0.8-1.2

* Includes 4MW of high-harmonic fast-wave (HHFW) heating power

Approximate outline of new Center-Stack

Design Point Selection Process (1)

- Design point spreadsheet studies were initiated in April '08
- Guiding assumptions:
 - 1. Completely replace center stack
 - 2. New TF same dZ as average turn of original
 - 3. New OH same dZ as old
 - 4. Retain existing TF outer legs
 - 5. TF at flat top for full duration of Ip
 - 6. Provide OH flux sufficient for I_P ramp in 1st swing
 - Conservative $dI_P / dt = 2MA/s assumes 2 \times higher T_e$ with upgrade
 - 7. Use OH 2nd swing as thermal/stress permits
 - 8. Retain existing PF outer coils
 - 9. Coil temperature range* 12-100C, adiabatic, allow for L/R decay
 - 10.Simple formulae for TF von Mise stress**, OH hoop stress*** (peak)
 - VM allowable stress 133 MPA, peak allowable stress 200MPA
 - 11.1kV TF, 8kV/24kA OH, 1 MG
 - 12.Two TFTR NBI systems imposing MG loads
 - * TF adiabatic allowable slightly above 100C to account for entrained water benefit
 - ** neglects tension due to force from outer leg
 - *** neglects interaction with PF coils and plasma

Design Point Selection Process (2)

- Spreadsheet modeling features:
 - TF and OH conductor sizing
 - Adiabatic conductor heating models (G-function)
 - Allowance for "fill factor" due to conductor cooling hole, corner radii, electrical insulation
 - Simple formulae for TF inner leg Von Mises stress and OH peak hoop stress
 - Not included are TF inner leg torsion, TF outer leg, VV, etc.
 - Full OH Von Mises/Tresca stress calculation w/axial stress is not included
 - Full OH waveform including plasma loop voltage and flux requirement
 - Accounts for flux consumption during plasma initiation
 - Computes ramp and flat top flux using Hirshman-Neilson formulation
 - Simplified linear models for AC/DC converter behavior
 - TF and OH L-R circuit models $V = L \cdot dI/dt + I \cdot R w/$ temperature dependent R's
 - MG power and energy models
- XL Solver (non-linear optimizer) is used to compute design point...
 - finds radius of TF necessary to meet B_T and pulse length requirement
 - designs OH coil to meet flux requirement of 1st swing, maximizes 2nd swing within thermal constraints

Design Point Selection Process (3)

- Initial approach was aggressive (e.g. 2kV TF, 10kV OH, 2 MG) at A ~ 1.5-1.6 to understand possible operating envelope
 - Found that maximum usage of center stack area (based on spreadsheet analysis) would allow $I_P=3$ MA with 5 sec flat top at $B_T=1.4T$
 - But this ignored TF joint design, PF forces on TF, PF interaction forces, ...
- Decided to limit to 1kV TF, 8kV OH, 1 MG → I_P=2MA, 5 flat-top, B_T = 1T and investigate design concepts in detail
 - First design point proposed in November 2008
 - Physics analysis performed to confirm assumptions
 - First "official" design point for engineering study issued 2/10/09
- Recent iterations in summer/fall 2009:
 - TF conductor details based on manufacturing considerations
 - OH coil wound directly on TF eliminates "tension tube", gap
 - Refinements in insulation thicknesses (more conservative)
 - Refined design of inner PF coils (PF1a/b/c coils) -
 - Added short pulse double swing scenario
 - Inclusion of force influence matrices and force calculations

Design Point Parameters and Waveforms

Relative performance of Upgraded NSTX vs. Base:

- Center-stack radius increased 13cm A=1.3 → 1.5
- Field doubled at same major radius
- Available OH flux increased 4-fold
- Inter-shot cool-down period doubled

NSTX CSU TF,OH & Plasma Waveforms

	Base	NSTX
	NSTX	Upgrade
R ₀ [m]	0.854	0.934
Min. aspect ratio	1.28	1.5
l _p [MA]	1	2
В _Т [Т]	0.55	1
T _{pulse} [s]	1	5
T _{repetition} [s]	600	1200
R _{center_stack} =R ₀ -a [m]	0.185	0.315
R _{antenna} =R ₀ +a [m]	1.574	1.574
Total OH flux [Wb]	0.75	3

General Requirements Document (GRD) and Web-based Design Point Information for Centerstack Upgrade

- GRD was signed and issued on March 30
- Contains top level mission performance requirements
 - Includes appropriate level of specificity for mission performance
 - Refers to web-based design point data as vehicle for tracking/coordinating details subject to iteration
- Organized according to original NSTX WBS structure
 - Changes required to each WBS element are described
 - Ensures that no work scope is overlooked
- Comprehensive design point data is also maintained on web site to ensure coordination of all design activities
 - NSTX CSU design team is notified when new data is posted
 - Changes indicated in "blue, records of prior revisions maintained
- Web data contains both base NSTX with CS upgrade data
 - Useful for comparing "old" vs. "new" MKS and English units http://www.pppl.gov/~neumeyer/NSTX_CSU/Design_Point.html

TF supports and "PF cage" design have been based on most conservative physics and engineering assumptions

- Compute PF current requirements based on wide range of equilibria that provide <u>more shaping flexibility/capability</u> than present NSTX
- 2. Assume all power supplies can access worst-case force combinations

Free boundary equilibrium parameters:

- Aspect ratio A: 1.6 1.9
- Internal inductance I_i: 0.4 1.1
- Elongation κ : 2.1 2.9
- Triangularity δ : 0.2 0.7
- Squareness ζ: -0.15 0.12
- Magnetic balance: -1.5 0cm
- I_{OH}: zero and +/- supply limit
 - For computing PF needed for cancellation of OH leakage flux

32 free boundary equilibria × 3 OH conditions = 96 cases

Narrower operating range ($\delta \ge 0.4$, $\zeta \sim 0.1$, $I_i \le 0.8$)* + advanced coil protection could simplify PF support design – analysis underway...

* this operating range similar to that of highest-performance present NSTX plasmas

Summary: NSTX Upgrades will greatly expand the research capabilities of NSTX and narrow key gaps to future STs/tokamaks

- Design doubles B_T , I_P , P_{NBI} , and extends pulse 3-5×
 - Access and understand impact of reduced collisionality
 - Access fully non-inductive ramp-up and sustainment
 - Assess plasma-material interface solutions for FNSF/Demo
- Design point is feasible from engineering standpoint
 See subsequent presentations
- Next activity is to further assess trade-offs between physics performance and complexity/estimated cost

Backup Slides

Major facility upgrades are proposed to bridge performance and understanding gaps between present and next-step STs

Non-inductive ramp-up to ~0.4MA possible with RF + new CS, ramp-up to ~1MA possible with new CS + more tangential 2nd NBI

Ramp to ~0.4MA with fast wave heating:

- High field \geq 0.5T needed for efficient RF heating
- ~2s duration needed for ramp-up equilibration
- Higher field 0.5→1T projected to increase electron temperature and bootstrap current fraction

Extend ramp to 0.8-1MA with 2nd NBI:

- Benefits of more tangential injection:
 - Increased NBI absorption = $40 \rightarrow 80\%$ at low I_P
 - Current drive efficiency increases: ×1.5-2
- New CS needed for ~3-5s for ramp-up equilibration
 - Higher field 0.5→1T also projected to increase electron temperature and NBI-CD efficiency

Additional PF coils of new CS would provide flexibility to control flux-expansion for heat flux control

Present NSTX:

NSTX with new CS:

🕦 NSTX

NSTX Upgrade Project Conceptual Design Review

NSTX Upgrades needed to extend ST confinement scaling studies to higher field and current and lower collisionality

• NSTX H-mode thermal confinement scaling differs from higher aspect ratio scaling: $\tau_{E,NSTX} \propto B_T^{0.9} \ I_p^{0.4} \rightarrow \text{strong } B_T \text{ scaling}$ $\tau_{E,98v,2} \propto B_T^{0.15} \ I_p^{0.93} \rightarrow \text{weak } B_T \text{ scaling}$

🔘 NSTX

NSTX Upgrade Project Conceptual Design Review

October 28-29, 2009

Higher field B_T=1T from new CS + 2nd NBI would enable access to wide range of 100% non-inductive scenarios

NSTX Upgrade Project Conceptual Design Review