

Supported by

NSTX NBI In-Vessel Armor

NSTX

U Wisconsin

York U

Chubu U

Fukui U

Hyogo U

Kyoto U

Niigata U

U Tokyo

loffe Inst

TRINITI

KBSI

KAIST

ASIPP

U Quebec

JAEA

NIFS

Armor Design: the Starting Point

- Previous FDR armor specifications
 - 1 Beamline, 3 Sources
 - Material: Isothermal graphite or ATJ
 - Existing cooling provided with 4 loops at 3.6 GPM, each
 - Conditions of Design:
 - Bakeout temp: 350 deg C
 - Worst Case "Fault": 2.8 kW/cm² for 0.75 second
 - Thermal analysis results for "Fault":
 - » Max temp = 1985.07 deg C
 - » Max tensile stress = 109.5 MPa
 - » Our Baseline

Transient Thermal Analysis Results

Stress Analysis Results

October 28-29, 2009

Current Beamline Placement

October 28-29, 2009

Armor Upgrade: Pulling Double-Duty

- 2 beamlines, 6 sources
 - » Tangency radii per GRD
 - Use the existing armor array
 - Shift array counterclockwise to catch both sources

Evaluating Current Armor for Relocation & 6 Sources

- Both beamlines on armor
 - Look at Beam "Footprints"
 - Shows spread of beams, (x and y directions)
 - Compare with projected beam overlapping
 - Core Beam = 80% total beam power
 - Divergent Beam = 20% total beam power
 - Sufficient Clearance!
- Check overlapping heat loads
 - Ran test cases and compared against earlier "Fault" case
 - Design for this case, improve armor in other ways.
- Between-shot cooling required for pulse rate of 1200s
 - Original cooling lines designed for 900s

Existing Armor: Beam Footprints

NSTX Upgrade Project Conceptual Design Review

October 28-29, 2009

New Armor: Applied Beam Heat Flux

New Armor Thermal Analysis

• Tested worst case (2 source, full power, overlapping) in ALGOR using a simple tile and various pulse lengths

Pulse length (s)	Heat Flux (W/m^2)	Max Temp (deg C)	Von mises (Mpa)
1	4.68E+07	4439.80	252.00
0.75	4.68E+07	4038.46	220.00
0.5	4.68E+07	3387.69	179.00
0.25	4.68E+07	2622.07	134.00

- The results dictate shot conditions. We shall take precautions not to allow a full-power "Fault" beyond <u>0.25 s</u>
 - Provide a redundant plasma current interlock (beams run w/ plasma only)
 - In-armor thermocouples will be monitored to ensure between-shot cooling
 - Provide mid-plane material in backing plate in hot zones
 - Change armor tile material to CFC in hot zones
 - » ATJ sufficient in cooler regions
 - "Fault" condition is <u>unlikely</u>, but if occurs, armor will survive, but will require physical inspection

Thermal Analysis for Between-Shot Cooling

- Worst case heat load on tile and backing plate
 - Ran test sample in ALGOR, simple shape
 - "Back of the envelope" Analysis
 - 3"x1" slice of armor (tile and backing plate), 3/8" cooling tube, 20 minutes between shots
 - Determined time constant for cooling
 - Preliminary results suggest cooling system adequate for in-between shot cooling
 - More tests needed to confirm. Numbers will be updated for FDR as analyses are completed

Thermal Analysis for Between-Shot Cooling

New Armor: Vacuum Vessel Mounting

- Improving existing design for accessibility.
 - After move, armor is now nearly centered on bay H
 - Provides access to center mounts

New Armor: Vacuum Vessel Mounting

- Improving current design for accessibility.
 - Can access sides of backing plates through Bays I and G
 - Improves access to mid-plane mounts

New Armor: Vacuum Vessel Mounting & Loads

- Mounting scheme results in 16 mounting points for armor
 - Previous FDR disruptive loads on armor = 214000 lbs, radially
 - 13,375 lbs/mount
 - Assume 2X for upgrade
 - 26,750 lbs/mount
 - » These numbers need to be updated for PDR as analyses are completed

In Conclusion...

- We are going to....
 - Relocate existing armor array to accommodate all 6 sources
 - Armor tile material improvement to CFC for hot zones
 - Add backing plate supplementation
 - Provide engineering and administrative control to avoid "Fault"
 - Redundant IP interlock
 - Verify re-use of cooling system for upgrade
 - Improve armor mounting points for accessibility and increase in mechanical forces

