National Spherical Torus Experiment

NSTX UPGRADE PROJECT

PRELIMINARY HAZARDS ANALYSIS

Revision 0

July 8, 2009

Prepared By:

Jerry D. Levine, Head, Environment, Safety & Health

<u>Hazard</u>	Barrier
Radiation:	 2nd NBI Only: Estimate maximum of 0.0097 Ci/yr of tritium produced (based on 2.0E17 DD neutrons/yr projected generation rate). If released, dose at nearest business would be <3E-5 mrem/yr. 40CFR61 Subpart H limit is 10 mrem/yr, and EPA approval to construct is required at 0.1 mrem/yr. New CS Only: Estimate maximum of 0.0969 Ci/yr of tritium produced (based on 2.0E18 DD neutrons/yr projected generation rate). If released, dose at nearest business would be <3E-4 mrem/yr. 40CFR61 Subpart H limit is 10 mrem/yr, and EPA approval to construct is required at 0.1 mrem/yr. New CS + 2nd NBI: Estimate maximum of 0.1938 Ci/yr of tritium produced (based on 4.0E18 DD neutrons/yr projected generation rate). If released, dose at nearest business would be <3E-4 mrem/yr. 40CFR61 Subpart H limit is 10 mrem/yr, and EPA approval to construct is required at 0.1 mrem/yr. New CS + 2nd NBI: Estimate maximum of 0.1938 Ci/yr of tritium produced (based on 4.0E18 DD neutrons/yr projected generation rate). If released, dose at nearest business would be ~5E-4 mrem/yr. 40CFR61 Subpart H limit is 10 mrem/yr, and EPA approval to construct is required at 0.1 mrem/yr. Personnel occupancy of the NTC and other areas deemed necessary by Health Physics will be excluded during plasma operation and neutral beam conditioning. Maximum offsite dose from operations will be (scaled based on NSTX SAD Table 3): 3E-4 mrem/yr for 2nd NBI Only; 3E-3 mrem/yr for New CS Only; and 6E-3 mrem/yr for New CS + 2nd NBI (limit is 10 mrem/yr). Maximum worker dose will be ≤1000 mrem/yr (limit is 5000 mrem/yr).
Electrical	 In order to ensure the protection of personnel from electrical hazards, the selection of electrical equipment and the design and construction of electrical distribution systems complies with national codes and standards wherever possible. Access to hazardous areas is controlled by the NSTX Safety System. To prevent electrical hazards from being transmitted outside the NSTX Test Cell (NTC) boundary all instrumentation is isolated via optical and/or magnetic (magnetic transformer) means prior to exiting the NTC boundary. Electrical work practices conform with the requirements of ES&HD 5008, Section 2 ("Electrical Safety").
Fire	 The NTC fire detection system consists of ionization smoke detectors and rate of rise heat detectors located at the ceiling and aspirated smoke detection (VESDA) under the platforms. The NTC fire suppression is a pre-action type automatic water sprinkler system similarly located.

Hazard	Barrier
Earthquake	 The NTC along with the rest of the D-Site experimental complex structures, has been determined to have adequate capacity to remain functional under the overall loads due to an earthquake with a horizontal ground acceleration of 0.13g. The NSTX platform has been designed for 0.09g, the seismic requirements of the NSTX torus structure. Equipment associated with the NSTX Upgrades will designed and built consistent with these requirements.
Vacuum Windows	Personnel injury due to flying debris from failed windows, or from an individual being drawn to, or into, the opening is addressed via window design features and/or installation of protective covers, See ES&HD 5008, Section 9, Chapter 14.
Magnetic Fields	 Personnel are prevented from entering the NTC during plasma operations by an access control system. During a hot access (access while coils are energized but plasma formation is prevented), the magnetic field strength that personnel are exposed to shall not exceed the threshold limit value, B_{TLV}, for routine occupational exposure. See DOE Standard STD-6003-96.
RF Fields	RF systems have been designed with leakage levels that comply with IEEE Standard C95.1-1991 (outside the test cell) and are routinely checked for leakage. In addition, RF transmission into the NTC is prevented whenever personnel have access to the NTC.
Mechanical	 During a hot access into the NTC, personnel are required to stay in a protective enclosure to protect against magnetically propelled projectiles or possible arc splatter that may attend an electrical bus failure. Gas cylinders are stored/installed in accordance with PPPL safety procedures (ES&HD 5008, Section 9, Chapter 2) to prevent breaking the cylinder heads, which could propel the cylinders due to a rapid release of gas.
Hot Fluids	 The Low Temperature Bakeout Heating/Cooling System, which is run with water at temperatures up to 150°C, was hydrostatically tested to at least 1.5 times its operating pressure prior to operations. The High Temperature Bakeout Heating/Cooling System, which uses pressurized helium at temperatures up to 420°C, was pneumatically tested to 1.3 times its operating pressure prior to operations. Precautions are taken to prevent personnel contact with hot surfaces, including restricting access to areas where hot pipe or components are present, posting of warning signs, and personnel training.

Hazard	Barrier
Gases/Cryogenics	_ The content of the largest gas cylinder (311 cubic ft.) constitutes
/Lithium	less than 0.1% of the volume of the NTC (approximately
	354,000 cubic ft.). Thus, oxygen concentrations in the NTC
	would remain at safe levels for personnel even if a gas cylinder's
	entire contents were released to the room.
	$_$ Since SF ₆ is heavier than air and can displace oxygen, leakage of
	the gas could be hazardous to personnel occupying an enclosed
	area below the leak point. Personnel protection is provided by
	strategic location of SF_6 detection in the NTC to provide local
	evacuation alarms.
	_ Trimethylboron (TMB) used in the boronization process is toxic
	(7ppm TLV, based upon the TLV of the reaction product B_2O_3)
	and pyrophoric in air. Protective measures include low TMB
	inventory (≤ 50 g), prior leak checking of components that will
	be TMB pressurized above 1 atm, use of portable leak detectors,
	limiting NTC access during boronization to only TMB trained
	personnel, interlocks that halt TMB injection on loss of plasma
	discharge or glow discharge current, and nitrogen purging of the stack vent line during TMB injection.
	 Cryogenic system subsections which may be isolated by valves
	or other means are provided with pressure relief devices.
	Appropriate personal protective equipment is used by personnel
	engaged in handling cryogenic fluids. Pressure relief devices
	have been installed to preclude rupture of sections of the system
	by excessive internal pressure. All piping has been designed for
	maximum operating pressure and tested in accordance with
	applicable ANSI codes. Only materials suitable for cryogenic
	service are used if in contact with cryogenic fluids or subject to
	cryogenic temperatures.
	- Lithium hazards include fire or explosion hazards due to the
	high reactivity of lithium, and health hazards due to the
	corrosive and toxic nature of the stable end products of lithium
	reactions. Safety precautions include avoiding contact with
	sources of moisture, conducting fabrication and transport of
	pellet material under an argon atmosphere, receipt and disposal
	of lithium material in sealed containers, presence of special
	(LITH-X) fire extinguishers during lithium loading activities and
	transport to the NTC, venting & cleaning of the vacuum vessel
	prior to allowing worker entry after lithium experiments, and
	performing work activities according to approved procedures
	and using proper PPE.

In general, proper system design, construction and the presence of features that mitigate the effect of failures (e.g. redundancy, energy isolating barriers, etc.) will ensure the safety of

personnel. Personnel will be excluded from areas such as the NSTX Test Cell (NTC), the NSTX bus tunnel in the Test Cell Basement and other relevant areas when hazards exist, by the use of hardwired interlocks, procedures, signage, indicator lights and training.