

NSTX Upgrade

CHI Bus BarAnalysis

NSTXU-CALC-54-01-0

November 21, 2013

Prepared By:

Peter Titus,

Reviewed By:

Andrei Khodak

PPPL Calculation Form

Calculation # <u>NSTXU-CALC-54-01-00</u> Revision # <u>00</u> _____ WP #, <u>1672</u> (ENG-032)

Purpose of Calculation: (Define why the calculation is being performed.)

The purpose of this calculation is to provide guidance on initial design of the CHI bus bars and connections for the upgrade loads, and to provide qualification of the final design.

References (List any source of design information including computer program titles and revision levels.)

These are included in the body of the calculation, in section 6.2

Assumptions (Identify all assumptions made as part of this calculation.)

CHI normal operating currents are assumed to be evenly distributed between the three CHI bars. CHI current drive operation is assumed to be possibly operating during a disruption (see figure 4.0-3). A peaking factor is applied to the disruption halo currents that raises the peak halo current from 50 kA to 75 kA per leg or 84 kA per vertical CHI bus connection with current drive. Halo currents are assumed not to be uniformly split between the three vertical legs of the Bus. The peaking factor is estimated by Stefan Gerhardt based on NSTX operations. Current drive experiments will be possible when power supplies are upgraded to the Transrex power supplies.

Calculation (Calculation is either documented here or attached)

These are included in the body of the following document

Conclusion

The Upgrade CHI bus bar design is qualified for the increased upgrade loads and currents. The qualified design is based on 2.0 inch square (on a side, 4.0 Sq. inch) air cooled conductor in the vertical runs and a 1 X 3.5 inch cooled ring bus. Mounting plate bolts for the 6 X 3 box beam support should be 5/8 inch ASTM A193 B8M Class 2 bolts. 5/8 inch studs welded to the umbrella structure with a 3/8 weld is also acceptable. High strength bolts should also be used at the connections to the centerstack casing. In order to sustain the separating loads when the paired conductors in the ring bus carry the halo currents, clamps connecting the upper and lower rings should be four clamps between the bus tower and the ring bus. Most qualifications either considered bake-out thermal stresses or disruption stresses. Normal operating Lorentz stresses will scale down with the normal current/Halo Current or 9kA/84kA. Self load effects scale down with the square of this. The normal Lorentz stresses are small even with respect to the fatigue limit of copper of 125 MPa. CHI rod materials and retainers at the casing flange need to be checked for adequate size and material selection. They should satisfy the same allowable as the bus bar.

Cognizant Engineer's printed name, signature, and date

Neway Atnafu

I have reviewed this calculation and, to my professional satisfaction, it is properly performed and correct.

Checker's printed name, signature, and date

2.0 Table of Contents

Title Page	1.0
ENG-33 Forms	
Table Of Contents	2.0
Revision Status Table	3.0
Executive Summary	4.0
Input to Digital Coil Protection System	5.0
Design Input,	
Criteria	6.1
References	6.2
Photos and Drawing Excerpts	6.3
Materials and Allowables	6.4
Bus bars near flag brazes	6.4.1
Bus Bars away fro flag brazes	6.4.2
Copper Fatigue Allowables	6.4.3
Bolting Materials	6.4.4
Welds	6.4.5
CHI Currents	6.5
CHI Normal Operation	6.5.1
CHI Bake-Out	6.5.2
Disruption Halo Currents	6.5.3
Analysis Models and Boundary Conditions	7.0
Bus bar Cooling Calculations	8.0
Self Loads	9.0
Self Loads as a Function of Separation	9.1
Self Loads for the Halo Currents	9.2
Floor Run with Self Loads	9.3
Assembly Model with Self Loads	9.4
Worst Equilibria for CHI Lorentz Force Calculations	10.0
Biot Savart Model, Lorentz Force Calculations	11.0
Solid Models Including flags	12.0
Vertical Run Solid Model Runs	12.0
Vertical Run Solid Model July – August 2013 Analyses	12.1
Vertical Run Solid Model Bolting/Studs	12.2
Intermediate Flag Bolting	12.3
Ring Bus and Ring Bus to Flag Braze	12.4
Bolted Connection to Centerstack casing Flange	12.5
Beam Element Structural Calculations	13.0
Mode Frequency and Dynamic Load Factor Calculations	13.2
Conductor Cross Section Calculations	14.0
1.5 inch Square	14.1
³ / ₄ inch Square Water Cooled Conductor	14.,2
P. Rogoff Nastran Model	15.0
Appendix A Input file for the NTFTM Biot Savart Calculation	

Appendix A Input file for the ANSYS beam element analysis Appendix C True Basic Cooling Program Appendix D Bus Bar Physicals Appendix E Superseded IGES models of earlier designs.

4.0 Executive Summary

Figure 4.0-1 CHI Bus Design Evolution

The objective of this calculation is to qualify the final design of the CHI bus bars and connections for the upgrade loads. Integrally connected to the bus bars are the CHI rods that run vertically and connect with the centerstack casing flange. The purpose of this calculation is to address the design details of these as well. An earlier version of the bars is addressed in the centerstack casing calculation, NSTXU-CALC-133-03-0 [23]

The Upgrade CHI bus bar design is adequate for the increased upgrade loads and currents. The qualified design is based on 2.0 inch square, (4.0 Sq. Inch) air cooled conductor in the vertical runs and a 1 X 3.5 inch water cooled ring bus.

Stick models of the CHI bus bar system were built to support initial sizing. The ring bus, floor runs and lower ends of the vertical legs of the CHI bus were not heavily loaded by electromagnetic loads (see figure 4.0-2). This allows conceptual design to focus on the vertical runs. There are three of these and they are similar enough that only one needs to be modeled in detail, however to get the proper stress at the brazed connection to the ring bus, the ring bus and three identical vertical runs are modeled. Loads from TF fields predominate for conductor runs inside the TF "cage". PF fields were investigated, but in the region where the TF fields are large, the PF field magnitudes are small enough that they can be enveloped by a 1 T upper bound. At the ring bus both the TF and PF fields are lower

There are runs that physically come close to PF2L. The PF2L currents for the 96 Equilibria were plotted. The EQ with the highest PF2L current (15

Connects with the CHI Rods

kA in EQ66) was run and the PF loads can still be basically enveloped by the 1 Tesla poloidal field. The fields at the ring bus are estimated to be less than 1.0 T

Initially, self fields were ignored as small compared with the forces due to the background field (See Figure 9.1-2), or because the halo currents were assumed to travel in only one leg of the paired conductors. Based on discussions with Stefan Gerhardt, effects of self fields were added.

Early analyses with a 2 cm (3/4 inch) square conductor with coolant hole was significantly overstressed everywhere that is effected by the TF field. The guidance was to go to a bigger cross section, and adding more supports inside the TF "cage".

The calculations are based on the halo currents in the CHI bus that have been measured by Stefan Gerhardt. These are 7.5%*Ip with a peaking factor of 1.5. With Concurrent CHI current drive. This turns out to be 84,000 amps per bar. The design currents are summarized in figure 4.0-3.

Increased to 8,000 Amps in July 2013, Was 6,000 Amps

Figure 4.0-3 CHI Bus Bar Currents

Most of the limiting stresses in the bus bars are for the unlikely convergence of a full power shot, use of CHI current drive, and a VDE disruption with a worst case halo peaking factor. This as an "Unlikely" Event as defined by the NSTX Criteria Document [11], Section I 4.1.5 Kfactors. This allows a K factor of 1.2 be applied to the normal allowable.

Table 4.0-1 Stress Summary							
Location (Halo Loading Unless Noted)	Peak T	Stress	Allowable	Rpt			
	(deg C)			Section			
2 X 2 Bus Bar Horizontal Leg Supported By the Box Beam	36	174 MPa	156 MPa	12.1			
		(Peak)	(Bending)				
2 X 2 Bus Bar Vertical Runs	36	70 MPa	156 MPa	12.1			
		(Peak)	(Bending)				
Upper 2 X 2 Bus Cantilevered Box Beam Support	36	>270 MPa	240 MPa	12.2			
		(Peak)	(Bending)				
Upper 2 X 2 Bus Cantilevered Box Beam Support		210 MPa	240 MPa	12.2			
		(Bending)	(Bending)				
Upper 2 X 2 Bus Cantilevered Box Beam 5/8 Bolting	36	58 ksi	58 ksi	12.2			

Table 4.0-1 Stress Summary

Upper 2 X 2 Bus Cantilevered Box Beam 3/8 Welded 5/8 Stud	36	21 ksi	21 ksi	12.2
Intermediate Joint ¹ / ₂ Bolting	36	10 ksi	11.3ksi	12.3
Ring Bus to Flag Braze Joints	32			12.4
CHI Bar (connected to Casing) (water cooled)		156	156	12.5.1
¹ / ₂ in Bolts, Connection to the Centerstack Casing Flange (*)	32	33021 psi	66,000psi	12.5.2
Bolted Connection to the Centerstack Casing (with Preload)	32	50,000 psi	66000 psi	12.5.2
Ring Bus 1 X 3.5 Water Cooled Halo Current Self Loads (with	32	40.75	156 MPa	Figure
supports every 45 degrees around the perimeter)		MPa (peak)	(bending)	9.2.4
Floor Run Water Cooled Self Loads	32	76.5 MPa	156 Mpa	9.3
Bake-Out All CHI Bus Bar	50	<135	130	Fig 8.0-6
		(Peak)	(Bending)	
Ring Bus Bake-Out (Water Cooled)	25			Fig 8.0-2

(*) ASTM A 193 B8M Class 2 bolts assumed to allow a higher preload

Figure 4.0-4 CHI Rod, Flag and Bus Bar Model and Stresses

The gray area would exceed the contour limit of 135 MPa The allowable for the unlikely event of the peak CHI currents occurring additive to the worst halo currents has a bending allowable of 156 MPa. If the stress in the section were linearized the bending stress would not be much above 135 MPa.

Figure 4.0-5 CHI Rod, Flag and Bus Bar Model and Stresses (Only Copper). Copper Bus Bar Physicals at Bottom

Figures 4.0-4 and 5 show the results of analyses with the final version of the horizontal leg support. This is a box beam that was chosen to have a torsional rigidity better than the 3 inch angle that was used in a previous iteration. There are still some peak stresses above yield, but this is a worst case loading of a worst case disruption with a worst case halo current along with CHI current drive. These will certainly be infrequent events, not subject to a fatigue evaluation.

For the 3 X 6 box section (or equivalently two 3 X 3 box sections welded together), mounting plate bolts should be 5/8 inch ASTM A193 B8M Class 2 bolting. Another possibility is to weld 5/8 studs onto the wall of the umbrella structure with 3/8 fillets.

5.0 Digital Coil Protection System (DCPS).

CHI Bus bar stresses have been shown to be dominated by the toroidal field . Restrictions on the PF coil currents for "normal" scenarios is not anticipated. There is no input to the DCPS planned for disruption loading of components. The loading calculated for the CHI Bus and other components in this calculation is based on the maximum toroidal field for the upgrade, and the maximum poloidal fields for the 96 scenarios specified in the design point spreadsheet. No DCPS input is required.

6.0 Design Input

6.1 Criteria

Stress Criteria are found in the NSTX Structural Criteria Document[11]. The stress criteria has been simplified into one tensile stress limit for copper conductors based on an assessment of the fatigue life capabilities of the OH conductor [10]. Maintaining the tensile stress below 125 MPa will satisfy the fatigue limt. Limiting loading on the CHI bus derives from a non-uniform distribution of halo currents during a disruption. Disruption specifications are outlined in the GRD -Ref [7]. Since the most severe disruption currents with the most severe peaking factors are unlikely events, the stress limit will be based on static criteria with a K factor of 1.2. From ref [11]:

CHI Bus Bars

(d) For bolting materials, the design Tresca stress values shall be:

2/3 of the *minimum* specified yield strength at every point in time

6.2 References

[2] Disruption specification J. Menard spreadsheet: disruption_scenario_currents_v2.xls, July 2010. NSTX Project correspondence, input to Reference [1]

[3] "Characterization of the Plasma Current quench during Disruptions in the National Spherical Torus Experiment" S.P. Gerhardt, J.E. Menard and the NSTX Team Princeton Plasma Physics Laboratory, Plainsboro, NJ, USA Nucl. Fusion 49 (2009) 025005 (12pp) doi:10.1088/0029-5515/49/2/025005

[4] ITER material properties handbook, ITER document No. G 74 MA 15, file code: ITER-AK02-22401.

[7] NSTX Upgrade General Requirements Document, NSTX_CSU-RQMTS-GRD Revision 0, C. Neumeyer, March 30, 2009

[8] Inductive and Resistive Halo Current s in the NSTX Centerstack, A.Brooks, Calc # NSTX-103-05-00[9] Modeling of the Toroidal Asymmetry of Poloidal Halo Currents in Conducting Structures

N. Pomphrey, J.M. Bialek, W. Park Princeton Plasma Physics Laboratory,

[10] P. TITUS OH Conductor Fatigue Analysis NSTXU-CALC-133-09-00 Rev 0 Jan 7 2011, PPPL

[11] NSTX Structural Design Criteria Document, NSTX_DesCrit_IZ_080103.doc I. Zatz

[16] Diagnostics Review and Database NSTXU-CALC-40-01-00, Joseph Boales

[17]Vessel Port Re-work for NB and Thompson Scattering Port, Calculation number NSTXU-CALC-24-01-00

[18] Damping in ANSYS/LS-Dyna Prepared by: Steven Hale, M.S.M.E Senior Engineering Manager CAE Associates (Web Search Results)

[19] Disruption Load Calculations Using ANSYS Transient Electromagnetic Simulations for the ALCATOR C-MOD Antennas, P Titus Plasma Sci. & Fusion Center, MIT, Cambridge, MA; Fusion Engineering, 2002. 19th Symposium on Fusion Engineering 02/2002; DOI:

10.1109/FUSION.2002.1027634 ISBN: 0-7803-7073-2

[20] Email from Stefan Gerhart

>> > 2) I suspect that the toroidal symmetry should be fairly good...better than

>> > the symmetry (or lack thereof) for the halo current entrance points. I think

>> > that a peaking factor of 1.5 could be assumed for a first analysis

>> > (max/average = 1.5). If this poses a problem, please let me know and we can revisit. Note that there are no measurements of this peaking, so it will be a guess no matter what.

[21] Progress on CHI and MGI Experiments on NSTX R. Raman, 53rd Meeting of the Division of Plasma Physics, APS 2011 Conference November 14-18 2011 Salt Lake City

[22] NSTX Structural Analysis of PF1, TF and OH Bus Bars NSTX-CALC--55-01-00 February 15, 2011 Andrei Khodak

[23] Centerstack Casing and Lower Skirt Stress Summary, NSTXU-CALC-133-03-00 Feb 10 2012, P. Titus, and Rev 1 – in preparation as of Nov 2013

[24] Umbrella Structure Mill Certs, Email from Larry Dudek October 8 2010 Pete,

Mark found the certs for the umbrellas. Yield stress: 32ksi Larry (This is ref [11] in NSTXU-CALC-12-07-00

[25] "General Electric Design and Manufacture of a Test Coil for the LCP", 8th

Symposium on Engineering Problems of Fusion Research, Vol III, Nov 1979

[26] "Handbook on Materials for Superconducting Machinery" MCIC- HB-04 Metals

and Ceramics Information Center, Battelle Columbus Laboratories 505 King Avenue Columbus Ohio 43201

[27] STRUCTURAL DESIGN CRITERIA FOR ITER IN-VESSEL COMPONENTS (SDC-IC) APPENDIX A MATERIALS DESIGN LIMIT DATA July 2004 G 74 MA 8 R0.1

6.3 Photos and Drawing Excerpts

Views of CHI Vertical Runs and Connections to the Umbrella Structure

Figure 6.3-1 CHI Bus Lower Area Arrangement

Figure 6.3-2 CHI Bus Lower Area Arrangement

Figure 6.3-3 CHI Upper Flag Connection

Figure 6.3-4 CHI Upper Flag Connection to the Centerstack Casing

Figure 6.3-5 CHI Upper Flag Connection to the Centerstack Casing

Figure 6.3-6 IGES Model from Jean Pierre Fra, July 2013

6.4 Materials and Allowables

Most of the limiting stresses in the bus bars are for the unlikely convergence of a full power shot, use of CHI current drive, VDE disruption with a worst case halo peaking factor. This as an "Unlikely" Event as defined by the NSTX Criteria Document[11], Section I 4.1.5 K factors. This allows a K factor of 1.2 be applied to the normal allowable discussed below.

Table 6.4.1-1 Room Temperature Properties of Copper, C10200 (OFHC)

Standard	Former	Yield Min	Yield	Tensile Min	Tensile	Elong	Rockwell F
			Max		Max	%	
O25	Hot Rolled-	11 ksi (2)		34 ksi (2)		45	
	Annealed	76 MPa		234 MPa(2)			
H00	Eighth Hard	28 ksi (2)		36 ksi (2)		30	54-82 (1)
		193		248 MPa (2)			60 (2)
H01	Quarter	30 ksi (2)		38 ksi (2)	25	25	60-84 (1)
	Hard	207		262 MPa (2)			70(2)
H02	Half Hard	36 ksi (2)		42 ksi (2)		14	77-89(1)
		248 MPa (2)		290 MPa (2)			84(2)
H03	³ ⁄ ₄ Hard						82-91 (1)
							85(2)
H04	Hard	40 ksi (2)		45 ksi (2)		6 to 20	86-93 (1)
		276 MPa (2)		310 MPa (2)			87 (2)
H06	Extra Hard						88-95 (1)
H08	Spring	50 ksi (2)		55 ksi (2)		4	90-97(1)
		345 MPa (2)		379 MPa (2)			

6.4.1 Static Allowables for Copper Stresses

(1) ASTM B152

(2) Copper Development Association Web Page www.copper.org flat form

The copper is either assumed annealed near the brazes or the test reports for the bus bar copper are used. See section 6.4.1.2 and appendix D

6.4.1.1 For Bus Bars near Flag Brazes

The physicals for annealed copper would apply:

The copper near the brazed flags is expected to be annealed. Use the O25 standard in table 6.4.1-1 for the annealed properties. Sm=2/3*76 MPa = 50.7 MPa, and the bending allowable=76 MPa.

6.4.1.2 For bus bars away from the flag brazes,

The physicals from the copper purchase would apply:

Mechan	loat properties						
ttern	Tensia etrongth B_N/mm ³	0.2 % proof strangth ReceNmm ²		Elongation %	н	ardness	Grain size
005	216	130	A5	56	HRF	59	

Figure 6.4.1.2-1	Physicals for Con	ner Bus Bars –	- See annendix D
1 15ul 0 0.4.1.2 1	Thysicals for Cop	per Dus Durs	bee uppendix D

Bus bar yield is 130 MPa (18.8 ksi) and the tensile is 216 MPa, 31.3 ksi. The OH conductor properties are taken as representative of the CHI Bus fatigue. Sm is 2/3 yield or 87 MPa or 12.6ksi. with adequate ductility, which is the case with this copper which has a minimum of 56% elongation. Note that the $\frac{1}{2}$ ultimate is not invoked for the conductor (it is for other structural materials). For the "Unlikely Events as defined by the NSTX Criteria document[11], the bending allowable would be 1.2*130 MPa = 156 MPa

For bake-out, these stresses should be further reduced to consider the effects of operation at 100C. This effect is estimated to be 10%, so the Sm value is 78 MPa. and the bending allowable is 117 MPa

- From: 2.4.1.1 Design Tresca Stress Values (Sm), NSTX DesCrit IZ 080103.doc [11]
- (a) For conventional (i.e., non-superconducting) conductor materials, the design Tresca stress values (Sm) shall be 2/3 of the specified minimum yield strength at temperature, for materials where sufficient ductility is demonstrated (see Section 2.4.1.2). [3]

6.4.2 Fatigue Limits for Copper Bus Bar

The normal operating, fatigue based bus bar conductor allowable is taken to be 125 MPa based on the assessment of OH conductor fatigue based allowable in ref [10]. The data used to derive this fatigue allowable included cyclic tests on brazed lap joints done for the original NSTX. The biggest loads on the CHI bus are from very occasional large disruptions that produce significant halo currents that pass from the centerstack casing to ground through the CHI connections. Severe disruption loads and bake-out loads are assumed to occur only a few cycles and do not require a fatigue assessment. Stresses for these cases should meet static allowables.

6.4.3 Fatigue Limits for Braze Joint

Data on the strength of braze joints is scarce and requires a large number of samples to capture the data scatter and include the possibility of voids in the braze. In the figure below, the conductor braze joint planned for the ITER in-vessel coil was tested. For a factor of safety of 20 on life, NSTX would have to qualify 20 * 20000 or 400,000 cycles. That corresponds to a stress around 90 MPa or 13 ksi. This is higher than the static allowable for annealed copper – use the 76 MPa allowable for annealed copper

	Load		Appl	ied Load		Load Range		Date		
Specimen	Ratio	Maximum	Minimum	Amplitude	Mean	2000	i cange	Tested	Cycles	Comments
		(lb)	(lb)	(Ib)	(lb)	(lb)	(N)			
CF-12	0.0	28,900	0	14,450	14,450	28,900	128,554	1/19/2011	82,946	Base Metal-Sleeve Edge
CF-8	0.0	28,900	0	14,450	14,450	28,900	128,554	1/20/2011	63,284	Grip Failure
CF-5	0.0	14,700	0	7,350	7,350	14,700	65,389	1/3/2011	1,309,459	Base Metal-Sleeve Edge
CF-9	0.0	34,400	0	17,200	17,200	34,400	153,019	1/20/2011	29,245	Base Metal
CF-4	0.0	34,400	0	17,200	17,200	34,400	153,019	1/21/2011	34,343	Base Metal
CF-6	0.0	14,700	0	7,350	7,350	14,700	65,389	1/4/2011	1,397,537	Base Metal-Sleeve Edge
CF-7	0.0	23,800	0	11,900	11,900	23,800	105,868	1/21/2011	148,369	Base Metal-Sleeve Edge
CF-10	0.0	23,800	0	11,900	11,900	23,800	105,868	1/25/2011	142,382	Base Metal-Sleeve Edge
CF-11	0.0	23,800	0	11,900	11,900	23,800	105,868	1/28/2011	212,532	Chamfered-Near butt joint

6.4.4 Bolting Materials

ASTM A193 Bolt Specs from PortlandBolt.com

B8M	Class 1 Stainless steel, AISI 316, carbide solution treated.
B8	Class 2 Stainless steel, AISI 304, carbide solution treated, strain hardened

B8M Class 2 Stainless steel, AISI 316, carbide solution treated, strain hardened

Mechanical Properties

Grade	Size	Tensile ksi, min	Yield, ksi, min	Elong, %, min	RA % min
B8 Class 1	All	75	30	30	50
B8M Class 1	All	75	30	30	50
	Up to 3/4	125	100	12	35
B8 Class 2	7/8 - 1	115	80	15	35
	1-1/8 - 1-1/4	105	65	20	35
	1-3/8 - 1-1/2	100	50	28	45
	Up to 3/4	110	95	15	45
B8M Class	7/8 - 1	100	80	20	45
2	1-1/8 - 1-1/4	95	65	25	45
	1-3/8 - 1-1/2	90	50	30	45

For ASTM A-193 B8M Class 5/8 inch bolts, the stress allowable would be 2/3*110 = 73.3 ksi

6.4.5 Weld Allowable

Reference and Weld	Rod or weld wire	Parent Material	Allowable Stress (Exclusive of Weld Efficiency)
AISC Stress on cross section of full penetration Welds		All	Same as Base material
AISC Shear Stress on Effective Throat of fillet weld	AWS A5.1 E60XX	A36 -	21 ksi

6.4.6 Umbrella Structure Base Material Allowable

The yield of the umbrella structure is 32 ksi[24] 2/3 of this is 21 ksi

6.4.7 Stainless Steel Structural Shapes

Table 6.4.7 -1 Tensile Properties for Stainless Steels

Material Viold 202 dag K (MPa) Ultimate 202 dag K			
Material Tield, 292 deg K (MFa) Offiniate, 292 deg K	Material	Yield, 292 deg K (MPa)	Ultimate, 292 deg K

		(MPa)
316 LN SST	275.8[25]	613[25]
316 LN SST Weld	324[25]	482[25]
		553[25]
316 SST Sheet Annealed	275[26]	596[26]
316 SST Plate Annealed		579
304 Stainless Steel (Bar,annealed)	234	640
	33.6ksi	93ksi
304 SST 50% CW	1089	1241
		180ksi

Table 6.4.8316 Stainless Steel Strength and Temperature DependenceIn-Vessel Criteria Appendix A Table A.S1.3.2-1Ref[27]

T, ℃	20	50	75	100	125	150	175	200	225	250	275	300	325	350
Sy, min,														
Mpa	220	195	182	172	164	156	150	144	139	135	131	128	124	121

There is a discrepancy in the two tables. Take the min yield to be 200 MPa and the bending allowable is 200 MPa. With the K factor for the unlikely halo current events it is 1.2*200 = 240 MPa

6.5 CHI Currents

The most significant Lorentz load on the CHI Bus bar system occurs during a disruption in which the CHI system provides a path to ground for the halo currents in the vessel. Normal operating CHI currents used for break-down and plasma initiation are less demanding. Thermally the bake-out currents are the most challenging because of their steady state nature.

		NSTX BASE	NSTX CSU
Ro	m	0.854	0.934
A_100		1.3	1.5
lp	MA	1.0	2.0
Bt@Ro	Т	0.6	1.0
I =5e6*radius*Bt at Radius	Amp	2.562e6	4.67e6
I per Turn =	Amp	71166	129722

Table 6.5-1 NSTX and NSTX-U Operating Parameters

6.5.1CHI Normal Operation

Currents flow in the CHI system during start-up and during a disruption. Normal operation for the upgrade is expected to utilize 27 kA of current [21] when the TF is at full field. This is planned to produce 1 MA of plasma current. This occurs during start-up. The CHI can be used for current drive after the initiation. This was done early in the NSTX program to demonstrate current drive but is not commonly used.

Use:	9000, a	amps for	20,000	full	power	shots	for t	he	fatigue	limit.
------	---------	----------	--------	------	-------	-------	-------	----	---------	--------

From [21] Progress on CHI and MGI Experiments CHI Start-up Parameters in NSTX	on NSTX R. Rama	an, et. Al.
Parameters	NSTX	NSTX-U
R/a (m)	0.86 / 0.68	0.93 / 0.62
Toroidal Field (T)	0.55	1.0
Planned Non-Inductive sustained Current (MA)	0.7	1.0
Poloidal flux (mWb) contained in the plasma at non- inductive sustained current with internal inductance of 0.35 and at device major radius	132	206
Maximum available injector flux (mWb)	80	340
Maximum startup current potential (MA)	0.4	~1
Req. Injector current for max. current potential (kA)	10	27*
* HIT-II routinely operated with 30kA injector cur	ent without im	purity issue

 Image: Width North 2013
 S3rd APS-DPP Reman
 Nor 17, 2011
 14

Figure 6.5-1 Normal Operational CHI Parameters Expected for NSTX Upgrade [21]

The toroidal field at the CHI Rod (connected to the Centerstack casing flange) is .934*1.0/(18.31/39.36) = 2.008T. Normal operating current in the CHI rods is 27 kA/3 = 9 kA. The load in the rod over almost a meter of height is 9000*2T = 18000 N or 2023 lbs per rod, radially outward. The horizontal run of the bus bar connection sees similar loading in the vertical direction.

6.5.2CHI Bake-Out

During Bake-out, the CHI circuits are used to pass current through the centerstack casing. Early in the project, Larry Dudek calculated the required current for the larger casing used for the upgrade. Raki has updated this to 6 kA total current. In July 2013, Mike Williams was concerned that this was too low and requested that the design current be increased to 8 kA

As the current leaves the CHI ring bus, it is split into three bus bars which connect with the casing CHI rods or leads. Consequently each vertical run is assumed to carry 2.66 kA

6.5.3 Disruption Halo Currents

The halo currents that flow through the CHI connections have been estimated by Stefan Gerhardt to be 7.5 % of the plasma current, or 150,000 amps. Or 50,000 amps per CHI rod. There is a future potential to have the current drive and disruption loads to be additive if and when the CHI is driven by the transrex power supplies. For the disruption Halo currents, Stefan estimated 1.5 as a "guessed at" peaking factor. I will use:

50,000*1.5 +9000 =84,000 amps for any individual busbar - and treat this as an "Unlikely" Event as defined by the NSTX Criteria Document[11], Section I 4.1.5 Kfactors. This allows a K factor of 1.2 be applied to the allowable.

The ring bus feeds two vertical runs in one direction and one vertical run in the other. The peaking factor applies to one set of the three vertical runs. High currents in one vertical run would mean the balance of the 7.5 * Ip current would appear in the other two runs. Or (150,000-75000)/2 = 37500 amps So the total in the ring bus in the feed connected to the two of the three vertical runs is 75,000+37500+9000+9000 = 130 kA.

The toroidal field at the CHI Rod (The vertical run from the casing flange) is .934*1.0/(18.31/39.36) = 2.008T. The Halo loading is 7.5% of 2e6 amps*2T*.365m/3 36500N = 8205.2 lbs per rod. Where .365m is the length of the rod. This goes up to 12,008 lbs with the peaking factor. The horizontal run of the bus bar connection sees similar loading.

One important observation is that the disruption considered in Art Brooks' simulation is a centered disruption. The disruption that drives currents in the CHI bus is a quench after a VDE. So, the loading in the CHI bus is not additive to those loads calculated by A. Brooks.

In a Sept 19th 2013 phone call with Stefan Gerhardt, he explained that the halo currents are equal and opposite at the CHI inlet and outlet connections, just as it would be during normal CHI operation. This means that the currents carried in the paired conductors in the vertical runs and the ring bus and the floor feeders, will have large separating self loads. Paired conductors may not experience fully canceled loads because the peaking factors for the centerstack casing and vessel connections may not be the same.

The requirements for disruption analysis are outlined in the NSTX Upgrade General Requirements Document [7]. The latest (August 2010) disruption specification were provided by Jon Menard as a spreadsheet: disruption_scenario_currents_v2.xls.[2] This reference includes a suggested time phasing of the inductively driven currents and the halo currents.

Figure 6.5.3-2Time phasing of the plasma current changes that induce currents in the vessel and vessel components, and the halo currents. From J. Menard

Criteria from the GRD:

Current and field directions (referring to Figure 2.2-2) shall be as follows: Plasma current Ip into the page (counter-clockwise in the toroidal direction, viewed from above) Halo current exits plasma and enters the structure at the entry point, exits the structure and re-enters the plasma at the exit point (counter-clockwise poloidal current, in the view of the figure) Toroidal field into the page (clockwise in the toroidal direction, viewed from above)

7.0 Structural Analysis Models and Boundary Conditions

Magnetic Models are discussed in section 11.0. Structural analysis models evolved along with the design. Initially beam-stick models were used for basic sizing and remain the only analysis of the dynamic load factors for the transient Lorentz forces. These beam stick models and analyses are discussed in more detail in section 13.0. Use of the beam element model made investigations of various bus bar cross sections easier. When the conductor cross section settled down, solid element models were made. First one

Figure 7.0-1 IGES Geometry of the CHI Bus System and Single Vertical Run Models at Right

geometry of the Pro-E model was passed to ANSYS via IGES files. Parts of the IGES models were meshed. And used for the model mesh and other segments were meshed with ADPL commands, particularly where the solid model had problems with connectivity.

Figure 7.0-2 IGES File Geometry of the Representative Vertical Run In Figure 7.0-2, the IGES model as read into ANSYS, is shown. The volumes could not be meshed and so the areas were meshed as plates, and then converted to solid elements

Displacement Constraints - Typical of All Models

Figure 7.0-3 Boundary Conditions: Temperatures and Displacement Constraints

Figure 7.0-3 shows the boundary conditions applied to the models. At left is the "final" solid element model, and at right is the earlier beam-stick model (plotted to show the size of the beam). Early studies, using the beam-stick model, showed the need to allow the vertical bus bars to grow freely in their clamps. This set the boundary conditions on the vertical run to constrain only lateral motion.

Figure 7.0-4 Single Vertical Model, Nodes and Lorentz Forces (from Background Fields); and Nodes and Displacement Constraints

The single vertical run model was used to assess the horizontal leg cantilever support. The radial current crossing the toroidal field produced a large vertical force that bent the horizontal leg. Addition of the support and then upgrade of the support to a box beam section was evaluated in this model.

Figure 7.0-5 CHI Bus Model, Model and Constraints (Left) Model and Lorentz Forces (Right)

The vertical run models was repeated and rotated three times and connected to a model of the ring bus in this model. Self loads were added. This model allowed a better representation of the brazed connection to the ring bus.

Figure 7.0-6 Models Used to Check Self Loads with the Large Halo Currents flowing Out and Into the Machine

Self loads of the bus that runs along the floor and the ring bus were treated separately. These are well away from any significant background field and the self loads for normal operation are trivial. However large halo currents flow in these bus connections. The realization that the halo current produced large opposing currewnts in the bus pair led to the necessity of adding interconnections to react the large separating forces. This is addressed in section 9.3

The bracket that supports the horizontal run near the centerstack casing is either bolted to the umbrella structure or is connected via welded studs. Use of welded studs avoids the necessity of drilling and taping the umbrella structure. This is addressed in section 12.2

8.0 Conductor Cooling Calculations

A simple rule of thumb may be used for initial sizing of the bus bar:

Air-cooled Bus Bar :	1 kA/in^2
Water cooled Bus Bar	10 kA/in^2

The vertical runs of the CHI bus are air cooled and are 2 X 2 inches. So they are undersized with respect to the rule of thumb and a more detailed treatment of the thermal behavior of the bus bars is needed.

A True Basic program was developed that computes the transient temperatures of the bus bars given a current profile. The source listing for this code is included in Appendix C

Ring Bus Results (Water Cooled)

Figure 8.0-1 Ring Bus Normal Operations

2 inch X 2 Inch Vertical Bus Results (Air Cooled) Normal Operation

This produces only a 1.5 degree heat-up, so Normal operation is not an issue. The CHI air cooled bus bars are sized for the bake-out operation

2 inch X 2 Inch Vertical Bus Results (Air Cooled) Bake-Out

Figure 8.0-5 Bake-Out Temperatures Applied to the Structural Model

Figure 8.0-6 Bake-Out Stresses

Note that there is a local bending peak stress in the clamp. This will have to be checked – In the finite element model the clamp size was arbitrarily selected as ~ 1 cm square in cross section. It is larger in actuality.

Previous 6.0 inch X 1.0 Inch Horizontal Floor Run Bus Bar Results (Air Cooled)

9.0 Self Field Loads9.1 Self Field Separating Force vs. Separation - Floor Run Bus Bars

Lorentz forces on the bus bar are calculated based on the bar currents crossing the background field from the toroidal and poloidal field coil. The self loads that result when the bars are near each other have been pieced together and added to the Lorentz force calculation for the background fields. To address these loads either the bars are bundled together to internally react the loads or the bars are sufficiently separated to minimize the loads. In this section, Lorentz loads as a function of separation are computed The geometry for the first study is 1.5 inch square bars with variable separation.

	seal	
	secoor	
	0,0,100,-100,100,-1000,1000	
zero	reve	/batch
gpla	seal	/prop7
75,1.5,1,75,1.5,1	1	/prep/
seal 1	snal	et,1,45
grprel	1	ov 1 100o0
1,1	CONV 1 1	ex, 1, 100e9
divi	seal	ex,40,100e9
1,8,8,1 enal	1	/input char mod
1	ccur	/input,obal,inou
	1,1,2,3,4,5,6,7,8	esel,mat,40
merge	1	nelem
1,.001 rodu	r	
atrans	1,1,140.6 !9 kA/64	d,all,all,0.0
1,-3.0,0,0	snal 1	nall
seal	field	ooll
1 repeat	1	eall
1.0.0.01.1.1	styp	save
seal	8,8 mfor	fini
1	1.1.2.3.4.5.6.7.8	10.0
todt	popt	/solu
00,0,1	f	solve
	pi	30176
	1	save
	gsel	fini
	fsum	1
	U	/exit
	EXIL	

Figure 9.1-1 NTFTM Routine to Calculate the Separating Force vs Separation

Figure 9.1-2 Forces as a Function of Separation for a Pair of 1.5 X 1.5 inch square inch Bus Bars

Originally the halo currents were assumed to travel in only one of the paired conductors because it was expected that the vessel was at ground and only the centerstack was connected to ground via the CHI bus. The conductors would only be affected by the background fields. Judging from Figure 6.5.3-1 and after a phone call to Stefan Gerhardt, it was determined that the disruption halo currents also pass through both legs of the CHI bus and thus will have large separating forces. The currents in the vertical paired conductors can't be assumed to fully cancel because the peaking factors for the casing and outer vessel structures are different. The 1.5 inch square water cooled runs along the floor also would carry a reversed set of halo currents. Figure 8.1-2 could be scaled by (150,000/9000)^2

9.2 Ring Coil Self Field Separating Force

Figure 9.2-1 Self Field Loads and Stresses for a Straight Run of Ring Bus Conductor

Figure 9.2-2 Self Field Loads and Stresses the Ring Bus Conductor, 84 kA

The currents flowing in the ring bus are discussed in section 6.5.3. the currents are either 84 kA in one direction or 130 kA in the other. This depends on how many of the three vertical runs are connected to a segment of the ring.

Figure 9.2-3 Self Field Loads and Stresses for 84 kA

Figure 9.2.4 Self Field Loads and Stresses for 130 kA

In order to sustain the separating loads when the paired conductors in the ring bus carry the halo currents, clamps connecting the upper and lower rings should be added at least every 45 degrees. The 163 MPa stress is for supports spaced at 90 degrees. 45 degree support spacing was requested from Jean Pierre Fra. The stress should go down by a factor of 4. To 40.75 MPa

9.3 Floor Run Self Loads with 150 kA Halo Currents

The floor runs were not included in some of the models because the background fields are small. But the self loads on the paired conductors is high if these conductors carry the 150 kA Halo current disruption load.

Figure 9.3.1 Model of the Floor Run Connecting the Ring Bus to the Bus Tower

The floor runs carry the full halo current, and there should be four clamps between the bus tower and the ring bus. Figure 9.3.1 shows an analysis with only two clamps and this produces 306 MPa, well above the allowable. Four clamps would halve the spans and should reduce the bending stress by a factor of four. So the estimated stress for the 4 support points is 76.5 with a bending allowable of 130 MPa

9.4 CHI Bus Stresses With Self Loads

In this analysis the self loads are added using a Biot Savart analysis for the PF, TF coils and vertical legs. The net vertical forces from the analysis in section 9.2.2 are added to the lower ring bus.

Figure 9.4-1 Vertical Displacements

Figure 9.4-2 Tresca Stress Intensity

10.0 Worst Equilibria for CHI Lorentz Force Calculations

For many of the NSTX calculations, EQ 79 is used as the most limiting. This results from global torque assessments for which EQ 79 is the largest. It is not clear if that is the worst for the CHI. The CHI leads inside the TF "cage" are near PF2. The TF field is the largest contributor to the Lorentz forces, but large currents in PF2 could add to the TF effect.

Figure 10.1-1 PF 2 Currents for the 96 Equilibria and Disruption.

Based on the plots in figure 10.1-1, EQ 66 was selected as a likely worst case along with EQ 79.

11.0 Biot Savart Model, Lorentz Force Calculations

Lorentz forces were computed outside ANSYS with a macro/program that uses the element connectivity to define current directions. The background fields and forces are computed from a Biot Savart analysis . Lorentz forces are computed from I X B

Figure 11.2-1 Biot Savart Model of NSTX and the CHI Bus Bar Stick Model

Figure 11.2-2 NSTX PF Coil Model and Real Constants used in the CHI Bus Bar Analysis

Figure 11.2-3 Fields(left) and Lorentz Forces (Right) from the Biot Savart Analysis

12.0 Solid Models Including flags

IGES Files were provided by J.P. Fra. These formed the basis for meshing the vertical runs. Modeland the mesh are described in section 7.0

12.1 July – September 2013 Analyses

Figure 12.1-1 Model of Single "Worst" Vertical Leg

Figure 12.1-1 shows the model of one of the three vertical runs. It includes a box beam support that is cantilevered off the lower umbrella structure. The model has a 3 X 5 box section without the end cap. In the actual design, two 3 X 3 box beam are welded together to form the equivalent of a 3 X 6 beam. A cap is welded to the end of the beam to stabilize the box section against "racking". In subsequent models the single vertical run model was repeated , and the ring bus added to represent the three vertical runs and their brazed connection to the ring bus.

Figure 12.1-2 Calculation of the Lorentz Forces on the Vertical Leg

The Lorenz forces are calculated outside ANSYS by simply imposing a 1/r toroidal field on the conductors inside the TF "cage" and adding a 1 T vertical field everywhere. Conductor elements are meshed with known and consistent connectivity so that the length and direction of the current vectors can be derived from the connectivity The forces are computed by crossing the currents and fields. This is done in the simple fortran code, NTFTM. The resulting meshed model with Lorentz forces is imported into ANSYS with a /input command. The full listing of the NTFTM commands is included in Appendix A.

Figure 12.1-3 Model of Single Vertical Leg before a Mid Span Support was Added.

Figure 12.1-4 Model of Single Vertical Leg with a 3 X 3 X 3/8 Angle Mid Span Support.

Note the rotational flexibility of the angle and the peak stress at the lower end of the angle leg. The rotational flexibility of the angle led to the selection of a closed section box beam. All stresses were unacceptable.

Figure 12.1-5 Model of Single Vertical Leg With the Box Beam Support

The stress in the horizontal leg of the bus bar went from 360 MPa to less than 135 MPa with the addition of the box beam support. The bulk of the bar is lower than 135 MPa. The small areas with a peak stress above 135 MPa are only at local corners, and this is acceptable for the very few numbers of events that will produce a concurrent worst case halo current and CHI current drive currents. The short vertical element connecting the box beam and the bus bar clamp is modeled as a 3 X 3 angle. This has been changes to a 3 X 3 box section. So the stresses in this piece will be much reduced.

Figure 12.1-6 Stress at Vertical to Horizontal Bend

Figure 12.1-7 Stress at Vertical Runs of the 2 X 2 Bar

12.2 Vertical to Horizontal Support and Bolting/Studs

Figure 12.2-1 Umbrella Structure Bolting Reactions

The biggest tensile load is 56783 N or 12,765 lbs. $\frac{1}{2}$ inch bolts have a stress area of .14 sq in. This would stress the bolt to 91 ksi. 5/8 bolts have a stress area of .2246 in^2 and the tensile stress would be 57 ksi. For ASTM A-193 B8M Class 1 bolts, the stress allowable would be 2/3*110 = 73.3 ksi, (see section 6.4.3) So 5/8inch bolts are required for the attachment. There may be a preference for a welded stud to replace the threaded bolt hole in the umbrella structure.

Figure 12.2-2 Umbrella Structure Welded Stud Stresses

The bending allowable for the 316 cantilever box beam is 240 MPa with the 1.2 K factor. There is a peak above 270 MPa but the linearized bending stress should be \sim 210 MPa contour.

12.3 Intermediate Joint Bolting

The finite elements that model the bolts model a diameter of .0147 m or .59 inches. These are stressed to a maximum of 71 MPa and an average around 35 MPa or 5.1 ksi. For $\frac{1}{2}$ inch bolts, which have a stress area of .14 inches^2, the stress would be pi*.59^2/4/.14*5.1ksi = 10 ksi. $\frac{1}{2}$ inch standard bolts should be OK.

12.4 Ring Bus and Ring Bus to Flag Braze

Figure 12.4-1 Model With Ring Bus

Figure 12.4-2 Real Constants Used to Assign Constants in the Field Calculation

Figure 12.4-3 Ring Bus Stresses Including the Flag Braze

12.5 CHI Bar Bolted to Centerstack casing Flange 12.5.1 CHI Stress

Figure 12.5.1-1 Chi Bar Flag Corner Stress

These stresses are for the "unlikely" Halo current scenario which has an allowable of 156 MPa. The linearized stresses would satisfy this allowable. There is a peak at the radius of 180 MPa. Note that the CHI bar and flag are fabricated as one piece and there is no braze at the flag to conductor joint to degrade the bar physicals(see Figure 6.3-5)

Figure 12.5.2-1 Flange Connection to Centerstack casing

Figure 12.5.2-2 Stress in Flange Connection to Centerstack Casing Bolts

Each "block" that models the bolts is 1 X 1.3 cm in cross section. Ignoring the bolt bending, the bolt tensile load is $\sim 160 \text{ MPa} *.01*.013 = 20,800 \text{ N}$ or 4700 lbs. $\frac{1}{2}$ inch bolts are used in this flange. The stress in the bolt is then 4700/.1416 = 33021 psi. This should be preloaded beyond this to overcome the prying lift-off and resulting bolt bending stress. A high strength bolt is recommended for this reason.

13.0 Beam Element Structural Calculations

Initial sizing and recommendations for support of the horizontal run that connects to the CHI bar were based on beam stick modeling of the ring bus and vertical runs. These had only the background field applied. The background field was computed using a Biot Savart current stick modeling shown in section 11.0 Later the self field calculations were added, and the Halo peaking fraction was added.

Figure 13.0-1 EQ 79 Loads on the CHI Bus for Preliminary Design. And stresses for the ³/₄ inch water cooled conductor.

This generation of analysis model used a water cooled conductor that was only $\frac{3}{4}$ inch by $\frac{3}{4}$ inch square. The section properties for this beam element are shown in figure 14.3. These beam models did not include the halo current peaking factor of 1.5 and the self field effects that were added in the later solid models.

Figure 13.0-2 EQ-66 Stress Summary (Dynamic Unless Otherwise Noted)

Figure 13.0-2 shows the over-stress conditions for the original $\frac{3}{4}$ inch conductor. This was partly the motivation for increasing the size to 1.5 X 1.5 inch square and then to 2 X 2 inches. The ring bus and the connections to the ring bus that run along the floor have small Lorentz forces resulting from interactions with the background field. Self fields from the disruption halo currents are, however large. The Lorentz forces on these conductors don't effect the conductor selection so much as the requirements to clamp the paired conductors together. The normal current for CHI start-up is 27 kA for \sim 1 sec. If you used the steady state allowable of 1 kA per sq in. then the $\frac{3}{4}$ inch square bar would be undersized. If it was used for 8 kA bakeout it would be undersized. Even the currently chosen 2 X 2 inch bar would be undersized. See section 8.0 for a more detailed calculation of the temperatures of the bus bars. Actual temperatures from that section are included in Table 4.0-1.

Portions of the ring bus and floor connections between the ring bus and bus tower see the halo current of 7.5% of the plasma current. - or 2 MA* .075 = 150 kA but this is only for ~milli second and won't integrate to a significant temperature.

The 1.5 X 1.5 inch water cooled floor run is acceptable for the connections to the CHI ring so long as it interconnected to react the bursting loads which develop when the leads carry the Halo currents. At least 4 clamps are recommended between the bus tower and ring bus connection.

13.1 Air Cooled 1.5 X 1.5 Square Vertical Bus Beam Element Model

13.1.1 All Clamps Fixed in All 3 Directions

In this model, the vertical bars are 1.5 inch square and the ring bus is ³/₄ inch water cooled square cross section. The air cooled vertical run heats up during operation, and thermal strains must be considered.

Figure 13.1.1-1 Model with all Clamps Fixed in Three Directions

Figure 13.1.1-2 Thermal Stress Only, 50 C heat-up

For the thermal-only load case, the peak stress is 180 MPa. This compares with the static bending allowable of 233 MPa (Section 6.4.1). There are higher localized stresses but the beam modeling doesn't accurately capture these. In figure 13.1.1-3, the normal operating Lorentz force for equilibrium 66 is added. The peak stress remains at 180

Figure 13.1.1-3 EQ 66 Plus Thermal Stress, 50 C heat-up Peak Stress is 180 MPa

The peak stress for these analyses of Lorentz and thermal is 180 MPa with the provision that the very localized stress of 386 MPa is an anomaly of the beam modeling. The static bending allowable is 233 MPa (Section 6.4.1).

Figure 13.1. 2-1 Model with all Clamps Free in Vertical Directions

In this analysis the vertical legs are allowed to slide in their clamps and the stress is reduced to 90 MPa from the 180 MPa

Figure 13.1.2-2 Thermal Stress Only, 50 C Heat-up Mid Height Clamps Allow Vertical Growth

Where the peak Stress was 180 MPa for the fully constrained supports, the stress is now around 10 or 20 MPa.

Figure 13.1.2-3 EQ 66 Plus Thermal Stress, 50 C Heat-up Mid Height Clamps Allow Vertical Growth

MPa. In the plot in figure 13.1.2-2, the contour range is set zero to 90 MPa. In figure 13.1.1-2, the contour range is zero to 180 MPa. The static bending allowable is 233 MPa (Section 6.4.1)

13.2 Frequency Analysis of the Bus Bars

Some estimate of the dynamic loading effects is needed. A modal analysis has been performed to quantify the frequency content of the CHI bus to aid in the evaluation of the dynamic load factors that would result from a full dynamic analysis

Figure 13.2.1 Mode Frequency Analysis

Figure 13.2.2 Response of a single Degree of Freedom oscillator to Partial Periods of Excitation

Normal loading on the CHI Bus will be driven by Lorentz Forces that have frequencies related to the PF and TF ramp times. These are fractions of a second which yields partial period forcing function frequencies of less than 10 hz This makes the DLF \sim 1.2 to 1.5.But the normal operating currents are small compared with disruption loads.

During the disruption, the CHI bus is exposed to halo currents which are millisec events. The CHI bus bars are low frequency oscillators with respect to disruption forces and the DLF would be less than 1.0.

14.0 Conductor Cross Section Calculations

14.1 2.0 inch Square Bus Bar

! area Iyy Izz Thy Thz ang IXX r,imat,2. 58064e-3, 5.549e-7, 5.549e-7, .0254*2, ..0254*2, 0, 2*5.549e-7

14.2 1.5 inch Square Bus Bar

ENTER egrp number 1 sect Element Group for which Section Properties are to be Calculated 1 Section Properties for Group Number: 1 AREAF 1.4516099E-03 IXX = 1.7559762E-07 IYY = 1.7559763E-07 MAX DISTANCE TO EXTREME FIBER, CX= 1.9050000E-02 CY= 1.9050000E-02 RINX= 1.7559763E-07 SNX= 9.2177232E-06 RAD OF GYR= 1.0998523E-02 RINY = 1.7559763E-07 SNY= 9.2177232E-06 RAD OF GYR= 1.0998523E-02 PRODUCT OF INERTIA ABOUT ORIGEN=RIXYT = 1.9137513E-15 PRODUCT OF INERTIA ABOUT NEUTRAL AXIS=IXYN = 1.9137513E-15 ROTATION ANGLE TO PRINCIPAL MOMENTS OF INERTIA = 90.00000 COORDINATES OF THE CENTROID, XBAR= -2.0557750E-10 YBAR= -1.8600248E-10
1 sect Element Group for which Section Properties are to be Calculated 1 AREA= 1.4516099E-03 IXX = 1.7559763E-07 IYY = 1.7559763E-07 MAX DISTANCE TO EXTREME FIBER, CX= 1.9050000E-02 CY= 1.9050000E-02 RINX= 1.7559763E-07 SNX= 9.2177233E-06 RAD OF GYR= 1.0998523E-02 PRODUCT OF INERTIA ABOUT NOTGEN=RIXYT = 1.9137513E-15 PRODUCT OF INERTIA ABOUT NOTTRAL AXISI IYYN = 1.9137513E-15 ROTATION ANGLE TO PRINCIPAL MOMENTS OF INERTIA = 90.00000 COORDINATES OF THE CENTROID, XBAR= -2.0557750E-10 YBAR= -1.8600248E-10
Element Group for which Section Properties are to be Calculated Section Properties for Group Number: 1 AREA= 1.4516099E-03 IXX = 1.7559763E-07 IYY = 1.7559763E-07 MAX DISTANCE TO EXTREME FIBER, CX= 1.9050000E-02 CY= 1.9050000E-02 RINX= 1.7559763E-07 SNX= 9.2177233E-06 RAD OF GYR= 1.0998523E-02 PRODUCT OF INERTIA ABOUT ORIGEN=RIXYT = 1.9137513E-15 ROTATION ANGLE TO PRINCIPAL MOMENTS OF INERTIA = 90.00000 COORDINATES OF THE CENTROID, XBAR= -2.057750E-10 YBAR= -1.8600248E-10
Element Group for which Section Properties are to be Calculated 1 Section Properties for Group Number: 1 AREAF 1.451699E-03 IXX = 1.7559763E-07 IYY = 1.7559763E-07 MAX DISTANCE TO EXTREME FIBER, CX= 1.9050000E-02 CY= 1.9050000E-02 RINX= 1.7559763E-07 SNX= 9.2177233E-06 RAD OF GYR= 1.0998523E-02 PRODUCT OF INERRIA ABOUT NORIGEN=RIXYT = 1.9137513E-15 PRODUCT OF INERRIA ABOUT NORIGEN=RIXYT = 1.9137513E-15 ROTATION ANGLE TO PRINCIPAL AXIST OF INERRIA = 90.00000 COORDINATES OF THE CENTROID, XBAR= -2.0557750E-10 YBAR= -1.8600245E-10
1 Section Properties for Group Number: 1 AREA= 1.4516099E-03 IXX = 1.7559762E-07 IYY = 1.7559763E-07 MAX DISTANCE TO EXTREME FIBER, CX= 1.9050000E-02 CY= 1.9050000E-02 RINX= 1.7559763E-07 SNX= 9.2177232E-06 RAD OF GYR= 1.0998523E-02 RINY= 1.7559763E-07 SNY= 9.2177232E-06 RAD OF GYR= 1.0998523E-02 PRODUCT OF INERTIA ABOUT ORIGEN=RIXYT = 1.9137513E-15 ROTATION ANGLE TO PRINCIPAL MOMENTS OF INERTIA = 90.00000 COORDINATES OF THE CENTROID, XBAR= -2.0557730E-10 YBAR= -1.8600243E-10
Section Properties for Group Number: 1 AREAF 1.4516099E-03 IXX = 1.7559763E-07 IYY = 1.7559763E-07 MAX DISTANCE TO EXTREME FIBER, CX= 1.9050000E-02 CY= 1.9050000E-02 RINX= 1.7559763E-07 SNX= 9.2177233E-06 RAD OF GYR= 1.0998523E-02 PRODUCT OF INERTIA ABOUT NORIGEN-RIXYT = 1.9137513E-15 PRODUCT OF INERTIA ABOUT NORIGEN-RIXYT = 1.9137513E-15 ROTATION ANGLE TO PRINCIPAL MAXESIYN = 1.9137513E-15 ROTATION ANGLE TO PRINCIPAL MOMENTS OF INERTIA = 90.00000 COORDINATES OF THE CENTROID, XBAR= -2.0557750E-10 YBAR= -1.3600245E-10
AREA= 1.4516099E-03 IXX = 1.7559762E-07 IYY = 1.7559763E-07 MAX DISTANCE TO EXTERME FIBER, CX= 1.9050000E-02 CY= 1.9050000E-02 RINX= 1.7559763E-07 SNX= 9.2177233E-06 RAD OF GYR= 1.0998523E-02 RINY = 1.7559763E-07 SNY= 9.2177233E-06 RAD OF GYR= 1.0998523E-02 PRODUCT OF INERTIA ABOUT ORIGEN=RIXYT = 1.9137513E-15 ROTATION ANGLE TO PRINCIPAL AXIS=IXYN = 1.9137513E-15 ROTATION ANGLE TO PRINCIPAL AXIS=IXYN = 1.9137513E-15 COORDINATES OF THE CENTROID, XBAR= -2.0557750E-10 YEAR= -1.8600248E-10
MAX DISTANCE TO EXTREME FIBER, CX= 1.9050000E-02 CY= 1.9050000E-02 RINX= 1.7559763E-07 SNX= 9.2177233E-06 RAD OF GYR= 1.0998523E-02 PRODUCT OF INERTIA ABOUT ORIGEN=RIXYT = 1.9137513E-15 PRODUCT OF INERTIA ABOUT NEUTRAL AXIS=IXYN = 1.9137513E-15 ROTATION ANGLE TO PRINCIPAL MOMENTS OF INERTIA = 90.00000 COORDINATES OF THE CENTROID, XBAR= -2.0557750E-10 YBAR= -1.8600248E-10
RINX= 1.7559763E-07 SNX= 9.2177233E-06 RAD OF GYR= 1.0998523E-02 RINY= 1.7559763E-07 SNY= 9.2177233E-06 RAD OF GYR= 1.0998523E-02 PRODUCT OF INERTIA ABOUT NOTIONAL ANTI STATEMENT IN 1.9137513E-15 PRODUCT OF INERTIA ABOUT NOTIONAL ANTI SITUATION ANGLE TO PRINCIPAL ANTISI INTERIA = 1.9137513E-15 ROTATION ANGLE TO PRINCIPAL MOMENTS OF INERTIA = 90.00000 COORDINATES OF THE CENTROID, XBAR= -2.0557750E-10 YEAR= -1.8600248E-10
RINY = 1.7559763E-07 SNY= 9.2177232E-06 RAD OF GYR= 1.0998523E-02 PRODUCT OF INERTIA ABOUT ORIGEN-RIXYT = 1.9137513E-15 PRODUCT OF INERTIA ABOUT NEUTRAL AXIS=IXYN = 1.9137513E-15 ROTATION ANGLE TO PRINCIPAL MOMENTS OF INERTIA = 90.00000 COORDINATES OF THE CENTROID, XBAR= -2.0557730E-10 YBAR= -1.8600243E-10
PRODUCT OF INERTIA ABOUT NORIGEN-RIXYT = 1.913751382-15- PRODUCT OF INERTIA BOUT NEUTRAL AXIS=IXYN = 1.913751382-15 ROTATION ANGLE TO PRINCIPAL MOMENTS OF INERTIA = 90.00000 COORDINATES OF THE CENTROID, XBAR= -2.0557750E-10 YBAR= -1.9600248E-10
PRODUCT OF INERTIA ABOUT NEUTRAL AXIS=IXYN = 1.9137518E-15 ROTATION ANGLE TO PRINCIPAL MOMENTS OF INERTIA = 90.0000 COORDINATES OF THE CENTROID, XBAR= -2.0557750E-10 YBAR= -1.8600248E-10
ROTATION ANGLE TO PRINCIPAL MOMENTS OF INERTIA = 90.00000 COORDINATES OF THE CENTROID, XBAR= -2.0557750E-10 YBAR= -1.8600248E-10
COORDINATES OF THE CENTROID, XBAR= -2.0557750E-10 YBAR= -1.8600248E-10
! area iyy izz iny inz ang ixx
r.imat.1.4516e-3.1.75597e-7.1.75597e-7.0381.0381.0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3 516-7
2.216-1

14.3 ³/₄ inch Square Water Cooled Bus Bar

15.0 P. Rogoff Nastran Model

This is section included for historical reasons. Pete Rogoff did some modeling of the CHI Bar that runs across the TF field, and concluded that a mid span support or some other reinforcement was needed.

zero	
ngrp	
0	
egrp	
0	
read	
chi2	
conv	
0.1	
0,2,1,1,1	
merge	
0,.001	
redu	
snal	
1	
seal	
1	
stype	
2,2	
grpt	
1,4	
repla	
rwmb	
zero	
mat	
17	
pfcb	
33	
1,.2344,.0021,.01,4.3419,2.20	
2	
3 2577 0022 01 4 2538 2 20	
4 2693 - 0021 01 4 1745 2 20	
5 3239 1 5906 0413 3265 4 4	
6 4142 1 8252 042 1206 4 4	
7 56 1 8252 042 1206 4 4	
7,,,,,,,, .	
8,./992,1.8520,.1027,.008,4,4 0, 7002,1.0335,1627,068,4,4	
8,./992,1.8526,.1627,.068,4,4 9,.7992,1.9335,.1627,.068,4,4	
8,.7992,1.8526,.1627,.068,4,4 9,.7992,1.9335,.1627,.068,4,4 10,1.4829,1.5696,.1631,.034,4,4	
8,.7992,1.8526,.1627,.068,4,4 9,.7992,1.9335,.1627,.068,4,4 10,1.4829,1.5696,.1631,.034,4,4 11,1.4945,1.5356,.1864,.034,4,4	
8,.7992,1.8526,.1627,.068,4,4 9,.7992,1.9335,.1627,.068,4,4 10,1.4829,1.5696,.1631,.034,4,4 11,1.4945,1.5356,.1864,.034,4,4 12,1.4829,1.6505,.1631,.034,4,4	
8,.7992,1.8526,.1627,.068,4,4 9,.7992,1.9335,.1627,.068,4,4 10,1.4829,1.5696,.1631,.034,4,4 11,1.4945,1.5356,.1864,.034,4,4 12,1.4829,1.6505,.1631,.034,4,4 13,1.4945,1.6165,.1864,.034,4,4	
8,.7992,1.8526,.1627,.068,4,4 9,.7992,1.9335,.1627,.068,4,4 10,1.4829,1.5696,.1631,.034,4,4 11,1.4945,1.5356,.1864,.034,4,4 12,1.4829,1.6505,.1631,.034,4,4 13,1.4945,1.6165,.1864,.034,4,4 14,1.795,.8711,.0922,.034,4,4	
8,.7992,1.8526,.1627,.068,4,4 9,.7992,1.9335,.1627,.068,4,4 10,1.4829,1.5696,.1631,.034,4,4 11,1.4945,1.5356,.1864,.034,4,4 12,1.4829,1.6505,.1631,.034,4,4 13,1.4945,1.6165,.1864,.034,4,4 14,1.795,.8711,.0922,.034,4,4 15,1.8065,.9051,.1153,.034,4,4	
8,.7992,1.8526,.1627,.068,4,4 9,.7992,1.9335,.1627,.068,4,4 10,1.4829,1.5696,.1631,.034,4,4 11,1.4945,1.5356,.1864,.034,4,4 12,1.4829,1.6505,.1631,.034,4,4 13,1.4945,1.6165,.1864,.034,4,4 14,1.795,.8711,.0922,.034,4,4 15,1.8065,.9051,.1153,.034,4,4 16,1.7946,.8072,.0915,.068,4,4	
8,.7992,1.8526,.1627,.068,4,4 9,.7992,1.9335,.1627,.068,4,4 10,1.4829,1.5696,.1631,.034,4,4 11,1.4945,1.5356,.1864,.034,4,4 12,1.4829,1.6505,.1631,.034,4,4 13,1.4945,1.6165,.1864,.034,4,4 14,1.795,.8711,.0922,.034,4,4 15,1.8065,.9051,.1153,.034,4,4 16,1.7946,.8072,.0915,.068,4,4 17,1.795,-8711,.0922,.034,4,4	
8,.7992,1.8326,.1627,.068,4,4 9,.7992,1.9335,.1627,.068,4,4 10,1.4829,1.5696,.1631,.034,4,4 11,1.4945,1.5356,.1864,.034,4,4 12,1.4829,1.6505,.1631,.034,4,4 13,1.4945,1.6165,.1864,.034,4,4 14,1.795,.8711,.0922,.034,4,4 15,1.8065,.9051,.1153,.034,4,4 16,1.7946,.8072,.0915,.068,4,4 17,1.795,8711,.0922,.034,4,4 18,1.8065,9051,.1153,.034,4,4	
8,.7992,1.8326,.1627,.068,4,4 9,.7992,1.9335,.1627,.068,4,4 10,1.4829,1.5696,.1631,.034,4,4 11,1.4945,1.5356,.1864,.034,4,4 12,1.4829,1.6505,.1631,.034,4,4 13,1.4945,1.6165,.1864,.034,4,4 14,1.795,.8711,.0922,.034,4,4 15,1.8065,.9051,.1153,.034,4,4 16,1.7946,.8072,.0915,.068,4,4 17,1.795,8711,.0922,.034,4,4 18,1.8065,9051,.1153,.034,4,4 19,1.7946,8072,.0915,.068,4,4	
8, .7992, 1.8326, .1627, .068, 4,4 9, .7992, 1.9335, .1627, .068, 4,4 10, 1.4829, 1.5696, .1631, .034, 4,4 11, 1.4945, 1.5356, .1864, .034, 4,4 12, 1.4829, 1.6505, .1631, .034, 4,4 13, 1.4945, 1.6165, .1864, .034, 4,4 14, 1.795, .8711, .0922, .034, 4,4 15, 1.8065, .9051, .1153, .034, 4,4 16, 1.7946, .8072, .0915, .068, 4,4 17, 1.795,8711, .0922, .034, 4,4 18, 1.8065,9051, .1153, .034, 4,4 19, 1.7946,8072, .0915, .068, 4,4 20, 2.0118, .6489, .1359, .0685, 4,4	
8, .7992, 1.8326, .1627, .068, 4,4 9, .7992, 1.9335, .1627, .068, 4,4 10, 1.4829, 1.5696, .1631, .034, 4,4 11, 1.4945, 1.5356, .1864, .034, 4,4 12, 1.4829, 1.6505, .1631, .034, 4,4 13, 1.4945, 1.6165, .1864, .034, 4,4 14, 1.795, .8711, .0922, .034, 4,4 15, 1.8065, .9051, .1153, .034, 4,4 16, 1.7946, .8072, .0915, .068, 4,4 17, 1.795,8711, .0922, .034, 4,4 18, 1.8065,9051, .1153, .034, 4,4 19, 1.7946,8072, .0915, .068, 4,4 20, 2.0118, .6489, .1359, .0685, 4,4 21, 2.0118, .5751, .1359, .0685, 4,4	

Appendix A Input file for the NTFTM Biot Savart Calculation

```
23, 2.0118, -.5751, .1359, .0685, 4,4
24, 1.4829, -1.5696, .1631, .034, 4,4
25, 1.4945, -1.5356, .1864, .034, 4,4
26, 1.4829, -1.6505, .1631, .034, 4, 4
27, 1.4945, -1.6165, .1864, .034, 4,4
28, .7992, -1.8526, .1627, .068, 4,4
29, .7992, -1.9335, .1627, .068, 4,4
30, .56, -1.8252, .042, .1206, 4,4
31, .4142, -1.8252, .042, .1206, 4,4
32, .3239, -1.5906, .0413, .3265, 4,4
33, .9344, 0, .5696, 1, 6, 8
seal
0
srel
1,1
srel
2.1
srel
3,1
srel
4,1
divi
1,1,2,1
snal
1
merge
1,.0001
redu
irdt
2
pfcu
33,4,4,1.1
      1, -5.3039999E-03, 0.0000000E+00, 2.8782515E-03, -5.3039999E-03
     2, -5.304000 , 0.0000000E+00, 2.878252
                                                 , -5.304000
                                                  , -5.304000
     3, -5.304000
                    , 0.0000000E+00 , 2.878252
                    , 0.0000000E+00 , 2.878252
      4, -5.304000
                                                 , -5.304000
      5. 0.3600512
                    . 0.4526656
                                  . 0.5014717 . 0.3967936
      6, 0.000000E+00, 0.000000E+00, 0.000000E+00, 0.000000E+00
      7, 0.0000000E+00, 0.0000000E+00, 0.0000000E+00, 0.0000000E+00
      8, -4.9789600E-02, 5.2687600E-02, 0.1084556
                                                    .-7.7762999E-02
     9, -4.9789600E-02, 5.2687600E-02, 0.1084556
                                                     , -7.7762999E-02
     10, -2.2112999E-02, -1.0420200E-02, -4.1494756E-03, 3.8717000E-03
     11, -2.5271999E-02, -1.1908800E-02, -4.7422578E-03, 4.4247997E-03
     12, -2.2112999E-02, -1.0420200E-02, -4.1494756E-03, 3.8717000E-03
     13, -2.5271999E-02, -1.1908800E-02, -4.7422578E-03, 4.4247997E-03
     14, 0.000000E+00, 0.000000E+00, 0.000000E+00, 0.000000E+00
     15, 0.000000E+00, 0.000000E+00, 0.000000E+00, 0.000000E+00
     16, 0.000000E+00, 0.000000E+00, 0.000000E+00, 0.000000E+00
     17, 0.0000000E+00, 0.0000000E+00, 0.0000000E+00, 0.0000000E+00
     18, 0.0000000E+00, 0.0000000E+00, 0.0000000E+00, 0.0000000E+00
     19, 0.000000E+00, 0.000000E+00, 0.000000E+00, 0.000000E+00
                     , -0.3279492
                                  , -0.3247161
     20, -0.3339048
                                                , -0.3621252
                                   , -0.3247161
                                                , -0.3621252
     21, -0.3339048
                     , -0.3279492
     22, -0.3339048
                     , -0.3279492
                                  , -0.3247161
                                                , -0.3621252
```

23, -0.3339048, -0.3279492, -0.3247161, -0.3621252 24, -2.5271999E-02, -1.1908800E-02, -4.7422578E-03, 4.4247997E-03 25, -2.2112999E-02, -1.0420200E-02, -4.1494756E-03, 3.8717000E-03 26, -2.2112999E-02, -1.0420200E-02, -4.1494756E-03, 3.8717000E-03 27, -2.5271999E-02, -1.1908800E-02, -4.7422578E-03, 4.4247997E-03 28, -4.9789600E-02, 5.2689001E-02, 0.1084562, -7.7762999E-02 29, -4.9789600E-02, 5.2689001E-02, 0.1084562, -7.7762999E-02

30, 0.000000E+00, 0.000000E+00, 0.000000E+00, 0.000000E+00 31, 0.000000E+00, 0.000000E+00, 0.000000E+00, 0.000000E+00 32, 0.3600512, 0.4526656, 0.5014717, 0.3967936 33, 0.0000000E+00, 0.000000E+00, 0.000000E+00, 0.000000E+00

rscale 1.1.1..5 rscale 2,1,2,.5 rscale 3,1,3,.5 rscale 4,1,4,.5 zero read vec2 snal 1 seal 1 ngrp 5 egrp 5 read rwmb

```
!real 50 is the outboard leg 130000*3/4
r
50,1,16250.0
r
51,1,16250.0
! real 52 is the arch/flex 130000/4
r
52,1,32500.0
r
61,1,50000.0 !CHI Coil Halo Currents = .075*2e6/3
62,1,50000.0 !CHI Coil Halo Currents = .075*2e6/3
61,1,9000.0 !CHI Coil Normal Operating Load
stype
8,8
snel
```

8,8 repla cvec !exit field 5 stype 8,8 gerase 8 stype 2,2 grpt 5,1 redu mfor 5,1,1,1,1,2,2,2,2 repla chif tmsa chi2,2

exit

Appendix B Input file for the ANSYS beam element analysis

Appendix C True Basic Cooling Program

dim cur(100000), power(1000000),CuTemp(1000000),Qrad(1000000),QCond(1000000),QConvect(1000000) dim QWater(1000000), Qcon(1000000) clear Print "Enter BUS Bar Option" print "1 Vertical Runs of the CHI Bus, Air cooled, Normal Op" print "2 Vertical Runs of the CHI Bus, Air cooled, Bake-Out" print "3 Vertical Runs of the CHI Bus, Air cooled, Disruption" print "4 CHI Ring Bus, Water cooled Normal Op" print " 5 CHI Ring Bus, Water cooled Bake-Out" print " 6 CHI Ring Bus, Water cooled Disruption" print "7 Horizontal Runs of the TF Bus, Air cooled" print " 8 OH" print "9 One Inch Square 1 kA Steady State Benchmark" print "10 One Inch Square 10 kA Water Cooled Benchmark" print "11 One Inch Square 10 kA Water Cooled Benchmark" print "12 Nominal TF" input boption !Times let MaxN=20000 let dt=1.0let PulseLength=5 !Sec let PulseInterval = 20*60! 15 minute intervals let numpulses=10 let BusBarLength = 1.0 ! Unit Meter Long let Tinlet = 12 ! Degrees C let tinit=30 let tfloor=20 let tambient=35 let insthick=1/16 let ConLength =1.0 ! Conduction length to heat sink or to water cooled portion let ConArea = 0 ! Conduction Link Cross Section let ConTemp = 12 ! Conduction Heat Sink Temp or Ave temp of water cooled part if boption =1 then let BusBarName\$="Vertical Runs of the CHI Bus, Air cooled, Normal Op" let bwidth=2.0 ! Dimensions in inches let bheight=2.0 ! Dimensions in inches let insthick=.125 let HoleDiameter = .0let PulseLength=5.0 !Sec let PulseInterval = 20*60! 20 minute intervals let numpulses=20 let MaxN=20000 let dt=1 Let Current = 9000 let FlowVelocity=0.0 let tinit=35 let tinlet=tinit

let BusVerticalarea=(2*(bheight)+2*bwidth)*BusBarLength/39.37 let ConLength =1.0 ! Conduction length to heat sink or to water cooled portion let ConArea = bwidth*bheight/39.37/39.37 ! Conduction Link Cross Section let ConTemp = 35 ! Conduction Heat Sink Temp or Ave temp of water cooled part end if if boption =2 then let BusBarName\$="Vertical Runs of the CHI Bus, Air cooled, Bake-Out" let bwidth=2.0 let bheight=2.0 let HoleDiameter = .0let BusVerticalarea=2*(bheight+bwidth)*BusBarLength/39.37 Let current = 8000/3let MaxN=20000 let dt=1.0let PulseLength=20000 !Sec let PulseInterval = 0! Steady State let numpulses=1 let tinit=20 let tinlet=tinit let ConLength =1.0 ! Conduction length to heat sink or to water cooled portion let ConArea = bwidth*bheight/39.37/39.37 ! Conduction Link Cross Section let ConTemp = 20 ! Conduction Heat Sink Temp or Ave temp of water cooled part end if if boption =3 then let BusBarName\$="Vertical Runs of the CHI Bus, Air cooled, Disruption" let bwidth=2.0 let bheight=2.0 let dt=1 let HoleDiameter = .0let BusVerticalarea=2*(bheight+bwidth)*BusBarLength/39.37/39.37 Let current = 85000let pulselength=1 let FlowVelocity=0.0 let tinit=20 let tinlet=tinit end if if boption =4 then let BusBarName\$="CHI Ring Bus, Water cooled Normal Operation" let bwidth=1.0 let bheight=3.5 let HoleDiameter = .25let BusVerticalarea=2*(bheight)*BusBarLength/39.37 Let current = 27000/3let insthick=.0625 let pulselength=5 let tinit=35 let tinlet=tinit let FlowVelocity=3.0 end if

if boption =14 then let BusBarName\$="CHI horizontal Run Air Cooled Operation"

let bwidth=6.0 let bheight=1.0 let HoleDiameter = 0let BusVerticalarea=2*(bheight)*BusBarLength/39.37 Let current = 32000let FlowVelocity=0.0 end if if boption =5 then let BusBarName\$="CHI Ring Bus, Water cooled Bake Out" let bwidth=1.0 let bheight=3.5 let HoleDiameter = .25let BusVerticalarea=2*(bheight)*BusBarLength/39.37 Let current = 8000let FlowVelocity=3.0 let MaxN=20000 let dt=1.0 let PulseLength=200000 !Sec let PulseInterval = 0! Steady State let numpulses=1 let Tinlet = 12 ! Degrees C let tinit=30 let tfloor=20 let tambient=35 end if if boption =6 then let BusBarName\$="CHI Ring Bus, Water cooled Disruption" let bwidth=1.0 let bheight=3.0 let HoleDiameter = .25let BusVerticalarea=2*(bheight)*BusBarLength/39.37 Let current = 150000let FlowVelocity=0.0 end if if boption =7 then let BusBarName\$="Horizontal Runs of the TF Bus, Air cooled" let bwidth=1 let bheight=6 let insthick=.125 let HoleDiameter = 0.0let BusVerticalarea=2*(bheight)*BusBarLength/39.37 Let current = 129000/2let FlowVelocity=0.0 let PulseLength=7.04 !Sec let PulseInterval = 20*60! 10 minute intervals let numpulses=20 let ConLength =3.0 ! Conduction length to heat sink or to water cooled portion let ConArea = bwidth*bheight/39.37/39.37 ! Conduction Link Cross Section let ConTemp = 12 ! Conduction Heat Sink Temp or Ave temp of water cooled part

end if

if boption =8 then

let BusBarName\$="OH Water Cooled Needs Updating" let bwidth=.75 let bheight=1.0 let insthick=.125 let HoleDiameter = .125let BusVerticalarea=2*(bheight)*BusBarLength/39.37 Let current = 24000let FlowVelocity=3.0 let tinit = 20let tinlet= 40let PulseLength=1.472 !Sec end if if boption =9 then let BusBarName\$=" One Inch Square, 1 ka Air cooled" let bwidth=1.0 let bheight=1.0 let insthick=.125 let HoleDiameter = 0let BusVerticalarea=2*(bheight)*BusBarLength/39.37 Let current = 1000let FlowVelocity=3.0 let PulseLength=20000 !Sec let PulseInterval = 0! Steady State let numpulses=1 end if if boption =10 then let BusBarName\$=" One Inch Square, 10 ka Water cooled" let bwidth=1.0 let bheight=1.0 let insthick=.125 let HoleDiameter = .125let BusVerticalarea=2*(bheight)*BusBarLength/39.37 Let current = 1000let FlowVelocity=3.0 let PulseLength=20000 !Sec let PulseInterval = 0! Steady State let numpulses=1 end if if boption =11 then let BusBarName\$="OH Air Cooled Horizontal Run" let bwidth=1.5 let bheight=1.5 let insthick=.125 let HoleDiameter = 0.0let BusVerticalarea=2*(bheight)*BusBarLength/39.37 Let current = 24000let FlowVelocity=0.0 let tinit = 20let tinlet= 40let PulseLength=1.472 !Sec end if if boption =12 then let tinit=12 let tfloor=12

```
let tambient=12
let BusBarName$="Nominal TF Cross Section Watercooled"
let bwidth=1*.85
let bheight=4.739
let insthick=.125
let HoleDiameter = .25
let BusVerticalarea=2*(bheight)*BusBarLength/39.37
Let current = 129000
let FlowVelocity=3.0
let PulseLength=7.04 !Sec ESW from Charlie's spreadsheet
let PulseInterval = 15*60
                              ! 10 minute intervals
let numpulses=1
let MaxN=2000
end if
call plotbar
     !Temperature and Cooling
     ! Plot Controls
let plotmint = 199
let plotmaxt = 209
let plotmint = 0
let plotmaxt = MaxN
let rhoSST=72e-8
let spheCopper=402.83
                          ! Joule/m^3/K 120C
let spheSST=500
                   !J/kg/K
let spheWater=4.1813*1000
                                 ! at 20-100C Joule/g/degreeK*1000g/kg
let DensCopper=8950
let DensSST=7999
let DensWater=1000.
                           !kg/cu meter
let ThermCondSST=16.2
let ThermCondCopper=393
let thermCond=ThermCondCopper
!
        Areas and Volumes are Per Bar
let areacopper=bwidth*bheight/39.37^2 -pi*holediameter^2/4/39.37/39.37
let volcopper=areacopper*BusBarLength
let Busperimeter=2*(bwidth+bheight)/39.37 ! meters
let Bussurfacearea=Busperimeter*BusBarLength
        !Conduction Constants
call KEpoxy(tinit+273,kepoxy)
print "Kepoxy,temp ";kepoxy;tinit+273
!get key kinp
        ! Radiation Constants
let emisSO=.3
                     !emissivity of the Busbar outside
let emisV = 3
                     !Ambient emissivity
let stefBoltz=5.67e-8
        ! Convection Constants
let ConvectCoeff = 5 !W/(m^2K) Air Free Convection
let ConductConvect=(1/convectcoeff+1/(kepoxy/insthick))^(-1)
       Computed Values
let heatcap=spheCopper*densCopper*volCopper
let flowarea=pi*holediameter^2/4/39.37/39.37
```

! Create Current Profile

for i=1 to maxn

let ptime=dt*i let cur(i)=0 next i for i=1 to numpulses for j=(i-1)*pulseinterval+1 to (i-1)*pulseinterval+pulselength step 1 let cur(j)=current next j next i **!**Compute Power, Temperature Arrays let maxpower=0 let maxtemp=0 let CuTemp(1)=Tinit for i=2 to MaxN let pTime=dt*i !let resist=rhoCopper*2*busbarlength/areacopper call rhocop(CuTemp(i),rhocopper) let resist=rhoCopper*busbarlength/areacopper let Qrad(i)=1*Bussurfacearea*emisSO*emisv*StefBoltz*((Cutemp(i-1)+273)^4-(tambient+273)^4)/(emisSO+emisv-emisSO*emisV) let Qconvect(i)=ConductConvect*(BusVerticalArea)*(CuTemp(i-1)-Tambient) let Qwater(i)=sphecopper*denswater*flowvelocity*flowarea*(CuTemp(i-1)-tinlet) call Kcop(CuTemp(i),Kcopper) let Qcon(i)=Kcopper*ConArea/ConLength*(CuTemp(i-1)-ConTemp) let $power(i) = cur(i)^2 resist$ let CuTemp(i)=CuTemp(i-1)+(power(i)-Qrad(i)-Qconvect(i)-Qwater(i)-Qcon(i))*dt/HeatCap if CuTemp(i)>maxTemp then Let MaxTemp=CuTemp(i) if power(i)>maxpower then let maxpower=power(i) if Orad(i)>maxRadpower then let maxRadpower=Orad(i) if Qcond(i)>maxCondpower then let maxCondpower=QCond(i) if QConvect(i)>maxConvectpower then let maxConvectpower=QConvect(i) if Qwater(i)>maxwaterpower then let maxwaterpower=Qwater(i) next i !set window -100,MaxN,-10000,VSCurrent*1.1 set window plotmint/dt,plotmaxt/dt,-1,Current*1.1 call YScale2(Current,0,plotmint/dt,plotmaxt/dt," Amp Turns") call Timescale2(0,current,plotmint/dt,plotmaxt/dt) for i=1 to MaxN plot i.cur(i); next i let px=plotmint+(plotmaxt-plotmint)*.6 let py=current plot text, at px,py*.875:busbarname\$ plot text, at px,tinit+py*.70:"Width of Busbar="&Str\$(bwidth)&" inches" plot text, at px,tinit+py*.65:"Height of Busbar ="&Str\$(bheight)&" inches"

```
plot text, at px,tinit+py*.60:"Hole diameter ="&Str$(Holediameter)&" inches"
plot text, at px.tinit+py*.55:"Busbar surface area ="&Str$(AreaCopper)&" meter^2"
plot text, at px,tinit+py*.50:"Busbar surface area ="&Str$(Bussurfacearea)&" meter^2"
print "enter any key"
get key kinp
clear
call plotbar
set window -100,MaxN,-.1*maxpower,maxpower*1.1
!set window -100, Maxn, 0,100
call YScale(maxpower,0,maxn," Watts")
call Timescale(0,maxpower,maxn)
let px=plotmint+(plotmaxt-plotmint)*.6
let py=maxpower
plot text, at px,py*.875:busbarname$
plot text, at px,tinit+py*.60:"Max Joule Power = "&Str$(maxpower)&" Watts/meter"
plot text, at px,tinit+py*.575:"Max Radiated Power = "&str$(maxRadpower)&" Watts/meter"
plot text, at px,tinit+py*.55:"Max Convected Power = "&str$(maxconvectpower)&" Watts"
plot text, at px,tinit+py*.525:"Max Power Conducted Through Supports = "&str$(maxcondpower)&"
/meter"
plot text, at px,tinit+py*.50:"Max Water Cooling Power = "&str$(maxwaterpower)&" /meter"
for i=1 to MaxN
plot i,power(i);
next i
plot i-1,0
for i=1 to MaxN
plot i,Qrad(i);
next i
plot i-1,0
for i=1 to MaxN
plot i,Qcond(i);
next i
plot i-1,0
for i=1 to MaxN
plot i,Qconvect(i);
next i
plot i-1,0
print "enter any key"
get key kinp
let tlow=maxtemp
if tinlet<tlow then let tlow=tinlet
if tinit<tlow then let tlow=tinut
clear
call plotbar
set window plotmint/dt,plotmaxt/dt,Tlow-(maxtemp-tlow)/10,MaxTemp
 !Plot Text Coordinates
let px=plotmint/dt+(plotmaxt/dt-plotmint/dt)*.5
let py=(MaxTemp-tinit)
plot text, at px,tinit+py*.9:busbarname$
plot text, at px,tinit+py*.875:"Max Temperature = "&Str$(maxtemp)&" Deg C"
plot text, at px,tinit+py*.850:"Width of Busbar="&Str$(bwidth)&" inches"
plot text, at px,tinit+py*.825:"Height of Busbar ="&Str$(bheight)&" inches"
```

```
plot text, at px,tinit+py*.8:"Hole diameter ="&Str$(Holediameter)&" inches"
plot text, at px,tinit+py*.775:"Busbar copper area ="&Str$(AreaCopper)&" meter^2"
plot text, at px,tinit+py*.750:"Busbar surface area ="&Str$(Bussurfacearea)&" meter^2"
plot text, at px,tinit+py*.725:"Current = "&Str$(current)&" Amps"
plot text, at px,tinit+py*.7:"Pulse length = "&Str$(pulselength)&" sec"
plot text, at px,tinit+py*.675:"Number of Pulses = "&Str$(numpulses)&" "
plot text, at px,tinit+py*.65:"Pulse Interval = "&Str$(pulseinterval)&" sec"
plot text, at px,tinit+py*.625:"Initial Temperature = "&Str$(tinit)&" Deg C"
plot text, at px,tinit+py*.6:"Insulation Thickness = "&Str$(insthick)&" inches"
plot text, at px,tinit+py*.575:"Ending Temperature = "&str$(CuTemp(maxn))&" Deg C"
plot text, at px,tinit+py*.55:"Volume of Copper = "&str$(Volcopper)&" m^3"
plot text, at px,tinit+py*.525:"Mass of Copper in One Coil ="&str$(volcopper*denscopper)&" kg"
plot text, at px,tinit+py*.50:"Max Joule Power = "&Str$(maxpower)&" Watts/meter"
plot text, at px,tinit+py*.475:"Max Radiated Power = "&str$(maxRadpower)&" Watts/meter"
plot text, at px,tinit+py*.45:"Max Convected Power = "&str$(maxconvectpower)&" Watts/meter"
plot text, at px,tinit+py*.425:"Max Water Cooling Power = "&str$(maxwaterpower)&" Watts/meter"
plot text, at px,tinit+py*.40:"Water Flow Velocity = "&str$(Flowvelocity)&" m/sec"
!set window -100,MaxN,Tinit*.9,MaxTemp*1.1
call YScale2(maxtemp,tlow,plotmint/dt,plotmaxt/dt," Deg C")
!call Timescale(tlow,maxtemp,maxn)
call Timescale2(tlow,maxtemp,plotmint/dt,plotmaxt/dt)
for i=1 to MaxN
plot i,CuTemp(i);
next i
plot i-1.0
Sub YScale(min,max,maxn,unit$)
for i=1 to 10
plot 0,min+i*(max-min)/10 ; .01*(maxn),min+i*(max-min)/10
plot text, at .01*(maxn),min+i*(max-min)/10: str$(min+i*(max-min)/10)&unit$
next i
end sub
Sub YScale2(min,max,minn,maxn,unit$)
for i=1 to 10
plot minn.min+i*(max-min)/10 : minn+.01*(maxn-minn).min+i*(max-min)/10
plot text, at minn+.01*(maxn-minn),min+i*(max-min)/10: str$(min+i*(max-min)/10)&unit$
next i
end sub
Sub Timescale(min,max,maxn)
plot 1.0 :1.max
plot 0,min;maxn/dt,min
for i=1 to 10
plot i*maxn/10,min;i*maxn/10,min-.1*(max-min)
next i
for i=1 to 10
plot text, at i*maxn/10,min-.05*(max-min): str$(i*maxn/10*dt)&" sec"
next i
end sub
Sub Timescale2(min,max,minn,maxn)
plot 1,0 ;1,max
```

```
plot 0,min;maxn/dt,min
```

for i=1 to 10 plot minn+i*(maxn-minn)/10,min;minn+i*(maxn-minn)/10,min-.1*(max-min) next i for i=1 to 10 plot text, at minn+i*(maxn-minn)/10,min-.05*(max-min): str\$(minn*dt+i*(maxn-minn)/10*dt)&" sec" next i end sub

sub plotbar clear let diag=(bwidth^2+bheight^2)^.5 let diag=4 set window -4*diag,4*diag,-2*diag,2*diag plot -bwidth,-bheight;bwidth,-bheight;bwidth,bheight;-bwidth,bheight;-bwidth,-bheight let iwidth=bwidth+insthick let iheight=bheight+insthick plot -iwidth,-iheight;iwidth,-iheight;iwidth,iheight;-iwidth,iheight;-iwidth,-iheight for i=1 to 360 step 10 let th=pi*i/180 plot holediameter*sin(th),holediameter*cos(th); next i end sub

sub KEpoxy(etemp,kepoxy)

DATA 0,-0.706,-0.241,2.30E-03,7.50E-04,7.57E-04 ! Guess DATA 4.2,-0.706,-0.241,2.30E-03,7.50E-04,7.57E-04 DATA 10,-0.706,-0.241,2.00E-02,1.20E-03,1.40E-03 DATA 20,-0.706,-0.241,4.72E-02,1.56E-03,1.98E-03 DATA 40,-0.690,-0.234,1.20E-01,2.10E-03,2.70E-03 DATA 60,-0.667,-0.223,1.80E-01,2.50E-03,3.40E-03 DATA 80,-0.638,-0.211,2.50E-01,2.85E-03,4.10E-03 DATA 100,-0.603,-0.197,3.17E-01,3.10E-03,4.48E-03 DATA 120,-0.563,-0.182,3.90E-01,3.40E-03,5.00E-03 DATA 140,-0.517,-0.165,4.60E-01,3.70E-03,5.40E-03 DATA 160,-0.465,-0.148,5.20E-01,3.95E-03,5.90E-03 DATA 180.-0.408.-0.129.5.90E-01.4.20E-03.6.40E-03 DATA 200,-0.346,-0.108,6.64E-01,4.45E-03,6.74E-03 DATA 220,-0.279,-0.086,7.30E-01,4.70E-03,7.10E-03 DATA 240.-0.208.-0.064.8.00E-01.5.00E-03.7.40E-03 DATA 260,-0.133,-0.040,8.60E-01,5.30E-03,7.80E-03 DATA 273,-0.082,-0.025,9.10E-01,5.55E-03,8.00E-03 DATA 293.0.000.0.000.9.70E-01.5.95E-03.8.40E-03 DATA 1000,0.000,0.000,9.70E-01,5.95E-03,8.40E-03 !set window 0,100,0,17 dim t(100),temp(50),Kth(50) for i=1 to 19 read temp(i),thexpN,thexpW,speche,KthN,Kth(i) let kth(i)=kth(i)*100 ! data was Watts/cm-K next i for j=1 to 19 if etemp>=temp(j) and etemp<=temp(j+1) then let kepoxy=kth(j) next j end sub

sub rhocop(temp,rhocopper) let rhocopper=1.7074e-8+(2.3931e-8 -1.7074-8)/(120-20)*temp

```
!let rhocopper =1.7074e-8!RT zero field!let rhocopper =2.2494e-8!100C zero field!let rhocopper =2.2576e-8!100C 4T!let rhocopper =2.3931e-8!120C 4Tend subsubsub Kcop(temp,Kcopper)let Kcopper=401+(386-401)/(200)*(temp-28)!Kcopper=401 at 300K
```

!Kcopper=386 at 500K

end sub end

Appendix B Input file for the ANSYS beam element analysis

/batch /prep7 runn=3 et,8,4 et,1,4 et,2,4 *do,imat,1,100 ex,imat,100e9 alpx,imat,17e-6 ! area Izz Thy Thz ang IXX Iyy r,imat,1.4516e-3, 1.75597e-7, 1.75597e-7, .0381,.0381,0, 3.51e-7 *enddo r,61,1.4516e-3, 1.75597e-7, 1.75597e-7, .0381,.0381,0, 3.51e-7 r,62,3.2815e-4, 1.2897e-8, 1.29e-8, .02, .02, .02, .02, .02, .02 /input,chi2,mod nummer,node,.0001 nsel,y,-4,-3.92 nasel,y,-1.698,-1 d,all,all,0.0 csys,5 nsel,x,.5,.535 nrsel,z,-2.06,-2.03 d,all,all,0.0 nsel,x,.5,.535 nrsel,z,-1.74,-1.73 d,all,all,0.0 esel,type,2 nelem d,all,ux,0.0 d,all,uy,0.0 d,all,uz,0.0 csys,0 nall eall save fini /solu tref,20 tunif,70 /title,EQ 79+halo Currents Loads on the CHI Bus solve save /title,EQ 66+halo Currents Loads on the CHI Bus fscale,.00001 /input,ch66,mod bf,all,temp,70 solve

save

/title, Thermal Only fscale,.00001 solve save

/title,EQ 66+halo Currents Loads on the CHI Bus + Thermal fscale,.00001 /input,ch66,mod solve save

fini /exit /exit

Appendix D Bus Bar Physicals

Gentlemen, Please see the attached test report from one of our vendor. I need your response ASAP. The Copper materials are made using hot rolled technique; tensile strength 216 N/mm2 (31.3 Ksi) and 0.2% Proof strength 130 N/mm2 (18.9 Ksi). Is this strength OK for use on our bus bars and flags. If not, please give me the required material properties for the bus bars and flags.

Thank you.Neway	
-----------------	--

SAM	SON ME	TAL	SERV	ICE .	T	Your order Mede In PO 540	Finlen 017659	1 5-R05/W	,		:				
260-	4 ROUT	TE 1	30 NOI 0851	RTH 2	ſ	Our refere 068675	601	*	triv V/	alco / Deto 1001010	37		29	04.20	13
•••••				× i	1	Marks 540017	5595-R	05					·*•		
	Éneduct.	Grada at	4 5128	_		940011	0000 /						Lot ran	mber	
en. 05	COPP 1.5x36 HOT F 38,1x3 ASTM	ER SHE 5.5x144. ROLLED 927,1x36 B152-0	ET OFE-C 5 570,3 mm 9	NK® C10	1					2424. 5343.	00 K(90 LE	3 35	VA23	90577	
	. ASTM	I F68-10					41								
												2		ā	
8								\$ °		*					
													a.		
					•						• •.				
Due to t	the 100% mic	rographi	inspection	and other	r lests th	roughout rtails:	OFE	ÓKĐ Car	lified Gre	de Coppe	r acc. to	ASTM	F 68-10 s	and EN	1360
Due to t our man Mechani	the 100% mic nufacturing pr loat properties Tensile st	rocoss ea	inspection ch piece of	and other	r lests th ing mate	roughout rtal ts:	OFE	фКф Сег	lified Gre	de Coppe	r acc. to	ASTMI	F 68-10 s	and EN	1360
Due to t our man Mechani Item	the 100% mic huffacturing pr leat properties Tensile st R_N/m	coogmphi cocoss ea norgth	0 inspection ch piece of 0.2 % proc Rpath	and other the follow of stangth Wmm ²	r lests th ing mate	roughout rtal is: Eiongati %	OFE	ÓK® Cer	tified Gre Hardna	de Cappe	r acc. to	ASTM	F 68-10 a Grain siz mit	and EN	1360
Due to t bur man Machani tem	the 100% mic hufacturing pr loat properties Tenste st R _m Nim 216	cocoss ea rocoss ea rongth rongth	0.2 % proc Read	and other the follow of strangth	r lests th ing mate A5	roughout rtal is: Eiongati %	OFE.	фке Сег HRF	Uffied Gra Hardra	de Cappe ass 59	r acc. to	ASTMI	Grain siz	and EN	1360
Due to t our man Iachan) Item	the 100% mic hufacturing pr leat properties Tensile st R _m N/m 216	rogmphi rocess ea rorgth rm ²	0.2 % proc Rpace of Rpace 130	and other the follow of strangth	r lests th ing mate A5	roughout vial is: Elongati %	OFE	фке Саг	Uffed Gre Hardna	ide Coppe	r acc. to	ASTM 1	Gnain eiz miri	and EN	1360
Due to to bur man Machani tem 2005 Chemion 1) Spect 2) Spect	the 100% mic hufacturing pr Tensile et R.,N/m 216 al compositie fic value (AST fided value (EN	n n n n n n n n n n n n n n n n n n n	b inspection ch piece of <u>R_{pis}N</u> 130	and other the follow of strangth Umm ²	A5	roughout vrtal Is: Elongeti % 5 jucal metho a) emission	OPE on 36	фкф Car HRF	Hardin Hardin und gas an	ude Coppe 555 59 walyastor	r sec. to	ASTM	Graineiz Graineiz mm	and EN	1360
Due to t bur man team 1005 Chemion 1) Spect 2) Spect 2) Spect 2) Spect	the 100% mic hufacturing pr Tensile at R _m Nim 216 al compositio fic value (AST fied value (AST fied value (EN ppm max Ag	n MB170-99 CW002A) Az B	b inspection ch piece of R _{jdath} 130	and other the follow of strangth Mmm ²	A5	roughout rtal is: Eiongeti % Eiongeti % Eiongeti %	OFE- on 56	OK® Car HRF HRF	Hardne Hardne und gas an Pb	de Coppe 555 59 wiyastor 5	r scc. to	Sq	F 68-10 s Grain siz min Sm	and EN	1360
Due to t bur man termion 1) Spect 2) Sp	the 100% mic huffacturing pr Tenste st R_NMm 216 al compositio fity value (ASTT fied value (ASTT fied value (CN ppm max Ag 25	n n n n n n n n n n n n n n n n n n n) inspection ch piece of R _{jash} 130	and othes the follow of strangth 2mm ²	A5	roughout rtal is: Elongati % 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	OFE on 56 Kis: pectrome	OK® Car HRF HRF	Handrid Handri	ude Coppe 559 59 walyastor 15	sb 4	Se 3 2.0	F 68-10 a Grain etz mriv Sn 2 2	Te 2	1360
Chamled Chamled 1) Speci 2) Speci 5 min Cu 1) 99.95 2) 99.95	the 100% mic hurfacturing pr Tenute st R_N/m 216 al compositio fite value (AST fide value (AST fide value (AST Ag 2 25	n M B170-92 CW008A δ 1 5 2.))))))))))))))	end othes the follow of strangth Wmm ² Fe 10 10	A5 Analy Optics 0.5 0.5	roughout rtal is: Elongeti % 5 tical metho al emission 10 10	OFE on 56 State 5	HRF HRF Jar Spark 3 9 3 3	Handna Handna Handna S S	ude Coppe 59 salyastor 18 13	st 4	So 3 2.0	5 68-10 a Grain etz mri Sn 2 2	Te 2 2.0	1360
Due to t Vechani ternan 105 21section 2	the 100% mic nufacturing pr test properties Tensile st R_Nim 216 al compositio fit value (AST pom max pom max po 25 9 25 9 25 9 25 9 25 9 25 9 25	тодарры тосова ен топда и в 170-96 и в 170-96 С W002A } Ал е б 1 б 2. D.B 0.	2 inspection ch piece of R _{jdath} 130 0 1 0 1 9 <0,4	end othes the follow of strength hmm ²	A5 Analy Optics Mn 0.5 0.5 <0.2	Elongati Sical method al emission NE 10 10 1.9	OPE- on Kis Sis T.7	CK& Car HRF Har Spark 3 S 3 <0.3	Hardina Hardina Pb 5 5 1.2	ute Coppe 59 59 watysator 10 15 6	sb 4 4 4	Se 3 2.0	F 68-10 a Ghain siz miri 2 2 2 <0.7	Te 2 2.0 <2	2 <u>-</u> 1 1 1 <0
Chamlog Chamlog Do Chamlog D Spect Masauri D 99.997 Electrice	the 100% mic hufacturing pr Tenuta st R_NNm 216 al compositio fite value (AST fite value (AST fite value (AST ga 25 9 25 9 25 9 25 9 25 9 25 9 25 9 25	n m m m m m m m m m m m m m m m m m m m	2 Inspection ch piece of 0.2 % proc R _{pash} 130 i Cd 1 0 1 9 <0,4 i MCS, enned	end othes the follow of strength //mm ² f= 10 10 10 1.1	A5 A5 A5 Mn 0.5 0.5 <0.2	roughout rtial is: <u>Siongetij</u> <u>Sicel metho</u> al emissies Ni 10 10 1.9	0FE 00 00 00 00 00 00 00 00 00 0	HRF	Handna Handna Pb 5 1.2	ude Coppe 59 valyastor 15 6	sb 4 4 <1	So 3 2.0	5 68-10 a Grain etz mmr 2 2 2 <0.7	Te 2 2.0 <2	1360. 2 1 1 4 0
Due to t bour man Machani tam 005 Chemion 2) Spect 2) Spect 2) Spect 2) Spect 2) 98.99 Measur 2) 98.99 Measur 2) Station 2) Station	the 100% mic nufacturing pr teat properties Tensile st R_Nim 216 al compositio fte value (AST ppm max Ag 25 9 25 ed value 7 19.5 al conductivity i graphic examin	n m m m m m m m m m m m m m m m m m m m	2 Inspection ch pieco of R _{join} h 130 cd 1 0 1 9 <0,4 : MCS, entrei Class 2) :	Francial othes fraction of strongth thrmm ² Fraction fraction	A5 A5 A5 Optice 0.5 <0.2	roughout vial is: <u>%</u> iccal method al emission 10 10 10 1.9 >	OFE 00 00 00 5 1.7 101.5 101.5	CK® Cer HRF HRF 3 3 <0.3	Harding Harding Pb 5 1.2 cts have b	ute Coppe sss 59 walyastor 5 10 15 6 6	sb 4 4 4 4	So 3 2.0 1	F 68-10 a Ghain siz miri 2 2 <0.7	Te 2 2.0 <2	1360 2 1 1 3
Due to to bur man Machani them 2005 Chemion 2) Spect 2) Spect 2) S	the 100% mic hufacturing pr leat properties Tene2a st R_N/m 216 al compositio fite value (AST ded value (AST ded value (AST gas 25 9 25 ed value (25 9 25 ed value (25 7 19.5 al conductivity (graphic examin art emortiliame	годпаріі гособа ен rorigiti м В170-94 СУV003A) Ал В 5 1 5 2. 0.8 0. at 20 * C 9 Int Let C 9	2 Inspection ch piece of 0.2 % proc R _{jo} sh 130 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	end othes the follow of strangth //mm ² f= 10 10 10 1.1 aled (2=10 Ciae pase	A5 A5 A5 A5 0,5 0,5 <0,2	roughout rtial is: Eiongeti 5 5 5 5 5 5 5 5 5 5 5 5 5	0FE 00 00 00 00 00 00 00 00 00 0	P HRF Har Spark 3 S <0.3	Hand gas an Pb 5 1.2 cts have b	de Coppe sss 59 wilyastor 59 6 15 6 6	sb sb 4 4 <1 ed under	So 3 2.0 1	F 68-10 a Grain etz mm Sn 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Te 2 2.0 <2 System	1360 2/ 1 1 <0
Due to t our man Machani tem (005 (Chemion 2) Spect 2) Spect 2) Spect 2) 99.90 (Cu 2) 99.90 (Cu 2) 99.90 (Cu 2) 99.90 (Cu 2) 99.90 (Cu 2) 99.90 (Cu 2) 99.90 (Cu 2) Spect (Cu 2) Spec (Cu 2) Spect (Cu 2) Spect (Cu (the 100% mic nutacturing pr teat properties Tensile at R_Nim 216 al composition fit value (AST) pam max Ag 25 9 25 ed value (ST) 7 19.5 al conductivity i graphic examin an emortitieme test for oxide :	n m M B170-96 CW002A) Ar B 5 1 5 2. D.B 0. at 20 * C 9 match (<= 6 nt test	2 Inspection ch pieco of R _{join} h 130 Cd 1 9 <0,4 HCS, entrei Class 2) :	F= 10 10 1.1 Cias good	A5 A5 A5 Optice 0.5 <0.2 A=1 B	roughout vital is: <u>%</u> iccal method al emission 10 10 10 1.9 > = 1 C = 1	OFE 00 00 00 5 1.7 101.5 101.5 10 We I	CK® Cer HRF HRF 3 3 <0.3	Harding Harding Pb 5 1.2 cts have b 2008 / DN	de Coppe sss 59 ss 59 ss 59 ss 59 ss 59 ss 59 ss 59 ss 59 ss 59 ss 59 ss 59 ss 50 s 50 ss 50 ss 50 ss 50 ss 50 ss 50 ss 50 ss 50 ss 50 ss 50 ss 50 ss 50 ss 50 50	sb 4 4 <1 ed under	So 3 2.0 1 2 cortifie 2 cortifie 2 cortifie	Srn 2 2 <0.7	Te 2 2.0 <2 System NAS	1360- 2
Due to to our man Machani them 005 Chemion 2) Spect 2) Sp	the 100% mic hufacturing pr leat properties Tendes at R_Nim 216 at composition fite value (AST bid value (AST did value (AST at value (AST) at value (n n n n n n n n n n n n n n	2 Inspection ch piece of 0.2 % proc Ryach 130 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	end othes the follow of strangth //mm ² fre 10 10 1.1 1.1 Aled (2=10 Cias pass good	A5 A5 A5 A5 0,5 0,5 <0,2	roughout rtal is: Eiongeti 56 5 5 5 5 5 5 5 5 5 5 5 5 5	0FE 00 00 00 00 00 00 00 00 00 0	P HRF Har Spark 3 S <0.3 Here produ (\$0,9001.2 Hereby cell	Handna Handna Pb 5 1.2 cts have b 2006 / DM	de Coppe sss 59 salyaator 59 6 15 6 6 v Cortificate r material d	sb sb 4 4 <1 ed under No. 589	So 3 2.0 1 1 2009-2009-	Sn 2 2 CO.7 CO.7 CO.7	Te 2 2.0 <2 System hits ord	1360 2/1 1 1 <0
Due to to our man Nachani tham 0005 Chemion 2) Spect 2) Spect 2) Spect 2) Spect 2) Spect 2) 99.90 Measurn 99.997 Electrics Metallog Hydrogo Quanch MataNa Metarla	the 100% mic hufacturing pr leat properties Tendes at R_Nim 216 at composition fite value (AST ded value (AST ded value (AST ded value (AST at value (AST) at value (AST at value (AST) at v	rongmphi rocess 44 rongth M B170-94 CW009A) Ar 8 5 1 5 2. D.B 0. at 20 * C 9 refer (<= 0 nt test adherence rouny cont t REACH 0	2 Inspection ch piece of 0.2 % proc R ₁₀ 130 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	end othes the follow of strangth //mm ² fre 10 10 1.1 1.1 aled (2=10 Cias pase good	A5 A5 A5 A5 0,5 0,5 <0,2	roughout rtal is: Eiongeti 56 5 5 5 5 5 5 5 5 5 5 5 5 5	0FE 00 00 00 00 00 00 00 00 00 0	HRF HRF 3 3 <0.3	Handing Handing Pb 5 5 1.2 cts have b 2006 / DN fy, that the	ade Coppe ass 59 59 48)yastor 59 6 15 6 6 6 6 6 6 6 6 7 6 7 7 7 8 6 8 7 8 7 8	sb sb 4 4 <1 ed under s No, 589 escribod	So 3 2.0 1 1 2009- 2009- 2009- 2009- 2009-	Sn 2 2 <0.7	Te 2 2.0 <2 System h the ord	1360 2 1 1 1 1

Appendix E Superseded IGES models of earlier designs

IGES Model from Neway Atnafu, January 2013

IGES Model from Gerry Peluzzi, June 2013