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Executive Summary

The objective of this analysis is to calculate the temperature and stresses during TF coil ramp up,
flat top and ramp down (Fig. 1). PF field is not considered. This analysis is based on the coupled
field electromagnetic and thermal analysis for a simple model by P. Titus [1], [2].

The distribution of current in TF coil depends on the resistance, inductance and contact pressure
in the contact area. Coil temperature reaches highest at the end of the pulse, i.e., 10.136s for
normal operation. Maximal temperature is 117°C, at the inner side of arch and inner TF leg.
Comparing with C. Neumeyer’s result (101 °C temperature rise [3]) this analysis with current
diffusion effect results in a little higher temperature. But within this temperature range, active
cooling is not necessary. Max coil temperature is 47 °C in TF outer coil at the end of pulse. But
the temperature at the end of the coil can reach 65 °C because it connects to the arch which has
higher temperature.

In this model, the arch is modeled by two solid pieces. But in reality, they are made of many
straps. So the arches in this model have anisotropic material properties (mechanical properties
are based on the local structure model results of T. Willard [4]), Current density, magnetic flux
density and temperature from this analysis have been provided to T. Willard for his detailed
simulation of the joint.

Using high strength copper (80% IACS) in the flag extension increases the temperature only by
< 1°C. Thus high strength copper can be used if required to increase the pressure of joint bolt
insert over the capacity of pure copper.

The central beam has maximal hoop tension stress of 72.7MPa at 9.512s (i.e. the end of flat top)
and 58.5MPa at 10.136s (i.e. the end of pulse), similar to Titus’s result [2]. But there is another
even higher hoop stress point of 95.5MPa at 9.512s, at the connection between central beam and
flag, which is due to the L-shape connection part between the arch and TF outer leg.

Toroidal field contours have been provided for use in other calculations—in particular the
background field in the antenna calculation.

Structure response at the joint has been included for comparison with more detailed modeling of
the joint [4].

Part Il was added in Oct. 2010. The radius to the upper TF Flag Corner becomes bigger and the
peak temperature was recalculated. Active water cooling was added to the inner leg model to see
how long it takes to cool the coil down. Two different cooling line positions are evaluated and
compared the cooling time and stress. With active water cooling (0.25” diameter tube, 3 m/s
coolant velocity and inlet temperature of 12 °C), the maximal temperature of lower flag drops to
113.4 °C and that of upper flag becomes 110.8 °C. There are two options for cooling line
placement, one in the middle of the coil, the other at the side. Putting cooling line at side
produces lower Siea (i.€. Stress component that can cause delamination) of 90 MPa when
compared to putting cooling lines in the middle. The latter will cool the coil down faster and
result in more shrinkage. In these analyses, 0.3” tube is used with 3 m/s velocity and it takes 5
minutes to cool the inner coil down to room temperature. If the cooling process can be slower,
for example, by using a 0.25” tube and the same velocity, the stress Sieta Can be reduced to 48
MPa. To reduce Sieta, it is better to cool down slowly. Using thinner tubes, lower coolant speed
and different cooling line positions are all possible options to be further evaluated.

Part 111 was added in Oct. 2012. After the NSTX bundle failure, there was some concern that
cooling results in thermal stress and may cause delamination. So the cooling scheme was
changed that takes the exit water from the outer leg TF and feeds it into the inner leg [7].
Comparing with previous design, cooling line is also moved inside (toward the center of inner
leg bundle) a little, to avoid high torsional shear area (according to Pete’s results). Cooling line
temperatures were calculated by Ali [7] and then these temperatures are applied to the specific
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nodes on the cooling line in Han’s model. Temperatures of other nodes on the cooling line are
calculated by linear interpolation. In this way, thermal stress was reduced to 33MPa.

Figure 1: NSTX normal operation waveform.
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Modeling

This is a transient and coupled field analysis. An electromagnetic model (Fig. 2) is used to
calculate current diffusion effect and transfer the generated heat and Lorenz force to thermal and
structural model. The thermal and structural model calculates the temperature, displacement,
thermal stress, contact pressure at contact areas, and then transfer these data back to
electromagnetic model. The materials have temperature dependent material properties, including
electrical resistivity, thermal conductivity, specific heat, coefficients of thermal expansion. The
arches have anisotropic resistivity and thermal conductivity to simulate the straps. Because the
arch is made of many straps and not a solid copper, it becomes much more compliant. The
modulus of the arch is estimated to be half of that of pure copper. The upper flag uses high
strength copper which has 1/0.8 resistivity and 80% thermal conductivity of pure copper. In next
section, the results show that using high-strength copper or pure copper doesn’t have much
difference. The lower flag uses pure copper. In the electromagnetic model, the contact regions
have pressure dependent resistivity and the data are from R. Woolley [5] (Table 1).

Figure 2: Electromagnetic model.
A. Model

— -Arch: with anisotropic mat prop to simulate
s strips
Upper flag: high strength copper: with 1/0.8
resistivity and 80% thermal conductivity

TF coil air
F coil

Electrical insulation

Contact area

| Lower flag: pure copper

B. Toroidal field plot
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Figure 3: Thermal and structural model.
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Table 1: Contact resistance data [5].

CONTACT
PRESSURE(Pa)

CONDUCTIVITY

(S/m”)

CONTACT
PRESSURE(Pa)

CONDUCTIVITY

(S/m?)

1.00000E+00

1.00000E+00

3.16044E+07

1.89971E+10

1.37359E+06

5.35411E+08

3.38778E+0Q7

2.30742E+10

1.47681E+06

5.38476E+08

3.61694E+07

2.74988E+10

1.83862E+06

5.53310E+08

3.84064E+07

3.19775E+10

2.36282E+06

5.78873E+08

4.06156E+07

3.62419E+10

3.07523E+06

6.15297E+08

4.28283E+07

4.10335E+10

3.95984E+06

6.66688E+08

4.49190E+07

4.57280E+10

4.99175E+06

7.53410E+08

4.69450E+07

4.97211E+10

6.18883E+06

8.75474E+08

4.88533E+07

5.30157E+10

7.52698E+06

1.15148E+09

5.06903E+07

5.58498E+10

9.01059E+06

1.79136E+09

5.23996E+07

5.86168E+10

1.06360E+07

2.83763E+09

5.40124E+0Q7

6.09994E+10

1.24087E+07

3.85840E+09

5.54407E+0Q7

6.28324E+10

1.42633E+07

4.79779E+09

5.67574E+Q7

6.43307E+10

1.62207E+07

5.97101E+09

5.79004E+0Q7

6.54035E+10

1.82582E+07

7.14651E+09

5.89026E+0Q7

6.62942E+10

2.03965E+07

8.29712E+09

5.97272E+0Q07

6.69859E+10

2.26062E+07

9.47304E+09

6.04046E+0Q07

6.74716E+10

2.48285E+07

1.09843E+10

6.08813E+07

6.77217E+10

2.71058E+07

1.29688E+10

6.11718E+0Q07

6.80843E+10

2.93977E+07

1.58780E+10

Comparison of using high strength copper and pure copper

Because the upper flag has two contact regions, using high strength copper as the flag material
can help to maintain high and uniform contact pressure and also lower contact resistance. But
high strength copper has higher resistance and lower thermal conductivity. The result shows that
using high strength copper (1/0.8 resistivity and 80% thermal conductivity) causes temperature

rise of less than 1°C. So there is some margin to change to high strength copper.
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Figure 4. Comparison of using pure copper and high strength copper as flag material.
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Pure
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B. Current density (A/m?).
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Temperature rise

Fig. 5 shows temperature rise. The maximal temperature is 117°C at the inside of arch.

Fig. 6 is the time history plot of joint temperature. At the connection plane between central
beam and flag, the max temperature difference can reach 103 °C. Max Von Mises stress is also
here (see next sections).

Fig. 7 is the time history plot of coil temperature. Coil temperature reaches highest of 47 °C at
the end of pulse. But the ends can reach 65 °C and max temperature difference there is 47 °C
because they connected to the joints which have higher temperature and larger temperature
difference.

Figure 5: Temperature (K) in the coil.
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t=9.512s, end of flat top t=10.136s, end of waveform

Figure 6: Time history plot of temperature (K).
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Coil deformation

Fig. 8 shows the deformation of the coil. Maximal radial deformation is 17.4mm (0.685”), theta
deformation is <Imm and vertical deformation is 11mm (0.433”). There is no PF coil in this
model and thus no out-of-plane force from poroidal field. The connection shape showed in Fig. 9
results in the theta deformation.

Fig. 10 is the time history plot of joint displacement Ux and Uz. The right end of the arch (close
to outboard leg) is mainly affected by the magnetic force and thus has a curve shape similar to
waveform. The left end and middle point of the arch are mainly affected by the thermal
expansion of central beam and thus have a curve shape following temperature rise.

Figure 8: Coil deformation (m).
A. Radial deformation (m).
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B. Theta deformation (m).
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. Vertical deformation (m).
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Figure 9: The L-shape connection results in the theta deformation.
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Figure 10: Time history plot of joint displacement Ux and Uz (m).

L t=8s, flat top, displacement Ux (m)

o

Displacement Uz (m)

I[N ] |

e t=8s, flat top, displacement Uz (m)

Contact pressure

Fig. 11 shows the stress in the contact regions. 30MPa (4.35ksi) pressure is given as shown in
Fig. 11 as bolt pressure. The contact region close to arch can maintain adequate and uniform
pressure. But the contact close to central beam has separation and requires more bolts pressure to
maintain contact.
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Figure 11: Stress in contact regions (Pa).
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Coil stresses

Fig. 12 shows the Von Mises stress and Fig. 13 is a closer view. Maximal stress is 371 MPa
(53.7 ksi). Changing the small fillet into a bigger one or removing the extension of inner leg may
help to reduce this stress concentration but this requires further study.

Fig. 14 shows the hoop stress in the upper part.

Figure 12: Coil Von Mises stress (Pa)

aN AN
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REOCRNEDN £
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Figure 13: Close view of Von Mises stress (Pa).
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Figure 14: Hoop stress (Pa).
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Current density, temperature and toroidal field in the arch area

Each arch is modeled with two solid parts but with anisotropic material properties to simulate the
straps. Fig. 15 shows the current density and Fig. 16 shows the temperature in the straps
(maximal temperature is 117°C and maximal temperature difference between inside and outside
is 61 °C).

Fig. 17 shows the estimation of toroidal field in the arch area, which will be useful for the
detailed modeling of joint force calculation. Average toroidal field is estimated by reading the
radial component of Lorenz force and divided by conductor current and average length. Fig. 17A
shows the location for Btheta estimation and B shows the results of radial component of Lorenz
force (local coordinate center at the arch center), conductor current, length and the estimated
Btheta.
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Figure 15: Current density (A/m?).
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Figure 16: Temperature (K).
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Figure 17: Toroidal field estimation.
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flat top (9s)
each section: 36 degree
inner arch outer arch
total eqv total
Fmag_rad| curr |length| B_theta gFmag_ rad length [eqv B_theta
(N) (A) | (m) M (N) _feurr (A)] (m) (M
top 36
degree 5595 |69465| 0.120 0.673 1924 59402 | 0.162 0.200
mid left
36
degree 5962 |69465| 0.120 0.717 2038 59402 | 0.162 0.212
left 36
degree 6338 |69465| 0.120 0.762 2303 59402 | 0.162 0.240
mid right|
36
degree 5310 |69465] 0.120 0.639 1799 59402 | 0.162 0.187
right 36
degree 4964 [69465] 0.120 0.597 1549 59402 | 0.162 0.161

Appendix: ANSYS code for pulse waveform (from [1])

I NSTX Normal Pulse
NumSteps=29

tfbscale=1.0

t1=.1 $il=0

t2=.2 $i2=0

t3=1.952 $i3=15690.906*tfbscale
t4=2.072 $i4=38658.746*tfbscale
t5=2.192 $i5=58169.054*tfbscale
t6=2.312 $i6=74742.32*tfbscale
t7=2.432 $i7=288820.681*tfbscale
t8=2.552 $i8=100779.71*tfbscale
t9=2.672 $i9=110938.46*tfbscale
t10=2.792 $i10=119567.93*tfbscale
t11=2.912 $i11=126898.33*tfbscale
t12=3.032 $i12=129777.84*tfbscale
t13=4.0 $i13=129777.84*tfbscale
t14=5.0 $i14=129777.84*tfbscale
t15=6.0 $i15=129777.84*tfbscale
t16=7.0 $i16=129777.84*tfbscale
t17=8.0 $i17=129777.84*tfbscale
t18=9.0 $i18=129777.84*tfbscale
t19=9.512 $i19=129777.84*tfbscale
t20=9.632 $i20=91022.609*tfbscale
t21=9.752 $i21=58895.183*tfbscale
t22=9.872 $i22=32262.092*tfbscale
t23=9.992 $i23=10183.711*tfbscale
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t24=10.136 $i24=0
t25=15.0 $i25=0
t26=20.0 $i26=0
t27=30.0 $i27=0
t28=40.0 $i28=0
t29=1200.0 $i29=0
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Part I1: Fillet Radius and Active Cooling Addition

To avoid bending of TF inner leg, some structural supports will be added to the upper
flags and the fillet radius of upper flag is modified to be bigger, which will help to reduce the
temperature at the corner. Thus the model was modified and ran again to know how much
temperature reduction. To avoid the work of re-mesh, only the positions of the nodes at fillet are
modified and the radius may not be accurate. Also active water cooling is added with changeable
parameters. Current waveform is same as before, normal operation pulse.

Coil temperature reaches maximum at the end of the flat top (Fig. 1), i.e., 10.136 s for
normal operation. Without active cooling during the pulse, maximal temperature of the inner coil
IS 117 °C, at the inner side of lower flag. Upper flag has more material (Fig. 1) and thus the max
temperature is a little lower, 112 °C. With active water cooling (0.25” diameter tube, 3 m/s
coolant velocity and inlet temperature of 12 °C), the maximal temperature of lower flag drops to
113.4 °C and that of upper flag becomes 110.8 °C (Fig. 1).

Temperature (K)

Upﬁerflag with
bigger fillet radius 337.5

Lower flag with 32
asmallar fillat radiu

‘Middle of inner
leg

Mad:
113.4°C

# . 1315425256373584945105
T Tirme (5)

Figure 1: Temperature rise in TF inner coil with water cooling (0.25” diameter tube, 3 m/s
coolant velocity and inlet temperature of 12 °C).

The epoxy to bond TF coils has thermal expansion coefficient of 1.362E-5 /°C. The
thermal expansion coefficient of copper is 1.54E-5 /°C at 0 °C and 1.6E-5 /°C at 100 °C.
Different thermal expansion between copper and epoxy may cause delamination. Currently there
are two ideas to place the cooling line, in the middle or at the side of the coil. Both are evaluated.
Fig. 2 shows that putting cooling line at side produces lower Stheta (i.e. stress component that
can cause delamination) of 90 MPa than putting cooling lines in the middle, because latter will
cool the coil down faster and result in more shrinkage. In these analyses, 0.3” tube is used with 3
m/s velocity and it takes 5 minutes to cool the inner coil down to room temperature. If the
cooling process can be slower, for example, by using a 0.25” tube and the same velocity, the
stress Stheta can be reduced to 48 MPa (Fig. 3). Total cooling time of using 0.25” tube hasn’t
been calculated yet. It is still unknown to us how much stress will cause delamination but we are
trying to reduce it as much as possible. To reduce Stheta, it is better to cool down slowly. Using
thinner tubes, lower coolant speed and different cooling line positions are all options. Note that
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the analysis process of Fig. 2 and 3 are different. In Fig. 2, when 1 run the coupled field (EM and
thermal) simulation, there is no cooling during the pulse. Cooling parameters were calculated by
Ali Zolfaghari using FCOOL, then transferred the temperature data to me. | directly applied the
temperature profile to the cooling line (nodes) in the model and calculated from 10.136 s. Thus
the start time point in Fig. 2 is 10.136 s (the end of the pulse). In Fig. 3, | added a cooling
calculation in the model (similar to the code of ACOOL) and re-run the coupled field simulation
and cooling is added during pulse. Fig. 3 simulates the time period from 0 s to 10.136 s (during
the pulse).

m:l;;; Cooling line at the side (0.3” tube)

A0 Max: 90MPa (13ksi)
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0
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-1000

-1250
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Figure 2: History plot of stress Sieta (Pa) in TF coil with water cooling (0.3” tube, 3 m/s).
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Figure 3: History plot of stress Sieta (Pa) in TF coil with water cooling (0.25” tube, 3 m/s, tube at
the side).

The max temperature in outer coil reaches only 47 °C at the end of pulse. But to avoid further
temperature rise upon following pulses, active cooling is simulated. With cooling line of 0.5”
tube diameter, 3 m/s velocity and tube attached to the surface of outer coil (Fig. 4), the coil can
be cooled down to 25 °C in 5 minutes (Fig. 5, 6).
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Figure 4: Add cooling line to TF outer coil, attached to the outer surface (0.25” tube, 3 m/s).
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Figure 5: Temperature distribution at different time points, with active cooling in inner and outer
coils (parameters shown in Fig. 4).
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Figure 6: Temperature history plot, with active cooling in inner and outer coils (parameters
shown in Fig. 4).
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In this model, the flex straps is modeled by two solid pieces. But in reality, they are made of
many straps. So the arches in this model have anisotropic material properties. Mechanical
properties are based on the local structure model results of Ref. [3]: the force to deflect 31
lamination assembly 0.3" vertically is 76.2 Ibf; The flex assembly rotates 2.57 degrees with a
torque of 100 in-1bf applied. | converted these data into the modulus of flex straps as follows:
mp,ex,2,0.92e9
mp,ey,2,0.92e9
mp,ez,2,0.92e9
mp,gxy,2,0.08e9
mp,gyz,2,0.08e9
mp,gxz,2,0.35385e9
(x is the arch circumferential direction, y is the arch radial direction and z is the arch central
axis). In the Figs. 11 and 12 of Part I, the upper corner of upper flag has a high stress point,
which is due to the high modulus used in the previous model. After re-calculate the modulus of
flex strap and replot the stress, it is shown in Fig. 7, maximal stress is 124 MPa at 10.136 s.

AN NODA

2 L= 1= 14

SUB =1
TIME=10.136

a A7

SOLUTION
=652

Fig. 7: Von Mises stress in the upper flag (Pa).

Because the upper flag has two contact regions, using high strength copper as the flag
material can help to maintain high and uniform contact pressure and also lower contact
resistance. But high strength copper has higher resistance and lower thermal conductivity. From
the analysis, using high strength copper (1/0.8 resistivity and 80% thermal conductivity) causes
temperature difference of less than 1 °C. Thus high strength copper can be used if required to
increase the pressure of joint bolt insert load over the capacity of pure copper.

Part I11: Outer TF Coolant Fed Into Inner Leg

In Feb. 2012, the cooling scheme of NSTX inner leg was changed. Previous cooling
scheme is to pump 12°C coolant from bottom of the inner leg. For the inner leg, the hottest area
is the section between the top of the lower flag and the bottom of the upper flag. Highest thermal
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stress is at ~1 foot distance from the bottom of inner leg (Part Il, figure 2). In the latest design,
the coolant first flows through outer leg and then into inner leg from the bottom. In this way, the
coolant in inner leg is already warm and thus reduces the thermal stress, but it takes more time
for the inner leg to cool down.

In this simulation, to evaluate worst case, fault operation TF current is used, according to
NSTX_CS_Upgrade_100504.xls (design point May 4, 2010 version). Coolant temperature is
from Ali. Ali models the TF inner leg as a simplified long and thin cylindrical conductor with
current and coolant. And read out the temperature at 5 positions. Then I applied the temperatures
to the corresponding positions in my detailed model to calculate thermal stress. There is a little
difference between Ali’s model and my model. In Ali’s model, the current flows from bottom to
top of the inner leg and thus all the conductor is heated by Joule effect. In my model, the current
density is determined by the resistance and inductance of the coil, and thus the top and bottom
ends are cold and middle section of the conductor gets heated. When coolant flows into inner leg,
bottom and top of inner leg has the biggest delta T and result in high thermal stress. But these
places are only used for structural fixation and don’t participate the current conduction, high
thermal stress should not be a problem.

Figure 1 shows the cooling line position in my model. Comparing with previous design,
cooling line is moved inside (toward the center of inner leg bundle) a little, to avoid high
torsional shear area (according to Pete’s results). Cooling line temperatures are shown in Figure
1 at Os, 100s, 200s, 300s, 400s, 500s respectively. These temperatures are applied to the specific
nodes on the cooling line in my model. Temperatures of other nodes on the cooling line are
calculated by linear interpolation. Figure 2 shows the temperature and Sy in inner leg at the end
of pulse.
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Fig. 1: Cooling line position and temperature.
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Temperaturcand Sy at the end of pulse
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Fig 2: Temperature and Sy (normal to the bonding interface between Copper and epoxy) at the
end of pulse (11.076s).

Figure 3 is the history plot of stress Sy at different positions in Cu bond. Highest tensile stress is
33MPa (the stress may cause delamination). The Bottom and top ends have compressive stress
which has been discussed before. Figure 4 shows the stress at the connections to flags are getting
higher at the end of the cooling period, 500s. This is due to the un-cooled flags with high
temperatures, which is not true.
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Fig 3: Cu bond thermal stress Sy (normal to the bonding interface between Copper and epoxy).
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Fig 4: Cu bond thermal stress Sy (normal to the bonding interface between Copper and epoxy) at

the connections to flags is not true.

NSTX Upgrade TF Inner Leg Cooling (Ali Zolfaghari)

The output of the TF outer leg coolant will be input in the TF inner leg during cool-down. The
outlet temperature of the TF outer leg coolant was obtained from a separate fcool run. Figure 1 is

the fcool cooling plot for the outer leg.
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Figure 1
We fit the outlet cooling temperature of the outer TF vs. time (obtained from the fcool run) to a
polynomial as seen on figure 2. Then we build a model of the TF inner leg and input the
polynomial as the input water temperature as a function of time. The coolant channel on the TF
inner leg is 7.62 mm in diameter and the flow velocity is 2.14 m/s. The length of the TF leg is
5.43 meters.
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Figure 2- Data from fcool run is in blue, the polynomial fit is in red.
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In Ansys CFX we model one inner leg which is wedge shaped in cross section with the coolant
channel to the side as a circular cross section of equal copper area and the coolant hole in the

B0.00 {rmm)

15.00 45.00

center. This simpler model is quick to run and because copper has such a high thermal
conductivity, it is a good approximation. Figure 3 shows the modeled TF leg cross section.
Figure 3

Figure 4 is the cooling plot for the TF inner leg and the outlet and inlet refers to the inner leg.
“mid” in the legends means mid-way out radially in cross section (not in length). Each time-step in 1 sec.
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From figure 4 we can guess that at t=200s there is large temperature gradient in the coil. Figure 5
shows the temperature distribution in the inner leg at t=200s

AT\

Figure 5
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Appendix: The batch code for solution

[clear,start

/NERR,,10000000 I MAX ERROR/WARNING MESSAGE 10,000,000
/CONFIG,NRES, 100000

/CONFIG,NBUF,30

/CONFIG,NPROC,2 ! 2 processors

[filnam,electromag_bc
resume,electromag_bc,db

/solu

allsel,all

csys,0

antype,trans I transient solution

It init=1E-10 Iinitialize time for static solution
EQSLV,SPARSE

IEQSLV,PCG,,3

IEQSLV,ICCG,1e-6,2 I toler=1e-6

t init=0.01  !initialize time for static solution

timestep=0.002

risetime=0.01

timint,ON I time-integration effects on for transient solution
time,risetime ! step down within "risetime"

KBC,1 I step load KBC,1. ramp load KBC,0
deltim,timestep

outres,,2

allsel,all

csys,0

F,curr_nd1,amps,0

F,curr_nd2,amps,0

F,curr_nd3,amps,0

solve
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save
finish

Illcalculate convection heat transfer coefficient

Iread temperature
*create,hcoef

t avg=argl
t_coolant=arg2

csys,1
allsel all
*if,t_avg,ge,273+0,and,t_avg,lt,273+10,then
PR=13.67
*elseif,t_avg,ge,273+10,and,t_avg,lIt,273+20
PR=9.47 Iviscosity: m-Pa-s
*elseif,t_avg,ge,273+20,and,t_avg,le,273+30
PR=7.01
*elseif,t_avg,ge,273+30,and,t_avg,lIt,273+40
PR=5.43
*elseif,t_avg,ge,273+40,and,t_avg,It,273+50
PR=4.34
*elseif,t_avg,ge,273+50,and,t_avg,It,273+60
PR=3.56
*elseif,t_avg,ge,273+60,and,t_avg,It,273+70
PR=2.99
*elseif,t_avg,ge,273+70,and,t_avg,It,273+80
PR=2.56
*elseif,t_avg,ge,273+80,and,t_avg,It,273+90
PR=2.23
*elseif,t_avg,ge,273+90,and,t_avg,It,273+100
PR=1.96
*elseif,t_avg,ge,273+100,and,t_avg,lt,273+120
PR=1.75
*elseif,t_avg,ge,273+120,and,t_avg,lt,273+140
PR=1.45
*elseif,t_avg,ge,273+140,and,t_avg,lt,273+160
PR=1.25
*endif
visc=2.414E-5*(10**(247.8/(t_avg-140)))
RE=1000*flu_v*DH/visc
*if,t_avg,ge,t_coolant,then
nnn=0.4
*else
nnn=0.33
*endif
NU=0.023*(RE**0.8)*(PR**nnn)
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h_coef=0.6*NU/DH

*end

H==== = = s s
111 cooling

H==== = = oo ———————————=—
end

[filnam,thermstress
resume,thermstress,db

/solu

allsel,all

csys,0

antype,trans I transient solution

It init=1E-10 Iinitialize time for static solution
EQSLV,SPARSE

IEQSLV,PCG,,3

IEQSLV,ICCG,1e-6,2 I toler=1e-6

t init=0.01 ! initialize time for static solution

timestep=0.002

risetime=0.01

timint,ON I time-integration effects on for transient solution
time,risetime ! step down within "risetime”

KBC,1 I step load KBC,1. ramp load KBC,0
deltim,timestep

outres,,2

allsel all

csys,0

Idread,hgen,last,,,.electromag_bc,rst
Idread,forc,last,,,,electromag_bc,rst

allsel,all

csys,0
cmsel,s,cooling_line
d,all,temp,12+273
allsel,all

solve



save
finish

/postl

set,last

allsel,all

csys,1

rsys,1

i=1

*get,cn_pres,node,cn_no(i),s,X

*if,cn_pres,ge,429E6,then
cn_pres=429E6

*elseif,cn_pres,lt,-30E6
cn_pres=-30E6

*endif

/OUTPUT,contacnd_pres,txt
*VWRITE,(-cn_pres/1E6+430)
(F20.5)

/OUTPUT

*do,i,2,cn_n,1
*get,cn_pres,node,cn_no(i),s,X
*if,cn_pres,ge,429E6,then

cn_pres=429E6
*elseif,cn_pres,It,-30E6

cn_pres=-30E6
*endif
/OUTPUT,contacnd_pres,txt,,APPEND
*VWRITE,(-cn_pres/1E6+430)
(F20.5)
/OUTPUT

*enddo

finish

*create,EM  largl=timestep,arg2=endtime,arg3=curr,arg4=outres

parsav,all,parfile,data

/filnam,electromag_bc
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resume,electromag_bc,db

/solu

allsel all

csys,0

antype,trans,rest I transient solution
EQSLV,SPARSE

timestep=argl 15 steps.

risetime=arg2

timint,ON I time-integration effects on for transient solution
time,risetime! step down within "risetime™
KBC,0 I step load. ramp load KBC,0
deltim,timestep

outres,,arg4

allsel,all

csys,0

F,curr_nd1,amps,arg3

F,curr_nd2,amps,arg3

F,curr_nd3,amps,arg3
Idread,temp,last,,,,thermstress,rst

| **kkkkhkkhkhkkhhkhkkihkkhhkhhhkhkihkhhkhhhkhihkhhhkhhkhihkihhhhhkhihihhhhhhihihhhihhihihhihhihiidx

I apply contact pressure

! B T R T T P S S e S S S P S P S P S S S P P S P S S S S P P P P P P P R P R P S S R P P R P S R S P R P P R R R P S R R R P R P P R R T P b T
*dim,cn_pres,array,cn_n
*VREAD,cn_pres(1),contacnd_pres,txt
(F20.5)
*do,i,1,cn_n,1
bf,cn_no(i),temp,cn_pres(i)
*enddo
solve

save
finish

parres,new,parfile,data

*end

*create,thermstress
parsav,all,parfile,data

[filnam,thermstress
resume,thermstress,db
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/solu

allsel all

csys,0

antype,trans,rest I transient solution
EQSLV,SPARSE

timestep=argl 15 steps.

risetime=arg2

curr=arg3

timint,ON I time-integration effects on for transient solution
time,risetime! step down within "risetime"
KBC,0 I step load. ramp load KBC,0
deltim,timestep

outres,,arg4

allsel,all

csys,0

Idread,hgen,last,,, electromag_bc,rst
Idread,forc,last,,,,electromag_bc,rst

IThcool
tm_step=argl

allsel all

csys,1

t2_coolant(1)=12+273

t1 _coolant(1)=12+273
z_bottom=NZ(cooling_nd(1))

*do,i,1,83,1

allsel,all

esel,s,mat,,1

nsle,s

nsel,r,loc,z,NZ(cooling_nd(i))-5e-4,NZ(cooling_nd(i))+5e-4

n_str=0

tc_avg=0

*get,nnum,node,,count

*do,j,1,nnum,1
n_nxt=NDNEXT(n_str)
*get,n_temp,node,n_nxt,temp
tc_avg=tc_avg+n_temp

*enddo

tc_avg=tc_avg/nnum

*if,i,eq,1,then
|_elem=(NZ(cooling_nd(i+1))-NZ(cooling_nd(i)))/2
|_flow=I_elem

*elseif,i,eq,83
|_elem=(NZ(cooling_nd(i))-NZ(cooling_nd(i-1)))/2
|_flow=I_elem
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*else
|_elem=(NZ(cooling_nd(i+1))-NZ(cooling_nd(i-1)))/2
|_flow=NZ(cooling_nd(i+1))-NZ(cooling_nd(i))
*if,1_flow,gt,NZ(cooling_nd(i))-NZ(cooling_nd(i-1)),then
|_flow=NZ(cooling_nd(i))-NZ(cooling_nd(i-1))
*endif
*endif

KA_L1=170/0.136525
a_transf=3.1415926*DH
*use,hcoef,tc_avg,t2_coolant(NZ(cooling_nd(i)))
HA2=h_coef*a_transf
t wall=(KA_L1*tc_avg+HA2*t2_coolant(NZ(cooling_nd(i))))/(KA_L1+HA2)
*if,t_wall,ge,(100+273),then

t wall=100+273
*endif
g_heat=KA_L1*(tc_avg-t wall)*|_elem
m_coolant=1000*1_elem*3.1415926*(DH**2)/4
t1_coolant(i)=t2_coolant(NZ(cooling_nd(i)))+qg_heat*tm_step/4186/m_coolant
*if,t1_coolant(i),ge,(100+273),then

t1_coolant(i)=100+273
*endif
allsel,all
cmsel,s,cooling_line
nsel,r,loc,z,NZ(cooling_nd(i))-5e-4,NZ(cooling_nd(i))+5e-4
d,all,temp,t_wall

*enddo

allsel,all
csys,1
t2_coolant(1)=12+273
z_bottom=NZ(cooling_nd(1))
*do,i,2,83,1
*if,(NZ(cooling_nd(i))-tm_step*flu_v),gt,z_bottom,then
t2_coolant(i)=t1_coolant(NZ(cooling_nd(i))-tm_step*flu_v)
*else
t2_coolant(i)=12+273
*endif
*if,t2_coolant(i),ge,(100+273),then
t2_coolant(i)=100+273
*endif
*enddo
t1_coolant(1)=12+273
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allsel,all
csys,0

iiiend

solve

save
finish

/postl

set,last
allsel,all
csys,1
rsys,1
i=1

*get,cn_pres,node,cn_no(i),s,X

*if,cn_pres,ge,429E6,then
cn_pres=429E6

*elseif,cn_pres,It,-30E6
cn_pres=-30E6

*endif

/OUTPUT,contacnd_pres,txt
*VWRITE,(-cn_pres/1E6+430)

(F20.5)
JOUTPUT

*do,i,2,cn_n,1

*get,cn_pres,node,cn_no(i),s,X

*if,cn_pres,ge,429E6,then
cn_pres=429E6

*elseif,cn_pres,It,-30E6
cn_pres=-30E6

*endif

/OUTPUT,contacnd_pres,txt,,APPEND
*VWRITE,(-cn_pres/1E6+430)

(F20.5)
/OUTPUT
*enddo
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finish

parres,new,parfile,data

*end

t step=5e-2

*use,EM, (5e-2),t2,i2,2 Ibefore ramp up.
*use,thermstress,(5e-2),t2,i2,2 Ibefore ramp up.

| **kkkhkkhkhkkhhkhkihkhhhkhhkhkikhhhkhhkhihhkhhhhhkhihkhhhkhhhihkhhhihhkhihihhhkhhhihihhhihihihiidx

I ramp up

| **kkkhkkhkhkkhhkhkikkhhhkhhkhikhhkhhhkhihkhhhhhkhihkhhhhhkhihhhhhhkhihihhhhhhihihhhihihihiidx

*do,step,1,5,1

I *use,EM_thermstress,(0.1),t3,i3,2 !timestep,endtime,curr,outres
t step=(t3-t2)/10
*use,EM, ((t3-t2)/10),(t2+(t3-t2)/5*step), (i2+(i3-i2)/5*step),2
*use,thermstress, ((t3-t2)/10),(t2+(t3-t2)/5*step), (i2+(i3-i2)/5*step),2
Itimestep,endtime,curr,outres
*enddo

loopp=4

*do,step,1,5,1
t step=(t4-t3)/10
i_step=(i4-i3)/10
*use,EM,t_step,(t3+t_step*2*step),(i3+i_step*2*step),2
*use,thermstress,t_step,(t3+t_step*2*step-t_step),(i3+i_step*2*step-i_step),1
*use,thermstress,t_step,(t3+t_step*2*step),(i3+i_step*2*step),1
Itimestep,endtime,curr,outres

*enddo

loopp=5

*do,step,1,5,1
t step=(t5-t4)/10
i_step=(i5-i4)/10
*use,EM,t_step,(t4+t_step*2*step),(i4+i_step*2*step),2
t step=(t5-t4)/10
i_step=(i5-i4)/10
*use,thermstress,t_step,(t4+t_step*2*step-t_step),(i4+i_step*2*step-i_step),1
t step=(t5-t4)/10
i_step=(i5-i4)/10
*use,thermstress,t_step,(t4+t_step*2*step),(i4+i_step*2*step),1
Itimestep,endtime,curr,outres

*enddo

loopp=6
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*do,step,1,5,1
t step=(t6-t5)/10
i_step=(i6-i5)/10
*use,EM,t_step,(t5+t_step*2*step),(i5+i_step*2*step),2
*use,thermstress,t_step,(t5+t_step*2*step-t_step),(i5+i_step*2*step-i_step),1
*use,thermstress,t_step,(t5+t_step*2*step),(i5+i_step*2*step),1
Itimestep,endtime,curr,outres

*enddo

loopp=7

*do,step,1,5,1
t step=(t7-t6)/10
i_step=(i7-i6)/10
*use,EM,t_step,(t6+t_step*2*step),(i6+i_step*2*step),2
*use,thermstress,t_step,(t6+t_step*2*step-t_step),(i6+i_step*2*step-i_step),1
*use,thermstress,t_step,(t6+t_step*2*step),(i6+i_step*2*step),1
Itimestep,endtime,curr,outres

*enddo

loopp=8

*do,step,1,5,1
t step=(t8-t7)/10
i_step=(i8-i7)/10
*use,EM,t_step,(t7+t_step*2*step),(i7+i_step*2*step),2
*use,thermstress,t_step,(t7+t_step*2*step-t_step),(i7+i_step*2*step-i_step),1
*use,thermstress,t_step,(t7+t_step*2*step),(i7+i_step*2*step),1
Itimestep,endtime,curr,outres

*enddo

loopp=9

*do,step,1,5,1
t step=(t9-t8)/10
i_step=(i9-i8)/10
*use,EM,t_step,(t8+t_step*2*step),(i8+i_step*2*step),2
t step=(t9-t8)/10
i_step=(i9-i8)/10
*use,thermstress,t_step,(t8+t_step*2*step-t_step),(i8+i_step*2*step-i_step),1
t step=(t9-t8)/10
i_step=(i9-i8)/10
*use,thermstress,t_step,(t8+t_step*2*step),(i8+i_step*2*step),1
Itimestep,endtime,curr,outres

*enddo

loopp=10
*do,step,1,5,1
t step=(t10-t9)/10
i_step=(i10-i9)/10
*use,EM,t_step,(t9+t_step*2*step),(i9+i_step*2*step),2
t step=(t10-t9)/10



i_step=(i10-i9)/10
*use,thermstress,t_step,(t9+t_step*2*step-t_step),(i9+i_step*2*step-i_step),1
t step=(t10-t9)/10
i_step=(i10-i9)/10
*use,thermstress,t_step,(t9+t_step*2*step),(i9+i_step*2*step),1
Itimestep,endtime,curr,outres

*enddo

loopp=11

*do,step,1,5,1
t step=(t11-t10)/10
i_step=(i11-i10)/10
*use,EM,t_step,(t10+t_step*2*step),(i10+i_step*2*step),2
t step=(t11-t10)/10
i_step=(i11-i10)/10
*use,thermstress,t_step,(t10+t_step*2*step-t_step),(i10+i_step*2*step-t_step),1
t step=(t11-t10)/10
i_step=(i11-i10)/10
*use,thermstress,t_step,(t10+t_step*2*step),(i10+i_step*2*step),1
Itimestep,endtime,curr,outres

*enddo

loopp=12

*do,step,1,5,1
t step=(t12-t11)/10
i_step=(i12-i11)/10
*use,EM,t_step,(t11+t_step*2*step),(il1l+i_step*2*step),2
t step=(t12-t11)/10
i_step=(i12-i11)/10
*use,thermstress,t_step,(t11+t_step*2*step-t_step),(i11+i_step*2*step-t_step),1
t step=(t12-t11)/10
i_step=(i12-i11)/10
*use,thermstress,t_step,(t11+t_step*2*step),(ill+i_step*2*step),1
Itimestep,endtime,curr,outres

*enddo

| *xrkkkhkkhkhkhkirrhhkhkhkhkhkkhkhrrrrhkhhhkkhdrhirrrhhkhhkhkhrrrrrhhhrhhhhihirrhhhhhhiiiriiiiiixi

I start of flat top
!*************************************************************************
lloop=12
I*use,EM_thermstress,(0.03),(t%looprrr%+0.3),i%looprrr%,?2
*do,step,1,5,1
t_step=0.03
*use,EM,(0.03),(t12+0.3/10*2*step),(i12),2 Itimestep,endtime,curr,outres
t_step=0.02
*use,thermstress,(0.02),(t12+0.3/10*2*step-0.04),(i12),1 !timestep,endtime,curr,outres
t_step=0.02
*use,thermstress,(0.02),(t12+0.3/10*2*step-0.02),(i12),1 !timestep,endtime,curr,outres
t_step=0.02
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*use,thermstress,(0.02),(t12+0.3/10*2*step),(i12),1 Itimestep,endtime,curr,outres
*enddo

*do,step,1,2,1
t step=(t13-t12-0.3)/4
*use,EM, ((t13-t12-0.3)/4),(t12+0.3+(t13-t12-0.3)/2*step),(i13),2
Itimestep,endtime,curr,outres
*enddo

*do,step,1,50,1
t step=(t13-t12-0.3)/50
*use,thermstress, ((t13-t12-0.3)/50),(t12+0.3+(t13-t12-0.3)/50*step),(i13),1
Itimestep,endtime,curr,outres
*enddo

IR R R R R R R R R o o R R R R R R R R R R R R R AR AR R AR AR R R R R R R AR R R R R R R R R R AR AR AR R AR R R R R R AR R R R AR R R R R R R R R R =

I flat top
!*************************************************************************
I*do,loopp,14,19,1

loopp=14

*do,step,1,5,1

t step=((t18-t13)/5)

*use,EM, ((t18-t13)/5),(t13+(t18-t13)/5*step),il4,1

*enddo

*do,step,1,400,1

t_step=((t18-t13)/400)

*use,thermstress, ((t18-t13)/400),(t13+(t18-t13)/400*step),i14,1
*enddo

loopp=19

t step=((t19-t18)/2)

*use,EM, ((t19-t18)/4),(t18+(t19-t18)/2),i19,2
*use,EM, ((t19-t18)/4),(t19),i19,2

*do,step,1,40,1

t step=((t19-t18)/40)

*use,thermstress, ((t19-t18)/40),(t18+(t19-t18)/40*step),il4,1
*enddo

| R R R R R T R R R R R R R R R e R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R S

I ramp down
| R R R R R T R R R R o R R R R e R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R S
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I*do,loopp,20,24,1
loopp=20
*do,step,1,5,1
t step=(t20-t19)/10
i_step=(i20-i19)/10
*use,EM,t_step,(t19+t_step*2*step),(i19+i_step*2*step),2
t step=(t20-t19)/10
i_step=(i20-i19)/10
*use,thermstress,t_step,(t19+t_step*2*step-t_step),(i19+i_step*2*step-i_step),1
t step=(t20-t19)/10
i_step=(i20-i19)/10
*use,thermstress,t_step,(t19+t_step*2*step),(i19+i_step*2*step),1
Itimestep,endtime,curr,outres
*enddo
I*enddo

I*do,loopp,20,24,1
loopp=21
*do,step,1,5,1
t step=(t21-t20)/10
i_step=(i21-i20)/10
*use,EM,t_step,(t20+t_step*2*step),(i20+i_step*2*step),2
t step=(t21-t20)/10
i_step=(i21-i20)/10
*use,thermstress,t_step,(t20+t_step*2*step-t_step),(i20+i_step*2*step-i_step),1
t step=(t21-t20)/10
i_step=(i21-i20)/10
*use,thermstress,t_step,(t20+t_step*2*step),(i20+i_step*2*step),1
Itimestep,endtime,curr,outres
*enddo
I*enddo

1*do,loopp,20,24,1
loopp=22
*do,step,1,5,1
t step=(t22-t21)/10
i_step=(i22-i21)/10
*use,EM,t_step,(t21+t_step*2*step),(i21+i_step*2*step),2
t step=(t22-t21)/10
i_step=(i22-i21)/10
*use,thermstress,t_step,(t21+t_step*2*step-t_step),(i21+i_step*2*step-i_step),1
t step=(t22-t21)/10
i_step=(i22-i21)/10
*use,thermstress,t_step,(t21+t_step*2*step),(i21+i_step*2*step),1
Itimestep,endtime,curr,outres
*enddo
I*enddo

I*do,loopp,20,24,1



loopp=23
*do,step,1,5,1
t step=(t23-t22)/10
i_step=(i23-i22)/10
*use,EM,t_step,(t22+t_step*2*step),(i22+i_step*2*step),2
t step=(t23-t22)/10
I_step=(i23-i22)/10
*use,thermstress,t_step,(t22+t_step*2*step-t_step),(i22+i_step*2*step-i_step),1
t step=(t23-t22)/10
i_step=(i23-i22)/10
*use,thermstress,t_step,(t22+t_step*2*step),(i22+i_step*2*step),1
Itimestep,endtime,curr,outres
*enddo
I*enddo

1*do,loopp,20,24,1
loopp=24
*do,step,1,5,1
t step=(t24-t23)/10
i_step=(i24-i23)/10
*use,EM,t_step,(t23+t_step*2*step),(i23+i_step*2*step),2
t step=(t24-t23)/10
I_step=(i24-i23)/10
*use,thermstress,t_step,(t23+t_step*2*step-t_step),(i23+i_step*2*step-i_step),1
t step=(t24-t23)/10
i_step=(i24-i23)/10
*use,thermstress,t_step,(t23+t_step*2*step),(i23+i_step*2*step),1
Itimestep,endtime,curr,outres
*enddo
I*enddo

| R R R e e e S R R R R AR R R R R R AR AR AR AR AR AR AR R R R R R R AR R R R R R R R AR AR R R R R R R R R R R R R R R R R R R R AR

I ramp down ends

| R R R R e e e e S R R R R AR R R R R R AR AR AR AR AR AR R R R R R AR R R R R O R AR R R R R R R R R R R R R R R R R R R AT
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