Torques on TF Conductors \& Resulting Torsion \& Shear Stress in NSTX CSU

NSTX U CALC 132-03-01
Rev. 1

March 12, 2015

Prepared By:

R. Woolley

Reviewed By:

P. Titus, PPPL Engineering Analysis Branch
T. Stevenson, Cognizant Engineer

REVISION SHEET

Document No. 132-03-01
Rev. 1 (Previous rev. was 132-03-00)

Description	Prepared by	Date
(1) TF torque coefficient sets were determined and included for the TF upper outer leg and for the TF lower outer leg. (2) TF torque coefficients from $\mathbf{O H}$ current as calculated for the 04-May-2010 design point and included in the previous revision of this calculation were based on more OH turns than were included in the final OH coil design and were therefore erroneous. The torque coefficients' values are corrected herein.	R. Woolley	12March'15

PPPL Calculation Form

Calculation \# $\underline{\text { 132-03-01 }}$ Revision \#01 WP \#, if any 0029, 0037
(ENG-032)

Purpose of Calculation: (Define why the calculation is being performed.)
The purpose of this calculation is to provide:

1. A means of calculating the torsional moments acting on the TF system for use in the Design Point Spreadsheet. These moments were used to size many of the OOP support structures and/or to check Lorentz force calculations.
2. Calculations of the Inner Leg Torsional Shear Stress and an appropriate algorithm for the DCPS to compute the torsional shear stress to qualify the TF and/or to qualify similar results in ref.5.

References (List any source of design information including computer program titles and revision levels.)

1. R. Woolley memo 13-260709 "Out-of-Plane (OOP) PF/TF Torques on TF Conductors in NSTX CSU" 26 July 2009
2. P. Titus Memo, "Maximum TF Torsional Shear", 29 July 2009
3. P.Titus paper, "Properties for Out of Plane Support of the TF coils in recent tokamaks", 28September 1999
4. R.Woolley memo, 13-110211, Torques on TF Conductors and Fesulting Torsion \& Shear Stress in NSTX-CSU, 04May2010 Design Point", 11 February 2011
5. P. Titus, NSTXU-CALC-132-07-00 Rev. 0 "TF Inner Leg Torsional Shear Including Input to the DCP\{S", 9September 2011
6. R.Woolley memo, "Formulae for Out-of-plane on TF condutcors in the NSTX Upgrade", 13 February 2015

Assumptions (Identify all assumptions made as part of this calculation.)
Stiffnesses for segments of the global structure have come from other FEA calculations. These are judged to be correct, and in so far as they produce torsional shear stresses similar to [5] the stresses used are judged adequate.

Calculation (Calculation is either documented here or attached)
Two memos are included in the body of this calculation document. A 13 February 2015 memo [Ref.6] which includes corrected torsional moment summations that have been extended to included torque sums for the upper outer leg and for the lower outer leg, replaces the 11 February 2011 memo [Ref.4] which formerly had been included in the previous version of this calculation document, while the 18 September 2011 memo [Ref.5] of the previous version is retained without any change.

Conclusion (Specify whether or not the purpose of the calculation was accomplished.)
Final DCPS torque and torsion algorithm coefficients can be obtained from this calculation document.

Cognizant Engineer's printed name, signature, and date

I have reviewed this calculation and, to my professional satisfaction, it is properly performed and correct.
Checker's printed name, signature, and date
Peter H.Titus

To Peter Titus
From R. Woolley
Date 13 February 2015
Subject:Formulae for Out-of-Plane Torques on TF Conductors in the NSTX-Upgrade

References:

1. R. Woolley Memo, "Torques on TF Conductors \& Resulting Torsion \& Shear Stress in NSTXCSU, 04May2010 DesignPoint". 11 February 2011
2. R. Woolley Memo, "TF Inner Leg Shear Stress in NSTX-CSU", 13-180911, 18 September 2011 3. NSTXU CALC 132-03-00 rev 0; TORQUES ON TF CONDUCTORS \& RESULTING TORSION \& SHEAR STRESS IN NSTX_CSU, September 19, 2011

I have calculated TF out-of-plane torque coefficients for the outer-upper portion of outer legs and for the outer-lower portion of the outer legs. These new coefficients, which are in response to your recent request, were not included in Ref.1. I also recalculated torque coefficients which were in Ref. 1 for the entire TF outer leg and for the TF upper half. These new recalculated results agreed within <1\% with the Ref. 1 results for all coils except for $\mathbf{O H}$. The new OH coefficient was substantially smaller than in Ref.1, a discrepancy that I subsequently traced to the old coefficient having been calculated for an earlier OH coil design which was planned to have many more turns. The new OH coefficient values here are based on the as-built $\mathbf{O H}$ coil's 880 turns instead of its finally planned 884 turns.

Ref. 2 did not present a new algorithm for calculating torques, although its shear stress calculations were based on torques consistent with the 884-turn OH design. Ref. 3 included Refs. 1 and 2 without any additional calculations.

The MATLAB algorithms, their data, their results, and the comparison checks I performed on the present calculations are all documented in this memo's included Appendix which is a MATLAB/MSWORD notebook. The new torque algorithms that result are repeated below.

$$
\left[\frac{\text { Net TF System OuterLeg Torque }}{1 \mathrm{~N}-\mathrm{m}}\right]=\left[\frac{\mathbf{I}_{\mathrm{TF}}}{130 \mathrm{kA}}\right]\left[\begin{array}{l}
3518.8\left[\frac{\mathbf{I}_{\mathrm{PFIAU}}-\mathbf{I}_{\mathrm{PFIAL}}}{1 \mathrm{kA}}\right] \\
+3691.4\left[\frac{\mathbf{I}_{\mathrm{PFIBU}}-\mathbf{I}_{\mathrm{PFIBL}}}{1 \mathrm{kA}}\right] \\
+4293.4\left[\frac{\mathbf{I}_{\mathrm{PFICU}}-\mathbf{I}_{\mathrm{PFICL}}}{1 \mathrm{kA}}\right] \\
+13190.4\left[\frac{\mathbf{I}_{\mathrm{PFLU}}-\mathbf{I}_{\mathrm{PFLL}}}{1 \mathrm{kA}}\right] \\
+16497.4\left[\begin{array}{l}
\left.\frac{\mathbf{I}_{\mathrm{PF3U}}-\mathbf{I}_{\mathrm{PF3L}}}{1 \mathrm{kA}}\right]
\end{array}\right]
\end{array}\right)
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\text { Net Upper Half TF System Torque } \\
1 \mathrm{~N}-\mathrm{m}
\end{array}\right]} \\
& =-\left[\frac{\mathbf{I}_{\mathrm{TF}}}{130 \mathrm{kA}}\right]\left[\begin{array}{l}
11491.3\left[\frac{\mathbf{I}_{\mathrm{OH}}}{1 \mathrm{kA}}\right]+2260.2\left[\frac{\mathbf{I}_{\mathrm{PFIAU}}+\mathbf{I}_{\mathrm{PF} 1 \mathrm{AL}}}{1 \mathrm{kA}}\right]+1580.3\left[\frac{\mathbf{I}_{\mathrm{PFIBU}}+\mathbf{I}_{\mathrm{PFIBL}}}{1 \mathrm{kA}}\right] \\
+1851.3\left[\frac{\mathbf{I}_{\mathrm{PFICU}}+\mathbf{I}_{\mathrm{PFICL}}}{1 \mathrm{kA}}\right]+5197.7\left[\frac{\mathbf{I}_{\mathrm{PFLU}}+\mathbf{I}_{\mathrm{PFLL}}}{1 \mathrm{kA}}\right] \\
+22045.8\left[\frac{\mathbf{I}_{\mathrm{PF3U}}+\mathbf{I}_{\mathrm{PF3L}}}{1 \mathrm{kA}}\right]+57019.5\left[\frac{\mathbf{I}_{\mathrm{PFA}}}{1 \mathrm{kA}}\right] \\
+118638.0\left[\frac{\mathbf{I}_{\mathrm{PF5} 5}}{1 \mathrm{kA}}\right]+705501\left[\frac{\mathbf{I}_{\mathrm{PL}, \mathrm{ASMA}}}{1 \mathrm{MA}}\right]
\end{array}\right.
\end{aligned}
$$

$\left[\frac{\text { Net Upper Outer TF System Torque }}{1 \mathrm{~N}-\mathrm{m}}\right]$

$\left[\frac{\text { Net Lower Outer TF System Torque }}{1 \mathrm{~N}-\mathrm{m}}\right]$

$\left(\begin{array}{l}-8232.2\left[\frac{\mathrm{I}_{\mathrm{PFLL}}}{1 \mathrm{kA}}\right]-2525.1\left[\frac{\mathrm{I}_{\mathrm{PFICL}}}{1 \mathrm{kA}}\right] \\ -2181.2\left[\frac{\mathrm{I}_{\mathrm{PFIBL}}}{1 \mathrm{kA}}\right]-1351.9\left[\frac{\mathrm{I}_{\mathrm{PFIAL}}}{1 \mathrm{kA}}\right] \\ +12462.6\left[\frac{\mathrm{I}_{\mathrm{OH}}}{1 \mathrm{kA}}\right]+634845.5\left[\frac{\mathrm{I}_{\mathrm{PLASMA}}}{1 \mathrm{MA}}\right]\end{array}\right)$

APPENDIX- MATLAB calculation of NSTX-U TF Torque Coefficients

and self-checks 13February 2015

New purpose: Get coefs for TF torque formula for upper outer and lower outer, and also recalculate and check old torque coefficients for outer and for upper half.

The same torque methodology is used as was described in my 26July2009 electromagnetic torque model, which determines torques based on differences in PF flux between different locations in the poloidally projected image of the TF coil system.

The (R,Z) points describing the TF coil system were calculated previously from Peter Titus' point set, resulting in the present arrays which include 2000 * 5 equally spaced points on 5 contours as rC and zC , each 2000 x 5 matrices. The ITF variable is the max TF current (130 kA) times the 36 TF turns. The PF system is described as 24 "windings" of rectangular cross section (including the plasma), each described by its (r, z) center, its dr width and its dz height, and by mn its number of turns. First, load coil system data saved long ago on a thumbdrive memstick, herein called H . Then examine that data and make any needed corrections, then finally do the torque calculations which use a previously documented method based on poloidal magnetic flux..

```
clear
clf
load 'H:\Documents\NSTXCSUGstuff\TorsionModel\torsion.mat'
plot(rC,zC), axis equal
whos
```

| Name
 Class | Attributes | Size |
| :---: | :---: | :---: | Bytes

double Area double Area95	1×1	8
1×1	8	

double
Area97 1x1 8
$\begin{array}{ll}\text { double } & 1 \times 1 \\ \text { Area98 } & 8\end{array}$
double
Area99 $1 \times 1 \quad 8$
double
AreaList $96 \times 1 \quad 768$
double
BR
double
BRcoil $121 \times 51 \times 14 \quad 691152$
double
BZ
double
BZcoil $121 \times 51 \times 14 \quad 691152$
double
C
2000x1
1579776
$121 \times 51 \times 32$
$121 \times 51 \times 32$
1579776
16000
double

		A^{\prime}
C1	2×1	16
double		
C_LCFS	96x1	768
double		
Cm	2×474	7584
double		
F	7×8	448
double		
FLUX	$121 \times 51 \times 32$	1579776
double		
FLUXcoil	$121 \times 51 \times 14$	691152
double		
FLX	$121 \times 51 \times 96$	4739328
double		
FLXinside	96x1	768
double		
H	1×24	192
double		
Hm	1x1	8
double		
I	8×1	64
double		
IFIND	858×1	6864
double		
II	800×1	6400
double		
IND	858×1	6864
double		
IND1	858x1	6864
double		
ITF	1x1	8
double		
I_equilibria	14×96	10752
double		
Imax	14×1	112
double		
Imin	14×1	112
double		
J	8×1	64
double		
JFIND	858×1	6864
double		
JJ	800x1	6400
double		
M_GRID	1×1	8
double		
MaxShear	1×1	8
double		
MaxShearCases	96x1	768
double		
N_GRID	1x1	8
double		
RCS_elt	1x1	8
double		
RCSe double	1x1	8

flux	$2000 \times 5 \times 14$	1120000
double		
flux_from_windings	$2000 \times 5 \times 24$	1920000
double		
i	1×1	8
double		
il	1×1	8
double		
iwinding	1×1	8
double		
j	1×1	8
double		
jc	1×1	8
double		
k	1×1	8
double		
local_torsion_density_per_amp2	2000×14	224000
double		
mC	1x1	8
double		
mean_flux	2000×14	224000
double		
model_currents	7×14	784
double		
mu	1x1	8
double		
mxindex	1×1	8
double		
mxshear	1×1	8
double		
mxshear_MPa	1×1	8
double		
mxtorque	1×1	8
double		
mxtorque_Nm	1×1	8
double		
nC	1×1	8
double		
nc	1x1	8
double		
num	96×13	9984
double		
r1	1×1	8
double		
r10	1×1	8
double		
r11	1×1	8
double		
r12	1x1	8
double		
r13	1×1	8
double		
r14	1×1	8
double		
r15	1×1	8
double		

r2	1×1	8
double		
r3	1×1	8
double		
r4	1x1	8
double		
r5	1×1	8
double		
r6	1x1	8
double		
r7	1×1	8
double		
r8	1×1	8
double		
r9	1x1	8
double		
rC	2000×5	80000
double		
rf	448×248	888832
double		
rhowinding	449×249	894408
double		
rwinding	448×248	888832
double		
rwindingmax	1x1	8
double		
rwindingmin	1×1	8
double		
tiling	24×2	384
double		
txt	0×0	0
cell		
winding_dr	24×1	192
double		
winding_dz	24×1	192
double		
winding_m	24×1	192
double		
winding_mn	24×1	192
double		
winding_n	24×1	192
double		
winding_name	24×1	2920
cell		
winding_r	24×1	192
double		
winding_z	24×1	192
double		
x	8×1	64
double		
xinside	1×1	8
double		
xmax	1×1	8
double		
xmax95	1×1	8
double		

$\left.\begin{array}{lcc} & & 8 \\ \begin{array}{l}\text { xmax97 } \\ \text { double } \\ \text { xmax98 } \\ \text { double } \\ \text { xmax99 } \\ \text { double } \\ \text { xmin }\end{array} & 1 \times 1 & 8 \\ \text { double } \\ \text { xmin95 } \\ \text { double } \\ \text { xmin97 } \\ \text { double } \\ \text { xmin98 } \\ \text { double } \\ \text { xmin99 } \\ \text { double } \\ \text { y }\end{array}\right)$

Most of the data read in is not used in the present calculation. The TF contours are used and have been plotted above as a quick check. Next, type out the data just read in that is to be used here;

```
ITF
coil_name
[winding_r winding_dr winding_z winding_dz winding_mn]
coilname
ITF =
    4 6 8 0 0 0 0
coil_name =
    'PF1AU'
    'PF1BU'
    'PF1CU'
    'PF2U'
    ''
    'PF3U'
    ''
    'PF4'
    ''
    ',
    ''
    'PF5'
    ''
    ''
''
'PF3L'
''
'PF2L'
''
'PF1CL'
'PF1BL'
'PF1AL'
'OH'
```


Although the OH coil was supposed have 884 turns, it turns out that when it was wound it only 880 turns would fit. Therefore, the 884 will here be changed, turned into 880 .

winding_mn(23)=880

```
winding_mn =
```

 64
 32
 20
 14
 14
 15
 15
 8
 9
 Next, we calculate the flux at each TF contour point produced by one ampere-turn in each of 24 "windings". To do so, two m-files will be invoked. In the interest of documenting the calculations, these two m-files first are copied as text, below.

```
function [r,z]=filamentize(rmin,rmax,zmin,zmax,m,n)
% Calculates filament matrix to represent rectangular xsection pf coils.
% Rectangle is divided into subrectangles; filaments are located at
% subrectangle centers.
%
r=zeros(m,n);z=r;
for j=1:n;
    r(:,j)=rmin+(rmax-rmin)/n*(j-0.5);
end
for i=1:m;
    z(i,:)=zmin+(zmax-zmin)/m*(i-0.5);
end
```

```
function [br,bz,flux]=poloidal_fieldy(rho,zeta,r,z);
% Axisymmetric poloidal magnetic field and flux are calculated
% at locations specified in matrices rho and zeta, normalized to a
% total source current of one ampere uniformly distributed between
% circular loop filament locations specified by matrices r and z.
% Matrix sizes must match between r and z which may be 1D or 2D arrays.
% Sizes of rho and zeta must also match each other but they may be ND
% arrays. SI units are used.
if size(r)~=size(z);
    error('r and z filament description matrices must be of same size')
end
if size(rho)~=size(zeta);
    error('rho and zeta field calc location description arrays must be of same size')
end
br=zeros(size(rho));bz=br;flux=br;aphi=flux;
%The following uses linear indexing for rho,zeta,br,bz,aphi,flux
%Note that aphi is the vector potential and flux is integrated over two pi radians.
for i=1:numel(br);
    rhot=rho(i);zetat=zeta(i);
% First confirm this evaluation location misses all filaments.
    disc=(r-rhot).^2+(z-zetat).^2;
    if (isempty( find( disc==0 ) ) );
    m=4*rhot*r./((rhot+r).^2+(zetat-z).^2);
    [K,E]=ellipke(m);
    bz(i)= mean(mean((2e-7).*(K+((r.^2-rhot^2-(zetat-z).^2)./disc).*E)...
    ./sqrt((rhot+r).^2.+(zetat-z).^2) )');
    if rhot==0;
        br(i)=0.;
        aphi(i)=0.;
    else
```

```
    br(i)=mean(mean(2e-7*(zetat-z)./sqrt((rhot+r).^2+(zetat-z).^2).*(-K+...
    (r.^2+rhot^2+(zetat-z).^2)./disc.*E)/rhot)');
    aphi(i)=mean(mean(4e-7*sqrt(r/rhot).*((1.-m/2).*K-E)./sqrt(m))');
end
flux(i)=2*pi*rhot*aphi(i);
else
    bz(i)=NaN;
    br(i)=NaN;
    aphi(i)=NaN;
    flux(i)=NaN;
end
end
```

The magnetic calculations are done by replacing each coil winding pack by a set of circular filaments, where the spacing between filaments is approximately 2 cm .

```
tilesize=0.02;
tiling=ceil([winding_dz winding_dr]/tilesize);
flux_from_windings=zeros(2000,5,24);
    for i=1:24;
[rf,zf]=filamentize(winding_r(i)-winding_dr(i)/2,
winding_r(i)+winding_dr(i)/2, winding_z(i)-winding_dz(i)/2,
winding_z(i)+winding_dz(i)/2, tiling(i,1),tiling(i,2) );
[brw,bzw, flux_from_windings(:, :,i)]=poloidal_fieldy(rC,zC,rf,zf);
end
```

Next, we calculate the fluxes for each circuit on the TF current streamline contour points, by summing the products of turns and flux per amp-turn over the windings series-connected within each circuit.

```
flux=zeros(2000, 5,14);
flux(:,:,1)=flux_from_windings(:, :,1)*winding_mn(1);
flux(:,:,2)=flux_from_windings(:,:,2)*winding_mn(2);
flux(:,:,3)=flux_from_windings(:,:,3)*winding_mn(3);
flux(:,:,4)=flux_from_windings(:, :,4)*winding_mn(4)+flux_from_windings(:
,:,5)*winding_mn(5);
flux(:, :,5)=flux_from_windings(:, :, 6)*winding_mn(6)+flux_from_windings(:
,:,7)*winding_mn(7);
flux(:,:,6)=flux_from_windings(:, :, 8)*winding_mn(8)+flux_from_windings(:
,:,9)*winding_mn(9)+flux_from_windings(:, :,10)*winding_mn(10)+flux_from_
windings(:,:,11)*winding_mn(11);
flux(:,:,7)=flux_from_windings(:, :, 12)*winding_mn(12)+flux_from_windings
(:, :,13)*winding_mn(13)+flux_from_windings(:, :,14)*winding_mn(14)+flux_f
rom_windings(:,:,15)*winding_mn(15);
flux(:, :, 8)=flux_from_windings(:, : ,16)*winding_mn(16)+flux_from_windings
(:,:,17)*Winding_mn(17);
flux(:,:,9)=flux_from_windings(:, : ,18)*winding_mn(18)+flux_from_windings
(:,:,19)*winding_mn(19);
flux(:,:,10)=flux_from_windings(:, :,20)*winding_mn(20);
flux(:,:,11)=flux_from_windings(:,:,21)*Winding_mn(21);
flux(:,:,12)=flux_from_windings(:,:,22)*winding_mn(22);
flux(:,:,13)=flux_from_windings(:, :,23)*winding_mn(23);
flux(:,:,14)=flux_from_windings(:, :,24)*winding_mn(24);
```

Next, make plots of the flux values varying about the poloidal circuits.

```
C=linspace(0, 1, 2000)';
clf;
i=1;
subplot(3,1,i);plot(C,flux(:,:,i));title([' Poloidal flux on TF
current streamlines from 1 ampere in ',char(coilname(i))] );
ylabel('webers');
i=2;
subplot(3,1,i);plot(C,flux(:,:,i));title([' Poloidal flux on TF
current streamlines from 1 ampere in ', char(coilname(i))] );
ylabel('webers')
i=3;
subplot(3,1,i);plot(C,flux(:,:,i));title([' Poloidal flux on TF
current streamlines from 1 ampere in ', char(coilname(i))] );
ylabel('webers')
xlabel('Poloidal position (fraction of cycle CCW around plasma from
inner midplane)')
```


clf;
i=4;
subplot(3,1,i-3);plot(C,flux(:,:i));title([' Poloidal flux on TF current streamlines from 1 ampere in ',char(coilname(i))]); ylabel('webers');
i=5;

```
subplot(3,1,i-3);plot(C,flux(:, :,i));title(['
Poloidal flux on TF
``` current streamlines from 1 ampere in ', char(coilname(i))] ); ylabel('webers') i=6;
subplot(3,1,i-3);plot(C,flux(:, : i));title([' Poloidal flux on TF current streamlines from 1 ampere in ', char(coilname(i))]); ylabel('webers')
xlabel('Poloidal position (fraction of cycle CCW around plasma from inner midplane)')

Poloidal position (fraction of cycle CCW around plasma from inner midplan
```

i=7;
subplot(3,1,i-6);plot(C,flux(:,:,i));title([' Poloidal flux on TF
current streamlines from 1 ampere in ',char(coilname(i))] );
ylabel('webers');
i=8;
subplot(3,1,i-6);plot(C,flux(:,:,i));title([' Poloidal flux on TF
current streamlines from 1 ampere in ', char(coilname(i))] );
ylabel('webers')
i=9;
subplot(3,1,i-6);plot(C,flux(:,:,i));title([' Poloidal flux on TF
current streamlines from 1 ampere in ', char(coilname(i))] );
ylabel('webers')
xlabel('Poloidal position (fraction of cycle CCW around plasma from
inner midplane)')

```


Poloidal position (fraction of cycle CCW around plasma from inner midplan
```

i=10;
subplot(3,1,i-9);plot(C,flux(:,:,i));title([' Poloidal flux on TF
current streamlines from 1 ampere in ',char(coilname(i))] );
ylabel('webers');
i=11;
subplot(3,1,i-9);plot(C,flux(:,:,i));title([' Poloidal flux on TF
current streamlines from 1 ampere in ', char(coilname(i))] );
ylabel('webers')
i=12;
subplot(3,1,i-9);plot(C,flux(:,:,i));title([' Poloidal flux on TF
current streamlines from 1 ampere in ', char(coilname(i))] );
ylabel('webers')
xlabel('Poloidal position (fraction of cycle CCW around plasma from
inner midplane)')

```


Poloidal position (fraction of cycle CCW around plasma from inner midplan
i=13;clf;
subplot(3,1,i-12);plot(C,flux(:,:,i));title([' Poloidal flux on TF current streamlines from 1 ampere in ',char(coilname(i))]); ylabel('webers'); i=14;
subplot(3,1,i-12);plot(C,flux(:,:,i));title([' Poloidal flux on TF current streamlines from 1 ampere in \(\quad\), char(coilname(i))]); ylabel('webers')
xlabel('Poloidal position (fraction of cycle CCW around plasma from inner midplane)')

Poloidal position (fraction of cycle CCW around plasma from inner midplan

Next, form the means over the TF thickness:
```

mean_flux=zeros(2000,14);
for i=1:14;
mean_flux(:,i)=flux(:,:,i)*[1 2 2 2 1]'/8;
end

```

Cumulative torsion per ampere squared (i.e., per total TF amp per PF ckt amp) is then the local flux referenced to the TF coil starting point divided by \(2 \pi\).
```

for i=1:14;
cum_torsion_per_amp2(:,i) =(mean_flux(:,i)-mean_flux(1,i))/2/pi;
local_torsion_density_per_amp2(1:(end-1),i)=diff(
cum_torsion_per_amp2(:,i) )*1999.;
local_torsion_density_per_amp2(end,i)=local_torsion_density_per_amp2(1,i
);
end

```

At this point in the calculations, we have the cumulative torsion per amp squared as a function of the node number, for each of 14 PF currents. This is the point at which the coefficients that I am looking for should be extracted.
```

format long g
keynodes=[566 1000 1001 1435]';
cum_torque=ITF*1000*cum_torsion_per_amp2(keynodes, :);
cum_torque=[100 0; 00.50.5 0; 000 1]*cum_torque;
coilname
OuterLegTorqueCoefs=cum_torque(3,:)'-cum_torque(1,:)'
UpperHalfTorqueCoefs=-cum_torque(2,:)'
UpperOuterTorqueCoefs=cum_torque(3,:)'-cum_torque(2,:)'
LowerOuterTorqueCoefs=cum_torque(2,:)'-cum_torque(1,:)'

```
```

coilname =
'PF1AU'
'PF1BU'
'PF1CU'
'PF2U'
'PF3U'
'PF4'
'PF5'
'PF3L'
'PF2L'
'PF1CL'
'PF1BL'
'PF1AL'
'OH'
'PLASMA'
OuterLegTorqueCoefs =
3518.87969398684
3691.47402276291
4293.43260812891
13190.4182202296
16497.6103914842
0.112063331722311
0.155651822782602
-16497.2884931156
-13190.266095538
-4293.39257586766
-3691.44357481106
-3518.84262872701
0.101191143633514
0.00143743023065213
UpperHalfTorqueCoefs =
-2260.22563374338
-1580.33378737855
-1851.32006614982
-5197.71673166169
-22045.642269688
-57019.4694938823
-118638.041645382
-22045.9545355283
-5197.78563720586
-1851.34393062627
-1580.35395505113
-2260.25305753874
-11491.3317357217
-705.500762395247
UpperOuterTorqueCoefs =
1351.96326743527
2181.23794943332
2525.15220014378
8232.35295369789
-4528.02679162464
-50563.9779114056
-109651.322322954
-21025.9303982053
-4958.12945555722

```


Based on these calculated results, the torque algorithms to be used for coil system protection are written as follows:
\begin{tabular}{|c|c|}
\hline & \[
\left(\begin{array}{l}
3518.8\left[\frac{\mathrm{I}_{\mathrm{PFIAU}}-\mathbf{I}_{\mathrm{PFIAL}}}{1 \mathrm{kA}}\right] \\
+3691.4\left[\frac{\mathrm{I}_{\mathrm{PFIBU}}-I_{\mathrm{PFIBL}}}{1 \mathrm{kA}}\right]
\end{array}\right.
\] \\
\hline \(\left[\frac{\text { Net TF System OuterLeg Torque }}{1 \mathrm{~N}-\mathrm{m}}\right]=\left[\frac{\mathbf{I}_{\mathrm{TF}}}{130 \mathrm{kA}}\right.\) & \(+4293.4\left[\frac{\mathrm{I}_{\mathrm{PFICU}}-\mathrm{I}_{\mathrm{PFICL}}}{1 \mathrm{kA}}\right]\) \\
\hline & \(\binom{+13190.4\left[\frac{\mathrm{I}_{\mathrm{Pr2U}}-\mathrm{I}_{\mathrm{PFLL}}}{1 \mathrm{kA}}\right]}{+16497.4\left[\frac{\mathrm{I}_{\text {Pr3U }}-\mathbf{I}_{\text {PFSL }}}{1 \mathrm{kA}}\right]}\) \\
\hline
\end{tabular}
\[
\left.\left.\begin{array}{l}
{\left[\frac{\text { Net Upper Half TF System Torque }}{}\right]} \\
1 \mathrm{~N}-\mathrm{m} \\
=-\left[\frac{\mathbf{I}_{\mathrm{TF}}}{130 \mathrm{kA}}\right]
\end{array}\right] \begin{array}{l}
11491.3\left[\frac{\mathrm{I}_{\mathrm{OH}}}{1 \mathrm{kA}}\right]+2260.2\left[\frac{\mathrm{I}_{\mathrm{PFIAU}}+\mathrm{I}_{\mathrm{PFIAL}}}{1 \mathrm{kA}}\right]+1580.3\left[\frac{\mathrm{I}_{\mathrm{PFIBU}}+\mathrm{I}_{\mathrm{PFIBL}}}{1 \mathrm{kA}}\right] \\
+1851.3\left[\frac{\mathrm{I}_{\mathrm{PFICU}}+\mathbf{I}_{\mathrm{PFICL}}}{1 \mathrm{kA}}\right]+5197.7\left[\frac{\left[\frac{\mathbf{I}_{\mathrm{PFLU}}+\mathbf{I}_{\mathrm{PFLL}}}{1 \mathrm{kA}}\right]}{+22045.8\left[\frac{\mathbf{I}_{\mathrm{PF3U}}+\mathbf{I}_{\mathrm{PF3L}}}{1 \mathrm{kA}}\right]+57019.5\left[\frac{\mathrm{I}_{\mathrm{PFA}}}{1 \mathrm{kA}}\right]}\right. \\
+118638.0\left[\frac{\mathbf{I}_{\mathrm{PFS}}}{1 \mathrm{kA}}\right]+705501\left[\frac{\mathbf{I}_{\mathrm{PLASMA}}}{1 \mathrm{MA}}\right]
\end{array}\right)
\]

Note that the \(\mathbf{O H}\) coeffidient above is much different from the coefficient in my 11 February 2011 memo. Reason is likely that the older coefficient reflected a different number of turns, over \(1000 \mathbf{O H}\) turns, whereas the above value is for \(\mathbf{8 8 0}\) turns.
\(\left[\frac{\text { Net Upper Outer TF System Torque }}{1 \mathrm{~N}-\mathrm{m}}\right]\)
\(\left[\frac{\text { Net Lower Outer TF System Torque }}{1 \mathrm{~N}-\mathrm{m}}\right]\)

Putting these coefs into a table format, they are as follows:
New NSTX-U TF Torque Coefficients 13 February 2015
\begin{tabular}{|l|l|l|l|l|}
\hline PF\TorquedPart & OuterLeg & -UpperHalf & UpperOuter & LowerOuter \\
\hline 'PF1AU' & 3518.8 & 2260.2 & 1351.9 & 2166.9 \\
\hline 'PF1BU' & 3691.4 & 1580.3 & 2181.2 & 1510.2 \\
\hline 'PF1CU' & \(\mathbf{4 2 9 3 . 4}\) & 1851.3 & 2525.1 & 1768.3 \\
\hline 'PF2U' & 13190.4 & 5197.7 & 8232.2 & 4958.2 \\
\hline 'PF3U' & 16497.4 & 22045.8 & -4528.3 & 21025.7 \\
\hline 'PF4' & 0 & 57019.5 & -50564. & 50564. \\
\hline 'PF5' & 0 & 118638.0 & -109651.4 & 109651.4 \\
\hline 'PF3L' & -16497.4 & 22045.8 & -21026.7 & 4528.3 \\
\hline 'PF2L' & -13190.4 & 5197.7 & -4958.2 & -8232.2 \\
\hline 'PF1CL' & \(-\mathbf{4 2 9 3 . 4}\) & 1851.3 & -1768.3 & -2525.1 \\
\hline 'PF1BL' & -3691.4 & 1580.3 & -1510.2 & -2181.2 \\
\hline 'PF1AL' & -3518.8 & 2260.2 & -2166.9 & -1351.9 \\
\hline 'OH' & 0 & 11491.3 & -12462.6 & 12462.6 \\
\hline 'PLASMA' & 0 & 705501 & -634846.3 & 634846.3 \\
\hline
\end{tabular}

It is useful to compare the new coefficient values with previous values for the first two columns above:
\begin{tabular}{|l|l|l|l|}
\hline PF\TorquedPart & OuterLeg(new) & OuterLeg(old) & \begin{tabular}{l}
RATIO \\
New/Old
\end{tabular} \\
\hline 'PF1AU' & \(\mathbf{3 5 1 8 . 8}\) & \(\mathbf{3 5 1 9 . 9}\) & \(\mathbf{0 . 9 9 9 7}\) \\
\hline 'PF1BU' & \(\mathbf{3 6 9 1 . 4}\) & \(\mathbf{3 6 9 2 . 0}\) & \(\mathbf{0 . 9 9 9 8}\) \\
\hline 'PF1CU' \(^{\prime}\) & \(\mathbf{4 2 9 3 . 4}\) & \(\mathbf{4 2 9 3 . 8}\) & \(\mathbf{0 . 9 9 9 9}\) \\
\hline 'PF2U' & 13190.4 & \(\mathbf{1 3 1 9 1 .}\) & \(\mathbf{0 . 9 9 9 9 5}\) \\
\hline 'PF3U' & \(\mathbf{1 6 4 9 7 . 4}\) & \(\mathbf{1 6 4 9 7}\) & \(\mathbf{1 . 0 0 0 0 2}\) \\
\hline 'PF4' & 0 & \(\mathbf{0}\) & \(\mathbf{?}\) \\
\hline 'PF5' & 0 & \(\mathbf{0}\) & \(\mathbf{?}\) \\
\hline 'PF3L' & \(\mathbf{- 1 6 4 9 7 . 4}\) & \(\mathbf{- 1 6 4 9 7}\) & \(\mathbf{1 . 0 0 0 0 2}\) \\
\hline 'PF2L' & \(\mathbf{- 1 3 1 9 0 . 4}\) & \(\mathbf{- 1 3 1 9 1}\) & \(\mathbf{0 . 9 9 9 9 5}\) \\
\hline 'PF1CL' & \(\mathbf{- 4 2 9 3 . 4}\) & \(\mathbf{- 4 2 9 3 . 8}\) & \(\mathbf{0 . 9 9 9 9}\) \\
\hline 'PF1BL' & \(\mathbf{- 3 6 9 1 . 4}\) & \(\mathbf{- 3 6 9 2 . 0}\) & \(\mathbf{0 . 9 9 9 8}\) \\
\hline 'PF1AL' & \(\mathbf{- 3 5 1 8 . 8}\) & \(\mathbf{- 3 5 1 9 . 9}\) & \(\mathbf{0 . 9 9 9 7}\) \\
\hline 'OH' & 0 & \(\mathbf{0}\) & \(\boldsymbol{?}\) \\
\hline 'PLASMA' & 0 & \(\mathbf{0}\) & \(\boldsymbol{?}\) \\
\hline
\end{tabular}

For the upper half, the comparison table is as follows:
\begin{tabular}{|l|l|l|l|}
\hline PF\TorquedPart & \begin{tabular}{l}
-UpperHalf \\
(new)
\end{tabular} & \begin{tabular}{l}
Upper Half \\
(old)
\end{tabular} & \begin{tabular}{l}
RATIO \\
New/Old
\end{tabular} \\
\hline 'PF1AU' & 2260.2 & \(\mathbf{2 2 6 0 . 9}\) & \(\mathbf{0 . 9 9 9 7}\) \\
\hline 'PF1BU' \(^{\prime}\) & 1580.3 & \(\mathbf{1 5 8 0 . 6}\) & \(\mathbf{0 . 9 9 9 8}\) \\
\hline\({ }^{\prime}\) PF1CU' & 1851.3 & \(\mathbf{1 8 5 1 . 5}\) & \(\mathbf{0 . 9 9 9 9}\) \\
\hline 'PF2U' \(^{\prime}\) & 5197.7 & \(\mathbf{5 1 9 7 . 5}\) & \(\mathbf{1 . 0 0 0 0 4}\) \\
\hline 'PF3U' & 22045.8 & \(\mathbf{2 1 9 1 5 . 7}\) & \(\mathbf{1 . 0 0 6}\) \\
\hline 'PF4' & 57019.5 & 56813.9 & \(\mathbf{1 . 0 0 3 6}\) \\
\hline 'PF5' & 118638.0 & \(\mathbf{1 1 8 6 3 6 . 5}\) & \(\mathbf{1 . 0 0 0 0 1}\) \\
\hline 'PF3L' & 22045.8 & \(\mathbf{2 1 9 1 5 . 7}\) & \(\mathbf{1 . 0 0 6}\) \\
\hline 'PF2L' & 5197.7 & \(\mathbf{5 1 9 7 . 5}\) & \(\mathbf{1 . 0 0 0 0 4}\) \\
\hline 'PF1CL' \(^{\text {'PF1BL' }}\) & 1851.3 & \(\mathbf{1 8 5 1 . 5}\) & \(\mathbf{0 . 9 9 9 9}\) \\
\hline 'PF1AL' & 2260.2 & \(\mathbf{2 2 6 0 . 9}\) & \(\mathbf{0 . 9 9 9 7}\) \\
\hline 'OH' & \(\mathbf{1 1 4 9 1 . 3}\) & \(\mathbf{1 3 5 6 3 . 1}\) & \(\mathbf{0 . 8 4 7 2 5}\) \\
\hline 'PLASMA' & 705501 & \(\mathbf{7 1 3 3 0 8 . 9}\) & \(\mathbf{0 . 9 8 9 1}\) \\
\hline
\end{tabular}

The tables show that all ratios between new and old torque coefficients are very close to unity except for one. i.e., the OH coil. Investigation into the "old" value's calculation, which was performed prior to February 11, 2011, revealed that it had used the previous OH coil design's larger number of turns.

To: Distribution
Date: 18 September 2011

From: R. Woolley Subject TF Inner Leg Shear Stress in NSTX CSU
References:
1. R. Woolley memo 13-260709, "Out-Of-Plane (OOP) PF/TF Torques On TF Conductors in NSTX CSU", 26 July 2009,
2. P. Titus memo, "Maximum TF Torsional Shear", 29 July 2009
3. P. Titus paper, "Provisions for Out-of-Plane Support of the TF Coils in Recent Tokamaks",28September1999
4. R. Woolley memo 13-110211, "Torques On TF Conductors \& Resulting Torsion \& Shear Stress in NSTX CSU, 04May2010 Design Point", 11 February 2011
5. P. Titus, NSTXU*-CALC-132-07-00 Rev0, "TF Inner Leg Torsional Shear, Including Input to the DCPS", 9 Sept 2011

\section*{Summary}

This memo replaces Ref.4. It results from my review of P. Titus' Ref. 5 and comparisons of its predicted shear stress results with those of my own Ref. 4 analyses. Findings are as follows:
(1) Ref. 5 is confirmed as following correct calculation methods and should therefore be just as accurate as the Global Model on which it is based. (The Global Model review is by others.)
(2) My Ref. 4 calculations contained an error which had the effect of underestimating structural supporting torques, thus resulting in distorted torsional shear distributions within the TF inner leg. The present memo corrects this error (see Eqs.27) and documents the resulting shear stress distributions for NSTX-U's 96 prescribed plasma equilibria and for its OH precharge condition.
(3) Maximum local shear stress (a) occurs when PF coil currents are combined with maximally negative OH current, and (b) are spatially localized in small regions near the ends of the inner leg before reaching the lead extensions. This qualitatively matches the behavior predicted in Ref.5.
(4) Peak local shear stress of 25.234 MPa is predicted for equilibria \#1 and \#16, using nominal stiffness parameters estimated for the NSTX design as of December 2010. (Note that this peak value only applies at a point location; any finite region has a lower average.) The 97 shear stress distributions for the inner leg are documented in Appendix 2 (i.e., page 50).
(5) An effort was undertaken to investigate whether deliberate changes in stiffnesses could reduce peak torsional shear stress. It was found that reduction in stiffness of either umbrella lid reduces peak inner leg shear. For example, a 95\% reduction of upper lid stiffness reduces peak local shear stress in the inner leg by \(22.5 \%\) to \(\mathbf{1 9 . 5 5 3} \mathbf{~ M P a}\). The 97 shear stress distributions for the inner leg with this reduced upper lid stiffness are documented in Appendix 3 (i.e., page 70).

As in Ref.4, this memo advances and uses a simple algorithm based on magnetic flux differences for evaluating out-of-plane torques due to magnetic interactions of poloidal magnetic fields with TF conductor current. This is the subject of Appendix 1 (i.e., page 42). The torsional elastic response model is the subject of pages 2-40. Analysis results are discussed on page 41.

\section*{OOP Torque Analysis of NSTX CSU}

As in Refs. 1 \& 4, the NSTX CSU TF conductor shape definition was provided by Peter Titus on 26 June 2009 in a file containing XYZ 3D coordinates of 4229 nodal points delimiting hexahedral elements in a 30 degree sector global TF model. These were subsequently culled and sorted by various automated MATLAB methods to obtain a poloidal half-plane outline consisting of 322 points, including an inner outline trace of 159 points and an outer outline trace of 163 points. These points were only modified from the provided file by setting their third coordinate values to zero without changing their other two coordinates. The resulting TF conductor outline appears in the following Fig.(1) MATLAB plot.

Figure 1: Poloidal Projection Outline of TF Conductor, 322 points

Parametric variables were then calculated and saved for each point in each of the two outline traces, starting from zero at their radially inner points on the (\(\mathrm{z}=0\)) horizontal midplane and adding the distances to each successive point while proceeding in the counterclockwise direction. After returning to the starting points, the saved parametric values were then normalized by dividing each cumulative distance value by its contour's total perimeter length. The resulting parametric variables, which range from 0 to 1 , roughly represent poloidal angle.

Finally, 2000 uniformly spaced values of this poloidal angle variable ranging from 0 to 1 were generated and 2000 corresponding \(r\) and \(z\) coordinate values were obtained for each of the TF coil's inner and outer outline curves by using MATLAB's standard interpolation m-file subroutines. The two resulting 2000-point outlines are plotted below in Fig. (2). Note that although they appear almost identical to the previous TF outline plot, each outline here consists
of 2000 equally spaced points which are now linked to each other through their common normalized poloidal "angle" location parametric variable values. In each contour of this model, node point number 1 is also number 2000, located at \(\mathrm{Z}=0\) in the TF centerstack. Constant radius points on the centerstack's outer edge include 1 through 363 at the bottom and from 1638 at the top through 2000. TF leads extending to the flexes encompass nodes out to 371 and to 1630 .

\section*{Figure 2: Poloidal Projection Outline of TF Conductor, 4000 points}

Note that the TF current stream function which varies with the (r,z) location in the poloidal halfplane is defined as the total TF system current that passes through the 3D circle sharing those cylindrical coordinates. It varies from zero at (\(\mathrm{r}, \mathrm{z}\)) locations not linking the TF coils to the total TF current (i.e., number of turns times current per turn) at locations within the TF coil system bore. At intermediate locations within the TF conductor it varies between those values. Level set contours of the TF current stream function are also streamlines of the TF current flow.

As plotted, the (red) outer outline is the zero value contour of the TF current stream function and the (blue) inner outline is the contour of the TF current stream function at its full, \(100 \%\) of TF system current, value. It was decided for calculations herein to try to improve accuracy by estimating how the TF current is distributed within the TF conductor. This was done by estimating the (\(\mathrm{r}, \mathrm{z}\)) coordinate locations at each of 2000 poloidal variable points for TF current stream function contours enclosing \(25 \%, 50 \%\), and \(75 \%\), respectively, of the total TF current. Ideally these contour estimates would be obtained by solving conductive media equations using

ohms law, but this was not done. Instead, the estimated contours were obtained by interpolation between the outline coordinates for common poloidal angle variables. For the vertical (z) coordinates, linear interpolation was used directly. However, a different method was used to interpolate the r coordinate since conductor thickness in the toroidal direction varies in proportion to \(r\) for locations in and near the TF central bundle but takes on constant thickness for outer locations. Linear interpolation of a nonlinear function was used, where that function switched from a quadratic for inner locations to a straight line for outer locations. For this purpose the switchover radius between variable and constant toroidal thickness was estimated as \(r=0.3339\) meters, based on inspection of plots showing the 4229 points of the global model.

The Fig.(3) plot follows showing the resulting estimated three internal contours and the two bounding contours of the TF current stream function.

Figure 3: Poloidal Projection of TF Current Stream Function Contours, 10000 points
It may be useful to have plots showing r and z for the bounding outlines and internal contours as functions of the poloidal angle parametric variable. These follow:

Figure 4: Radial Coordinates of TF Current Stream Function Contours vs Poloidal Variable

Figure 5: Vertical Coordinates of TF Current Stream Function Contours vs Poloidal Variable

The magnetics designs assumed herein for the OH coil and for the six coils, PF1AU, PF1BU, PF1CU, PF1CL, PF1BL, and PF1AL were adopted 04May2010. Later changes have been minor, and have not been explicitly addressed. Details of the poloidal field system for the 04May2010 design point have been reproduced here as Table 1 and are depicted in Fig.6. These include 23

coil windings that are configured into 13 series-connected circuits. They also include a crude. approximate magnetics model representing the plasma as a rectangular cross section uniform current density single-turn coil winding.

Figure 6: Poloidal Projection of PF\&OH coils, with TF Current Stream Function Contours

Table 1: 04May2010 Design Point Poloidal Field System for PF Coils, OH Coil, Plasma (As Used For Magnetics Calculations)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Coil \\
Power
\end{tabular} & \multicolumn{5}{|l|}{Series-connected Winding Geometry} & \multicolumn{3}{|l|}{Rectangular Matrix of Turns} \\
\hline Circuit Name & \begin{tabular}{l}
Rectangular \\
Winding \\
Name
\end{tabular} & \begin{tabular}{l}
R \\
(center)
cm
\end{tabular} & \begin{tabular}{l}
\[
\Delta \mathbf{R}
\] \\
cm
\end{tabular} & \begin{tabular}{l}
Z \\
(center)
cm
\end{tabular} & \[
\Delta \mathbf{Z}
\]
cm & \begin{tabular}{l}
\# in z \\
direction
\end{tabular} & \# in \(r\) direction & Total \# turns \\
\hline PF1AU & PF1AU & 31.93 & 5.9268 & 159.06 & 46.3533 & 16 & 4 & 64 \\
\hline PF1BU & PF1BU & 40.038 & 3.36 & 180.42 & 18.1167 & 16 & 2 & 32 \\
\hline PF1CU & PF1CU & 55.052 & 3.7258 & 181.36 & 16.6379 & 10 & 2 & 20 \\
\hline & PF2AU & 79.9998 & 16.2712 & 193.3473 & 6.797 & 2 & 7 & 14 \\
\hline PF2U & PF2BU & 79.9998 & 16.2712 & 185.26 & 6.797 & 2 & 7 & 14 \\
\hline & PF3AU & 149.446 & 18.6436 & 163.3474 & 6.797 & 2 & 7.5 & 15 \\
\hline PF3U & PF3BU & 149.446 & 18.6436 & 155.26 & 6.797 & 2 & 7.5 & 15 \\
\hline & PF4BU & 179.4612 & 9.1542 & 80.7212 & 6.797 & 4 & 2 & 8 \\
\hline & PF4CU & 180.6473 & 11.5265 & 88.8086 & 6.797 & 2 & 4.5 & 9 \\
\hline & PF4BL & 179.4612 & 9.1542 & -80.7212 & 6.797 & 4 & 2 & 8 \\
\hline PF4 & PF4CL & 180.6473 & 11.5265 & -88.8086 & 6.797 & 2 & 4.5 & 9 \\
\hline & PF5AU & 201.2798 & 13.5331 & 65.2069 & 6.858 & 2 & 6 & 12 \\
\hline & PF5BU & 201.2798 & 13.5331 & 57.8002 & 6.858 & 2 & 6 & 12 \\
\hline & PF5AL & 201.2798 & 13.5331 & -65.2069 & 6.858 & 2 & 6 & 12 \\
\hline PF5 & PF5BL & 201.2798 & 13.5331 & -57.8002 & 6.858 & 2 & 6 & 12 \\
\hline & PF3BL & 149.446 & 18.6436 & -155.26 & 6.797 & 2 & 7.5 & 15 \\
\hline PF3L & PF3AL & 149.446 & 18.6436 & -163.347 & 6.797 & 2 & 7.5 & 15 \\
\hline & PF2LA & 79.9998 & 16.2712 & -193.347 & 6.797 & 2 & 7 & 14 \\
\hline PF2L & PF2LB & 79.9998 & 16.2712 & -185.26 & 6.797 & 2 & 7 & 14 \\
\hline PF1CL & PF1CL & 55.052 & 3.7258 & -181.36 & 16.6379 & 10 & 2 & 20 \\
\hline PF1BL & PF1BL & 40.038 & 3.36 & -180.42 & 18.1167 & 16 & 2 & 32 \\
\hline PF1AL & PF1AL & 31.93 & 5.9268 & -159.06 & 46.3533 & 16 & 4 & 64 \\
\hline OH & OH & 24.2083 & 6.934 & 0 & 424.16 & 221 & 4 & 884 \\
\hline PLASMA & PL & 107.000 & 110.000 & 0.000 & 200.000 & 1 & 1 & 1 \\
\hline
\end{tabular}

Next, poloidal flux was calculated for each of the 2000 locations on each of the five contours for each of the 13 coil circuits and for a crude electromagnetic model of a "plasma" having uniform current density and a rectangular cross section extending over \(0.52<\mathrm{r}<1.63\) and \(-1<\mathrm{z}<1\), all in meters. Plots of the computed poloidal magnetic fluxes appear below in Figs.(7)-(11).

Figure 7: Poloidal Flux Per Ampere Excitation in Circuits 1-3

Figure 8: Poloidal Flux Per Ampere Excitation in Circuits 4-6

Figure 9: Poloidal Flux Per Ampere Excitation in Circuits 7-9

Figure 10: Poloidal Flux Per Ampere Excitation in Circuits 10-12

Figure 11: Poloidal Flux Per Ampere Excitation in Circuits 13-14

For each coil circuit, the mean flux was next calculated for each poloidal location as a weighted average of the flux values on the five current stream function contours, using weighting factors [0.125 0.250 .250 .250 .125]. Local torque densities per ampere of circuit current are then evaluated as the product of total TF current times the finite difference derivative with respect to the poloidal angle variable of the mean flux divided by \(2 \pi\). The resulting profiles were multiplied respectively by the Table 2 maximum and minimum circuit currents to establish the ranges of torque densities versus poloidal locations. Results appear in Figs.12-16.

Table 2: Coil And Plasma Current Ranges Assumed for Torque Load Range Calculations
\begin{tabular}{|l|r|r|}
\hline \begin{tabular}{l}
COIL \\
CIRCUIT \\
NAME
\end{tabular} & \begin{tabular}{c}
MINIMUM \\
CURRENT \\
(Amperes)
\end{tabular} & \begin{tabular}{c}
MAXIMUM \\
CURRENT \\
(Amperes)
\end{tabular} \\
\hline 'PF1AU' & -7000 & 18000 \\
\hline 'PF1BU' & 0 & 13000 \\
\hline 'PF1CU' & 0 & 16000 \\
\hline 'PF2U' & -11000 & 15000 \\
\hline 'PF3U' & -16000 & 12000 \\
\hline 'PF4' & 0 & 16000 \\
\hline 'PF5' & 0 & 34000 \\
\hline 'PF3L' & -16000 & 12000 \\
\hline 'PF2L' & -11000 & 15000 \\
\hline 'PF1CL' & 0 & 16000 \\
\hline 'PF1BL' & 0 & 13000 \\
\hline 'PF1AL' & -7000 & 18000 \\
\hline 'OH' & -24000 & 24000 \\
\hline 'PLASMA' & 0 & 2000000 \\
\hline
\end{tabular}

Figure 12: Torque Density For Maximal Range of Currents in Circuits 1-3

Figure 13: Torque Density For Maximal Range of Currents in Circuits 4-6

Figure 14: Torque Density For Maximal Range of Currents in Circuits 7-9

Figure 15: Torque Density For Maximal Range of Currents in Circuits 10-12

Figure 16: Torque Density For Maximal Range of Currents in Circuits 13-14

\section*{TORSIONAL RESPONSE ALGORITHMS: Overview}

Although magnetic Lorenz torque loading on the TF coil system is completely determined by its electrical currents and magnetic fields, the torsion response of the system also reflects the mechanical propagation of torques and rotational deflections between different conductor assemblies and structural supports. The internal torque state at any imaginary section cut through the TF conductor system is defined as the external torque that would need to be applied to one side of that cut to maintain its mechanical equilibrium. This torque is oppositely directed for the two sides of the cut, so by convention the cut side in the direction of node numbering advancement around the TF loop is used herein. Maximum shear stress in a section through elastic material is directly proportional to the internal torque state, so this quantity is of special interest. The complete torsion model predicts the distribution of internal torque along with associated small rotational deformations. That necessarily includes the structural support torques and the resulting torsional shear stresses. The model includes, in addition to the distributed current-dependent Lorenz torque loads, the various torsion spring stiffnesses and interconnections that are relevant to rotational deformations.

Since force and torque equilibrium necessarily exist throughout the entire TF system, it follows that the difference in internal torque states between any two sections through the TF conductors is equal to the total external torque acting on the TF conductor region between them. Between the upper and lower leads of the TF centerstack there are no connections able to mechanically transmit torque, so within this region the profile of internal torque state vs location is equal to an additive torque constant plus the electromagnetic torque loading distribution described earlier in this memo. The additive torque constant depends on torsion spring responses of the entire TF conductor and support system, while the electromagnetic torque loading distribution is a known function of currents and position only, independent of any torsion spring responses.

The model approach taken employs the toroidal membrane methods advanced in section VII of Peter Titus' 1999 paper, but extends it in certain ways. For the centerstack portion of the TF system, torsion formulae for thick-walled tubular shafts are used instead of thin-walled approximations. More significantly, discrete mechanical springs augmenting the toroidal membrane model are used to represent effects on the TF conductor system of additional external mechanical support structures and interconnections. These springs include upper and lower umbrella lids together with their ties to the upper and lower umbrella structures, the upper and support rod connections between TF conductor outer legs and the vacuum vessel, the vacuum vessel itself, and the mechanical connections between the vacuum vessel through its gravity support legs to the floor and up through the pedestal pad supporting the TF centerstack. These additional modeled springs are interconnected with each other outside the modeled toroidal membrane and are attached to the toroidal membrane at specific poloidal nodes. Important node numbers in the toroidal membrane model are listed in Table 3 and their locations are depicted in Fig.17.

Table 3: Important Nodes in Toroidal Membrane Model of TF System Conductors
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Node \\
Number
\end{tabular} & R (m) & Z (m) & Importance \\
\hline 1 & 0.1942 & 0 & Starting node in centerstack's middle \\
\hline 363 & 0.1942 & -2.6000 & Bottom of centerstack's straight section \\
\hline 371 & 0.2450 & -2.6067 & Bolts Attaching Stepped G10 Ring to Lower SplineLid \\
\hline 383 & 0.3312 & -2.6067 & End of Toroidally Continuous TF Lead Conductors \\
\hline 513 & 0.6923 & -2.4916 & TF Outer Leg's Lower End \\
\hline 566 & 1.0489 & -2.5165 & TF Outer Leg Clamped to Lower Umbrella Structure \\
\hline 838 & 2.3411 & -1.1489 & TF Outer Leg Clamp to Rods Connecting to Vacuum Vessel \\
\hline 1163 & 2.3411 & 1.1489 & TF Outer Leg Clamp to Rods Connecting to Vacuum Vessel \\
\hline 1435 & 1.0489 & 2.5165 & TF Outer Leg Clamped to Upper Umbrella Structure \\
\hline 1488 & 0.6923 & 2.4916 & TF Outer Leg's Upper End \\
\hline 1618 & 0.3312 & 2.6067 & End of Toroidally Continuous TF Lead Conductors \\
\hline 1630 & 0.2450 & 2.6067 & Bolts Attaching Stepped G10 Ring to Upper SplineLid \\
\hline 1638 & 0.1942 & 2.6000 & Top of centerstack's straight section \\
\hline 2000 & 0.1942 & 0 & Ending node in centerstack's middle \\
\hline
\end{tabular}

Figure 17: Important Node Numbers in the TF Conductor's Toroidal Membrane Model

The constant-radius portion of the centerstack TF is represented by node numbers 1 through 363 which extend vertically from the centerstack's middle to its bottom of its constant-radius part, and by node numbers 1630 through 2000 which extend vertically from the top of the centerstack's constant-radius part to its middle, where it started at node 1. The centerstack's lower TF lead extensions are node numbers 364 through 383 and its upper TF lead extensions are node numbers 1618 through 1637. The remaining nodes, 384 through 1617, represent the TF outer leg, the TF radial conductors, and the TF flex loops which connect to the centerstack's lead extensions. Electrical connections between the lower and upper ends of each TF outer leg and the lower and upper TF radials are located respectively at node numbers 513 and 1488, each at \(\mathrm{r}=0.6923\) meters.

External interconnection paths modeled via discrete torsional springs include the following:
(1) From the upper TF outer legs at node 1435 clamped by a split aluminum block to the vacuum vessel's upper umbrella, to the upper umbrella's bolted lid, radially inwards though the lid to an upper inner bolt plate, then to an annular "crown" disk insulator locked by tight-fitting radial pins to the centerstack's upper leads at node 1630.
(2) The vertical mirror image of (1) on the bottom, i.e., from the lower TF outer legs clamped to the vacuum vessel's lower umbrella at node 566, to its bolted lid, radially inwards to the lower inner bolt plate and insulating "crown" annulus, then to the centerstack's lower leads at node 371.
(3) From the TF outer legs just above horizontal mid-plane ports at node 1163, through rod connections to clevises mounted on the vacuum vessel. The vacuum vessel's upper dome continues this path to the upper umbrella legs then to TF conductor node 1435.
(4) The vertical mirror image of (3) below the midplane, i.e., from the outer legs just below mid-plane ports at node 838, through connecting rods to aa clevis connected to the vacuum vessel, then through the vesse's lower dome, umbrella legs and Aluminum block clamp to node 566.
(5) From node 838 through lower clevis rods, through the vacuum vessel's cylindrical middle section to upper radius rods connections to node 1163.
(6) From the lower vacuum vessel through its mounting legs to the floor, then up through the centerstack's lower pedestal pad support, meeting the centerstack at node 363.

Of primary interest in the investigations for which this torsion model may be applied is how shear stress is distributed within the CenterStack (i.e., the central bundle of turns) portion of the TF system, i.e., in the TF centerstack, since the interturn insulation there must withstand peak values of this stress. Although this is primarily affected by the electromagnetic Lorenz torques
directly acting on the TF centerstack, it is also partly dependent on the structures outside the centerstack since mechanical connections with the TF centerstack at its top and bottom allow mechanical transfer of torques there.

\section*{TORSIONAL SPRING STIFFNESS FORMULAE}

For toroidally continuous portions of a TF conductor system resembling a thin membrane, it is appropriate to model the local rotational deflection due to torsion as follows:
\[
\begin{equation*}
\frac{d \phi}{d s}=\frac{T}{2 \pi r^{3} t G} \tag{3}
\end{equation*}
\]
where
\(s\) represents the independent variable representing poloidal location in the toroidal membrane as a curvilinear distance measured in the membrane's poloidal \((r, z)\) halfplane projection from an arbitrarily chosen reference location on the membrane,
\(\phi(s)\) represents the azimuthal (i.e., toroidal) rotation angle at poloidal location \(s\) due to torsion,
\(\frac{d \phi}{d s}\) is the density of that torsional rotation deflection at location \(s\), that is, the rate of deflection angle increase per unit change in poloidal location,
\(T(s)\) is the local internal torque state in the TF membrane conductor at poloidal location \(s\),
\(G\), is the shear modulus of the membrane material, \(r(s)\), is the radius from the z axis of the membrane at poloidal location \(s\), and \(t\), that is, \(t(s)\), is the membrane's thickness at poloidal location \(s\).

Relating s to r allows Eq.(1) to be integrated, e.g., if a section of the toroidal membrane is planar so that ds in Eq.(1) equals dr, then integration over the resulting disk-annulus between inner and outer radii yields the following:
\[
\begin{equation*}
\phi=\frac{T}{4 \pi t G}\left(\frac{1}{r_{i}^{2}}-\frac{1}{r_{o}^{2}}\right) \tag{3a}
\end{equation*}
\]

Another commonly occurring situation has the toroidal membrane in a non-planar configuration. For those cases a small axisymmetric portion of the membrane can be approximated as having a straight line segment for its poloidal projection, extending from \(\left(r_{1}, z_{1}\right)\) to \(\left(r_{2}, z_{2}\right)\). For example, this would apply to a thin approximately conical section taken though a vacuum vessel dome. Integrating over the resulting frustrum of a cone results in the following:
\(\phi=\left(\frac{\sqrt{\left(r_{2}-r_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}}{r_{2}-r_{1}}\right) \frac{T}{4 \pi t G}\left(\frac{1}{r_{1}^{2}}-\frac{1}{r_{2}^{2}}\right)\)
In such portions of the TF conductor system where the thin toroidal membrane model is an appropriate approximation, the shear stress is constant over the thickness of each perpendicular section and varies according to the following formula:
\(\tau=G r \frac{d \phi}{d s}\)
where \(\tau(s)\) the shear stress in the perpendicular section at location \(s\).

In the NSTX CS upgrade's TF system the centerstack bundle of TF turns is sufficiently thick that it should not be modeled as a thin membrane. It is more appropriate to instead model it as an elastic thick-walled tubular shaft in which shear stress in a section perpendicular to the axis varies linearly with radius within that section. For the centerstack portion of the TF conductor system where the inner and outer radii of the TF are constant, the following formulae are used:
\[
\begin{equation*}
\frac{d \phi}{d s}=\frac{T}{J G} \tag{5}
\end{equation*}
\]
where \(J\) is the rotational moment of inertia of the centerstack TF cross section,
\[
\begin{equation*}
J=\frac{\pi}{2}\left(r_{\text {OUTER }}^{4}-r_{\text {INNER }}^{4}\right) \tag{6}
\end{equation*}
\]

In this thick tubular shaft model the maximum shear stress in each section occurs at its outer radius and is given by the following:
\[
\begin{equation*}
\tau_{\text {MAX }}=G r_{\text {OUTER }} \frac{d \phi}{d s} \equiv \frac{T r_{\text {OUTER }}}{J} \tag{7}
\end{equation*}
\]

These formulae for thick-walled tubular shafts are also used for lead extension regions of the TF centerstack which extend from \(\mathrm{r}=0.1942\) meters out to \(\mathrm{r}=0.3329\) meters where toroidal continuity of the TF conductor's mechanical configuration ends. In this \(0.1942<\mathrm{r}<0.3329\) lead extension region the torsion formulae are less accurate since stress concentrations where radii abruptly change are not modeled.

For the present toroidal membrane model of the TF conductor, the blue contour of Figs. 1 through 3 is used for all \(r>0.3329\) outer locations where the thin membrane representation is used. For \(\mathrm{r}<0.3329\) locations in the centerstack and its lead extensions where the thick-walled tubular shaft model is more appropriate, the blue contour is used to determine the \(r_{\text {OUTER }}\) value and the corresponding poloidal point on the red contour is used for \(r_{\text {INNER. }}\). Together these are used to calculate the local rotational moment of inertia, \(J\), and also the peak shear stress.

Torsional stiffness formulae based on simple first-principles mechanical models are accurate wherever the TF system is nominally continuous in the toroidal direction, which for the NSTX CSU includes all parts of the TF system at locations inboard from the flex loops where the radius is less than 0.3329 meters. However, the same torsion formulae are also used herein to approximately model TF conductor deformation in outer regions where \(\mathrm{r}>0.3329\). The TF conductors and their supporting structures are not toroidally continuous in outer regions but instead are broken up by air gaps. The air gaps permit structures to deform in nonaxisymmetric ways not modeled by torsional stiffness formulae. Thus, the present approximation neglecting toroidal air gaps must therefore artificially reduce the stiffness of its assumed toroidally
continuous model in order to match its predictions to the actual nonaxisymmetric system. Estimates and other information supplied by Mark Smith and by Tom Willard have been used to adjust these model parameter values.

\section*{ESTIMATION OF PARAMETER VALUES}

The following section documents both my own ball-park estimates of some stiffness parameters and also torsional stiffness estimates developed by Mark Smith using a global 3D model, which I have preferentially adopted.

\section*{Centerstack:}

The TF centerstack's new inner radius is 0.0512 m , and its new outer radius is 0.194238 m , not including its lead extensions. The shear modulus of its copper is taken as \(\mathrm{G}=48 \mathrm{GPa}\), i.e., 4.8 e 10 Pa . Applying Eq.(3), its twist angle per unit length per unit torque is as follows:
\[
\begin{align*}
& \frac{1}{T} \frac{d \phi}{d s}=\frac{1}{J G}=\frac{1}{\frac{\pi}{2}\left(r_{\text {OUTER }}^{4}-r_{I N N E R}^{4}\right) G}=\frac{2}{\pi\left((0.194238)^{4}-(0.0512)^{4}\right)(4.8 E 10)}= \\
& =9.36275866886577 \mathrm{e}-009 \text { radian } \mathrm{N}^{-1} \mathrm{~m}^{-2} \tag{8}
\end{align*}
\]

The total centerstack straight section length from node 1 through 363 and 1638 through 2000 is 5.200 m , so its torsional stiffness parameter is
\(\mathrm{K}_{\mathrm{CS}}=1 /\left[\left(9.3627587 \mathrm{E}-9\right.\right.\) radian \(\left.\left./ \mathrm{N}-\mathrm{m}^{2}\right)(5.200 \mathrm{~m})\right]=2.054 \mathrm{E} 7 \mathrm{~N}-\mathrm{m} /\) radian \(=\) = 3.176E6 inch-lbf/degree

Its reciprocal stiffness parameter is then
\(\mathrm{R}_{\mathrm{CS}}=1 /(2.054 \mathrm{E} 7 \mathrm{~N}-\mathrm{m} /\) radian \()=4.85853 \mathrm{E}-8\) radians \(/ \mathrm{N}-\mathrm{m}\).

Its reciprocal stiffness parameter per element is as follows:
\(\mathrm{R}_{\mathrm{CS} / \mathrm{elt}}=(4.85853 \mathrm{E}-8\) radians/N-m)/(724 elts) \(=6.711 \mathrm{e}-11\) radians/N-m/elt

\section*{TF Centerstack Lead Extensions}

The same formula is used for the lead extension portions of the TF centerstack, nodes 363 through 383 and 1618 through 1638. Its inner radius is also taken as 0.0512 m , but its outer radius varies. Summing the resulting individual reciprocal stiffness terms (using MATLAB) results in
\[
\begin{equation*}
\mathrm{R}_{\text {Leads }}=5.835 \mathrm{E}-10 \text { radians } / \mathrm{N}-\mathrm{m} \tag{10a}
\end{equation*}
\]

for upper lead extensions and the same again result separately for the lower lead extensions.

The average value per element of this constant is as follows:
\(\mathrm{R}_{\text {Leads/elt }}=(5.835 \mathrm{E}-10\) radians \(/ \mathrm{N}-\mathrm{m}) /(19\) elts \()=3.071 \mathrm{E}-11\) radians \(/ \mathrm{N}-\mathrm{m} / \mathrm{elt}\)

The equivalent spring stiffness constant for the lead extensions is the reciprocal, i.e.,
\(\mathrm{K}_{\text {Leads }}=1 /(5.835 \mathrm{E}-010\) radians/N-m= \(1.71 \mathrm{E} 9 \mathrm{~N}-\mathrm{m} /\) radian

The upper lead extension is included with the straight part of the centerstack, so \(\mathrm{r} 1=5.8835 \mathrm{e}-010+4.85853 \mathrm{E}-8=4.95 \mathrm{e}-8\) radians per newton-meter

Insulating Annular "Crown" pinned to leads, bolting plate
Recent design information as of September 2011 is that the upper and lower Crpwn assemblies are axisymmetric structures machined from G10, with each taking the shape of two axially adjacent coaxial rings. Estimated ring dimensions are as follows:

Table 4: Upper Crown Assembly Dimensions (inches)
\begin{tabular}{|l|l|l|}
\hline & Ring 1 & Ring 2 \\
\hline Inner Diameter & \(16.0^{\prime \prime}\) & \(17.6^{\prime \prime}\) \\
\hline Outer Diameter & \(21.5^{\prime \prime}\) & \(19.4^{\prime \prime}\) \\
\hline Height & \(4.0^{\prime \prime}\) & \(2.0^{\prime \prime}\) \\
\hline
\end{tabular}

Table 5: Lower Crown Assembly Dimensions (inches)
\begin{tabular}{|l|l|l|}
\hline & Ring 1 & Ring 2 \\
\hline Inner Diameter & \(16.0^{\prime \prime}\) & \(20.1^{\prime \prime}\) \\
\hline Outer Diameter & \(27.0^{\prime \prime}\) & \(23.0^{\prime \prime}\) \\
\hline Height & \(4.0^{\prime \prime}\) & \(2.0^{\prime \prime}\) \\
\hline
\end{tabular}

Assuming the shear modulus of G10 material is 7,69E9 Pa, this results in upper and lower reciprocal stiffnesses (i.e., compliences) of respectively \(5.60 \mathrm{E}-9\) and \(2.05 \mathrm{E}-9\) radians \(/ \mathbf{N}-\mathrm{m}\). (Note that Ref. 4 had assumed 5E-9 for both of these.)

\section*{Outer Umbrella and Lid:}

I had earlier estimated a reciprocal stiffness for the portion of the umbrella between TF clamps and lid as follows:
\[
\begin{align*}
& R_{\text {OuterUmbrella }}=\left(\frac{1}{T} \frac{d \phi}{d s}\right)(\Delta s)=\left(\frac{\Delta s}{2 \pi r^{3} t}\right)=\left(\frac{(0.35542)}{2 \pi(1.0477521)^{3}(0.0254)(7.72 E 10)}\right)= \\
& =2.508 \mathrm{E}-11 \text { radians } / \mathrm{N}-\mathrm{m} .
\end{align*}
\]

At that time the lid design was envisioned as a stainless steel disk-annulus, assumed to be 1" thick. Its outer and inner radii are assumed to be respectively 1.047752 m and 15.375 "/2= 0.1953 m , which resulted in a lid reciprocal stiffness of
\(R=\frac{\phi}{T}=\frac{1}{4 \pi t G}\left(\frac{1}{r_{i}^{2}}-\frac{1}{r_{o}^{2}}\right)=\frac{1}{4 \pi(0.0254)(7.72 E 10)}\left(\frac{1}{(0.1953)^{2}}-\frac{1}{(1.0477521)^{2}}\right)=\)
\(=1.02702 \mathrm{e}-009\) radians per Newton-meter
Using those values as ballpark estimates, then the net reciprocal stiffness from TF coil clamp to crown interface would have been
\(2.508 \mathrm{e} 011+1.02702 \mathrm{e}-009=1.052 \mathrm{E}-9\) radian \(/ \mathrm{N}-\mathrm{m}\)

A better estimate of the stiffness via this path was provided by Mark Smith by fitting a global 3D model, as copied into the following text box. The reciprocal stiffness derived from his data is
\(\mathrm{R}_{\text {umbrella }}\) lid \(=3.338 \mathrm{E}-9\) radians/N-m

\section*{Inner Umbrella}

Each umbrella is a nominally cylindrical stainless steel (\(\mathrm{G}=77.2 \mathrm{GPa}\)) structure of radius \(\mathrm{r}=1.0477521 \mathrm{~m}\), thickness \(\mathrm{t}=1\) " \(=0.0254 \mathrm{~m}\), and height from base to the middle of the cutouts for TF outer legs is \(32.12=0.8158 \mathrm{~m}\). Eq.(3) could be used to estimate its stiffness parameter if it had no cutouts. However, it has not only the cutouts for TF outer legs but also ten arch-shaped cutouts near its base. If its thickness were reduced by \(67 \%\) from 1 " to \(t=0.33 "=0.00847 \mathrm{~m}\) as a ballpark "guestimate" to match actual nonaxisymmetric deflections under torsion loading .the stiffness parameter would become the following:
\(R_{\text {InnerUmbrella }}=\left(\frac{1}{T} \frac{d \phi}{d s}\right)(\Delta s)=\left(\frac{\Delta s}{2 \pi r^{3} t}\right)=\left(\frac{(0.8158)}{2 \pi(1.0477521)^{3}(0.00847)(7.72 E 10)}\right)=\)
\(=1.727 \mathrm{E}-010\) radians per newton-meter

A better estimate of the stiffness of this path was provided by Mark Smith by fitting a global 3D model, as copied into the following text box. It is equivalent to
\[
\begin{equation*}
\mathrm{R}_{\text {InnerUmbrela }}=4.44 \mathrm{E}-9 \text { radian } / \mathrm{N}-\mathrm{m} \tag{12b}
\end{equation*}
\]

\section*{Vacuum Vessel Division}

Connecctions to the TF outer legs above and below the horizontal midplane were identified as TF conductor node numbers 838 and 1163 , located at \((r, z)=(2.3411, \pm 1.1489) \mathrm{m}\). These connections go to the vacuum vessel, meeting it at locations closer to the midplane. For the present analysis they are assumed to meet the vacuum vessel at the interface between the vacuum vessel's cylindrical midsection and its upper or lower domes, i.e., at (r,z)=(1.74, 1.00) m. Therefore, for the calculation of spring stiffnesses, one value is for the cylindrical central portion of the vacuum vessel and another is for a vacuum vessel dome connected in series with the portion of the umbrella between the vacuum vessel and the TF outer leg's aluminum block .

\section*{Central cylindrical section of the vacuum vessel:}

The vacuum vessel is made of stainless steel (shear modulus \(\mathrm{G}=77.2 \mathrm{GPa}\)) of thickness \(\mathrm{t}=0.625^{\prime \prime}=\mathrm{t}=0.01875 \mathrm{~m}\). The radius of the vacuum vessel's central section is about 1.705 m and its height is 2.00 m . Therefore, Eq.(3) could be used for a rough reciprocal stiffness estimate, \(\mathrm{R}_{\mathrm{VV}-\text { middle }}=4.4367 \mathrm{E}-11\) radians/ \(\mathrm{N}-\mathrm{m}\). For the effect of port cutouts it was decided to reduce the assumed cylindrical membrane thickness by \(50 \%\), to \(\mathrm{t}=0.009375\). This would increase the reciprocal stiffness parameter to \(\mathrm{R}_{\mathrm{VV}-\text { middle }}=8.87 \mathrm{E}-11\) radians/ \(\mathrm{N}-\mathrm{m}\).

A better estimate of the stiffness of this path was provided by Mark Smith by fitting a global 3D model, as copied into the following text box. It is equivalent to
\[
\begin{equation*}
\mathrm{R}_{\mathrm{VV}-\mathrm{middle}}=5.634-10 \mathrm{radian} / \mathrm{N}-\mathrm{m} \tag{13}
\end{equation*}
\]

\section*{Vacuum vessel dome}

Vacuum vessel drawings identified (r.z) coordinates of the upper dome from the dome's mouth to its interface with the vacuum vessel's cylindrical section, as listed in the following table.

Table6: Vacuum Vessel Dome Coordinates
\begin{tabular}{|l|l|l|}
\hline Point \# & \(\mathrm{r}(\mathrm{m})\) & \(\mathrm{z}(\mathrm{m})\) \\
\hline 1 & 0.6121 & 1.7500 \\
\hline 2 & 0.7442 & 1.7170 \\
\hline 3 & 1.1455 & 1.5545 \\
\hline 4 & 1.5392 & 1.3106 \\
\hline 5 & 1.6612 & 1.1735 \\
\hline 6 & 1.7068 & 1.0033 \\
\hline
\end{tabular}

The total rotation angle per unit torque for the five unbroken conical frustrum regions bounded by the points is then estimated as follows:
\[
R_{\text {dome }}=\frac{\phi}{T}=\frac{1}{4 \pi t G} \sum_{i=1}^{i=5}\left(\frac{\sqrt{\left(r_{i+1}-r_{i}\right)^{2}+\left(z_{i+1}-z_{i}\right)^{2}}}{r_{i+1}-r_{i}}\right)\left(\frac{1}{r_{i}^{2}}-\frac{1}{r_{i+1}^{2}}\right)=\frac{1}{4 \pi(0.01875)(7.72 E 10)}(2.57940)=
\]
\(=1.41805 \mathrm{e}-010\) radians per newton-meter. If one arbitrarily reduces the thickness by \(50 \%\) to account for port cutouts, this leads to the following guestimate for the reciprocal stiffness of each of the domes:
\(\mathrm{R}_{\text {dome }}=2.8361 \mathrm{E}-10\) radian/ N-m

A better estimate of the stiffness of this path was provided by Mark Smith by fitting a global 3D model, as copied into the following text box. It is equivalent to
\[
\begin{equation*}
\mathrm{R}_{\text {dome }}=1.72 \mathrm{E}-10 \text { radian/ N-m } \tag{14b}
\end{equation*}
\]

\(\mathrm{M}=4.13 \mathrm{E} 6 \mathrm{lbf}-\mathrm{in}\)
\(R=67.1\) inch
\(\Theta=\mathrm{s} / \mathrm{r} \Rightarrow 0.005399 \mathrm{inch} / 67.1 \mathrm{inch}=0.00008\) radians
\(\mathrm{K} 2 \mathrm{~b}=\mathrm{T} / \mathrm{O}=4.13 \mathrm{E} 6 \mathrm{lbf}-\mathrm{in} / 0.00008\) radians
\(K 2 b=5.133 e 10 \mathrm{lbf}-\mathrm{in} /\) radians
\(\mathrm{K} 2 \mathrm{~b}=8.96 \mathrm{e} 8 \mathrm{lbf}-\mathrm{in} /{ }^{\circ}\)

Mark Smith's Global Model Data 4

\section*{Vacuum Vessel Connections to TF Outer Legs}

A rough stiffness estimate was made based on assumed \(1.5^{\prime \prime}=0.0381 \mathrm{~m}\) diameter solid steel cylindrical rod attached to the vacuum vessel through pin connections at clevis attachments midway between TF outer legs. Coordinates of these connection points are (\(\mathrm{R}, \mathrm{Z}\)) \(=(1.7068\), \(\pm 1.00) \mathrm{m}\), while the coordinates of the TF out legs where they attach to the tangential rods are \((\mathrm{R}, \mathrm{Z})=(2.3411, \pm 1.1489) \mathrm{m}\). Taking into account the 12 -fold symmetry and the geometric angles, the resulting reciprocal stiffness parameter estimate is as follows:
\[
\begin{equation*}
\mathrm{R}_{\text {ClevisRods }}=1.22 \mathrm{e}-010 \text { radian/N-m } \tag{15}
\end{equation*}
\]

\section*{Vacuum Vessel Legs and Pedestal Support for TF Centerstack}

Without nonaxisymmetric analyses it is not possible to estimate the rotational stiffness of the torque path through vacuum vessel support legs, floor, and TF centerstack pedestal support. However, Mark Smith has provided such estimates by fitting a nonaxisymmetric global 3D model, as copied into the following two text boxes. The equivalent reciprocal stiffness parameter for the VV support legs is
\[
\begin{equation*}
\mathrm{R}_{\text {Legs }}=3.72 \mathrm{E}-8 \text { radian } / \mathrm{N}-\mathrm{m} \tag{16}
\end{equation*}
\]

The equivalent reciprocal stiffness parameter for the pedestal pad supporting the centerstack is:
\[
\begin{equation*}
\mathrm{R}_{\mathrm{Ped}}=2.17 \mathrm{E}-8 \mathrm{radian} / \mathrm{N}-\mathrm{m} \tag{17}
\end{equation*}
\]

\section*{TF Conductor Portions Lacking Structural Continuity in Toroidal Direction}

The remaining portions of the system are TF conductors which are interspersed with toroidal air gaps lacking any structural rigidity. This situation exists everywhere that the TF conductors have major radius locations exceeding the threshold value, i.e., for \(\mathrm{R}>0.3329 \mathrm{~m}\). Although at certain locations the TF conductors are clamped to other structures, such clamping is not the issue here since those other structures and their TF conductor attachment points are expressly modeled as external springs. Thus, any torsional stiffness parameters to be assigned to toroidally discontiuous portions of TF conductors must be chosen to match the TF conductors' nonaxisymmetric beam-like toroidal deflection behaviors to the axisymmetric model.

Recall that for a straight beam, the deflection distance, \(y\), is governed by the following fourth order system of differential equations:
\[
\begin{align*}
& \frac{d V}{d s}=q(s) \\
& \frac{d M}{d s}=V(s) \\
& \frac{d \theta}{d s}=\frac{M(s)}{E I} \\
& \frac{d y_{f}}{d s}=\theta(s) \\
& \frac{d y_{s}}{d s}=\frac{V(s)}{A G} \\
& y=y_{s}+y_{f} \tag{18a}
\end{align*}
\]
where
\(s\) is the distance along the straight beam,
q is the perpendicular running load force per unit distance,
V is the internal section shear force, M is the internal section bending moment, q is the deflection angle
\(\mathrm{y}_{\mathrm{f}}\) is the deflection distance due to flexure
\(y_{s}\) is the deflection distance due to shear
\(E\) is the elastic modulus
\(G\) is the shear modulus
I is the cross section's moment of inertia with respect to the loading direction
A is the cross section's area

Note that the torsion system of equations matches the shear part of the beam deflection system but has no way of modeling beam flexure. Thus, there is no first-principles approach to matching the models. As an intuitive example of this mismatch, a continuous toroidal membrane
representing the TF outer legs would develop nonzero internal torque if its top were rotated by, say, 0.001 radians with respect to its bottom, but the collection of 12 TF outer legs could sustain such a relative rotation without elastically deforming them (to first order), i.e., with twelve different small rigid body tilting motions of the separate outer legs.

Thus, the best that can be done is to make a very approximate, order-of-magnitude torsional stiffness estimate for the outer TF conductor, as a "kludge". To this end, Tom Willard supplied ANSYS calculated results for the out-of-plane deflection of an isolated TF Outer Leg under defined loading conditions. The model imposed cantilever restraints on the conductor at the upper and lower locations where the actual outer leg is clamped to the umbrellas by aluminum blocks (i.e., the torsion model's nodes 566 and 1435) It applied \(1000 \mathrm{lbf}=4454.5 \mathrm{~N}\) out-of-plane load forces to the outer legs at the locations where each acual outer leg will be connected to vacuum vessel clevises via rods (i.e., the torsion model's nodes 838 and 1163). Maximum calculated OOP deflection was 0.073 inches with a single OOP force applied and 0.140 inches \(=3.56 \mathrm{~mm}\) with both OOP forces applied in the same direction. The torsion model's stiffness value is then set by the second of these results, based on the deflection of the top half only. A torque of
\[
\mathrm{T}=(12 \text { outer legs })(\mathrm{F}=4454.5 \mathrm{~N})(\mathrm{R}=2.3411 \mathrm{~m})=125,142 \mathrm{~N}-\mathrm{m}
\]
is predicted by ANSYS to cause the TF conductor portion between the upper umbrella's clamp (node 1435) and the clevis rod clamp (node 1163) to rotate through and angle of
\[
\Delta \phi=(0.00356 \mathrm{~m}) /(2.3411 \mathrm{~m})=0.0015189 \text { radians }
\]

The corresponding reciprocal stiffness value is then
\[
\begin{align*}
& \mathrm{R}_{1163: 1435}=\Delta \phi / \mathrm{T}=(0.0015189 \text { radians }) /(125,142 \mathrm{~N}-\mathrm{m})= \\
& =1.2138 \mathrm{e}-008 \text { radian } / \mathrm{N}-\mathrm{m} \tag{18b}
\end{align*}
\]

In order to assign a consistent stiffness to other portions of the TF outer legs, a single-element value is first obtained by dividing the above result by the 1435-1163+1=273 elements to obtain
\[
\begin{equation*}
\mathrm{R}_{\mathrm{TFOL} / \mathrm{elt}}=\mathrm{R}_{1163: 1435} /(1435-1163+1 \mathrm{elts})=4.45 \mathrm{E}-11 \mathrm{radian} / \mathrm{N}-\mathrm{m} / \mathrm{elt} \tag{18c}
\end{equation*}
\]

This per element value is then used to generate reciprocal stiffness values for the other portions of the TF outer legs. For the portion between lower and upper rod attachments to clevises,
\[
\begin{equation*}
\mathrm{R}_{838: 1163}=(1163-838+1) \mathrm{R}_{\mathrm{TFOL}-\text { node }}=1.45 \mathrm{E}-8 \text { radian } / \mathrm{N}-\mathrm{m} \tag{18d}
\end{equation*}
\]

For the Outer leg TF portion inboard of each umbrella clamp, including the flex straps for which no better "kludge" estimate of torsional stiffness has been derived, the reciprocal stiffness values are as follows:
\[
\begin{equation*}
\mathrm{R}_{1435: 1618}=\mathrm{R}_{383: 566}==(184) \mathrm{R}_{\text {TFOL-node }}=5.26 \mathrm{E}-8 \text { radian } / \mathrm{N}-\mathrm{m} \tag{18e}
\end{equation*}
\]

\section*{THE EQUIVALENT ELECTRICAL MODEL}

This analysis uses an analogy between the torsional mechanical system and a hypothetical electrical network. The angular twist of an axisymmetic portion of the TF system is analogous to the voltage developed across a length of resistive conductor in the hypothetical analogous electrical network, and the internal torque developed in that axisymmetric section is analogous to the current flowing through the analogous resistor. Torsional spring stiffnesses, expressed in units of torque per unit angular deflection, are analogous to conductances (i.e., reciprocal resistances) in the hypothetical electrical network.

Since electromagnetic torque loading on the TF centerstack is not spatially umiform, the TF centerstack can best be modeled as a series-connected sequence of many small torsion springs. The nodes between the resistors represent a sequence of physical locations within the centerstack. The nonuniform distributed torque loading is then modeled by assigning the Lorenz torque increment for each region between two adjacent nodes to one of those two nodes. (Little error is introduced by this asymmetrical assignment if nodes are closely spaced.) As developed in the Appendix, this torque is equal to the product of total TF threading current, \(N_{T F} I_{T F}\), times the difference in poloidal flux per radian between the modeled element's two ends, i.e.,
\[
\begin{equation*}
T_{j}=N_{T F} I_{T F} \frac{\Psi_{j+1}-\Psi_{j}}{2 \pi} \tag{!9}
\end{equation*}
\]

An electrical analogy shown in Fig.18a is a series connected string of resistors interleaved with current sources that inject increments of electrical current from a common reference node.

Figure 18a: Electrical Analogy of Series-Connected Torsion Springs And External Torques

Currents \(I_{j}\) flowing through the Fig.18a resistors represent the internal torque state at different vertical locations in the TF centerstack. Resistor currents can thus differ from each other according to:
\[
\begin{equation*}
I_{j+1}=I_{j}+i_{j} \tag{20}
\end{equation*}
\]
where \(i_{j}\) is an injected current. Since the injected currents, \(i_{j}\), represent the incremental torques, \(T_{j}\), the electrical analogy model's resistor currents are related to actual poloidal fluxes as follows:
\[
\begin{equation*}
I_{j}=N_{T F} I_{T F} \frac{\Psi_{j}}{2 \pi}+C \tag{21}
\end{equation*}
\]
where \(C\) is any fixed constant value.

This Fig18a model can be continued beyond the TF centerstack through the outer parts of the TF conductor system where mechanical supports interconnecting portions of the system must also be modeled. The fact that the total net Lorenz torque on the entire TF system is necessarily zero translates in the full TF system model's analogous electrical network into the net current from the common reference node being zero. This allows the Fig.18b alternative equivalent circuit model to be used instead for the analogy.

Figure 18b: Alternative Analogy of Series-Connected Torsion Springs And External Torques

In Fig.18b, the current in each external current source is assigned as:
\[
\begin{equation*}
i_{j}=N_{T F} I_{T F} \frac{\Psi_{j}}{2 \pi} \tag{22}
\end{equation*}
\]
where \(j\) is the node number of the location at one of the current source's ends. With this assignment, the current in each of the model's resistors is related to actual poloidal flux as
\[
\begin{equation*}
I_{j}=N_{T F} I_{T F} \frac{\Psi_{j}}{2 \pi}+C \tag{23}
\end{equation*}
\]
where \(C\) is the common constant value of current flowing between series blocks of Fig.18b. This also clearly matches the resistor current in the Fig.18a model.

Fig. 19 depicts the electrical analogy of the full toroidal membrane model of the TF conductor, which includes 1999 copies of the basic blocks of Fig.18b, all connected in series to form a single loop. Fig. 19 shows only 25 of the 1999 copies, but the rest are implied.

The current in each Fig. 19 primary resistor representing the TF centerstack equals the current in its parallel current source plus the loop current in the ccw direction. Analogously, the internal torque state at any location is the applied differential Lorenz torque plus the torque mechanically transferred in. Other parts of Fig. 19 are also interconnected through external resistors lacking any parallel current sources (i.e., lacking any applied EM torques). Figure 19 depicts these external paths with bold symbols, using resistance numberings keyed to the previously numbered external paths for mechanical torques.

Figure 19: Electrical Analogy TF Torsional Model for NSTX CSU
The external resistors of Fig. 19 are identified as follows. \(R(1)\) and \(R(2)\) represent series mechanical connection paths from respectively upper and lower aluminum block TF conductor clamps through the upper or lower umbrella to the umbrella lid and its radial connection to the insulating crown bolted to the centerstack's TF leads. \(\mathrm{R}(3 \mathrm{~A})\) represents the upper system of rods connecting between TF outer leg clamps and clevis attachments to the vacuum vessel. R3B represents the series combination of the upper dome portion of the vacuum vessel above the upper clevis attachments, the upper umbrella mounting, and the upper umbrella up to where aluminum block TF conductor clamps are attached. \(\quad R(4 A)\) and \(R(4 B)\) represent the lower mirror image of \(R(3 A)\) and \(R(3 B)\). \(R(5)\), together with \(R(3 A)\) and \(R(4 A)\), implement the previously listed interconnection path (5). \(R(6 A)\) in series with \(R(6 B)\) together model path (6) which transmits torque through the vacuum vessel's legs to the floor and then up through the pedestal pad to the centerstack's bottom. In this model, the torque through path (6) is transmitted into the inner part of the centerstack's bottom without going through the lower lead extensions.

The following table summarizes electrical analogy model resistances from the previous section.

Table 7: Electrical Analogy Model Resistance Values
\begin{tabular}{|l|l|l|}
\hline Parameter & Comments & \begin{tabular}{l}
Analogous Resistance Value \\
(radian/N-m)
\end{tabular} \\
\hline \(\mathrm{R}(1)\) & \(\mathrm{R}_{\text {crown }}+\mathrm{R}_{\text {umbrella+lid }}\) & \(8.938 \mathrm{E}-9\) \\
\hline \(\mathrm{R}(2)\) & \(\mathrm{R}_{\text {crown }}+\mathrm{R}_{\text {umbrella+lid }}\) & \(5.388 \mathrm{E}-9\) \\
\hline \(\mathrm{R}(3 \mathrm{~B})\) & \(\mathrm{R}_{\text {InnerUmbrela }}+\mathrm{R}_{\text {dome }}\) & \(4.962 \mathrm{E}-9\) \\
\hline \(\mathrm{R}(4 \mathrm{~B})\) & \(\mathrm{R}_{\text {InnerUmbrela }}+\mathrm{R}_{\text {dome }}\) & \(4.962 \mathrm{E}-9\) \\
\hline \(\mathrm{R}(3 \mathrm{~A})\) & \(\mathrm{R}_{\text {ClevisRods }}\) & \(1.22 \mathrm{E}-10\) \\
\hline \(\mathrm{R}(4 \mathrm{~A})\) & \(\mathrm{R}_{\text {ClevisRods }}\) & \(1.22 \mathrm{E}-10\) \\
\hline \(\mathrm{R}(5)\) & \(\mathrm{R}_{\text {VV-middle }}\) & \(5.634-10\) \\
\hline \(\mathrm{R}(6 \mathrm{~A})\) & \(\mathrm{R}_{\text {Ped }}\) & \(2.17 \mathrm{E}-8\) \\
\hline \(\mathrm{R}(6 \mathrm{~B})\) & \(\mathrm{R}_{\text {Legs }}\) & \(3.72 \mathrm{E}-8\) \\
\hline \(\mathrm{R}_{1638: 2000 \& 1: 363}\) & \(\mathrm{R}_{\mathrm{CS}}\) & \(4.86 \mathrm{E}-8\) \\
\hline \(\mathrm{R}_{363: 383}\) & \(\mathrm{R}_{\text {Leads }}\) & \(5.835 \mathrm{E}-10\) \\
\hline \(\mathrm{R}_{1618: 1638}\) & \(\mathrm{R}_{\text {Leads }}\) & \(5.835 \mathrm{E}-10\) \\
\hline \(\mathrm{R}_{383: 566}\) & & \(5.26 \mathrm{E}-8\) \\
\hline \(\mathrm{R}_{1435: 1618}\) & & \(5.26 \mathrm{E}-8\) \\
\hline \(\mathrm{R}_{566: 838}\) & & \(1.214 \mathrm{E}-8\) \\
\hline \(\mathrm{R}_{1163: 1435}\) & & \(1.214 \mathrm{E}-8\) \\
\hline \(\mathrm{R}_{838: 1163}\) & & \(1.45 \mathrm{E}-8\) \\
\hline
\end{tabular}

\section*{SOLUTION OF NSTX CSU ELECTRICAL ANALOGY TF TORSIONAL MODEL}

In order to calculate the shear stress profile in the TF centerstack it is necessary to first determine the internal torque state as a function of location, \(T\left(s_{j}\right)\). In terms of the Fig. 19 electrical analogy model this is equivalent to calculating resistor currents in each of the Fig.18b-style blocks representing the centerstack, i.e., between nodes 1 and 371 and between nodes 1630 and 2000 (a.k.a. 1). However, each such resistor current is simply the sum of the constant value of current passing between all of the centerstack's Fig.18b-type blocks and the known poloidal-fluxdependent current in its parallel current source. Thus, only two constant current values need to be determined to evaluate centerstack shear stress profiles. One current value is needed for nodes 1630 through 2000 and 1 through363, while the other is needed for nodes 363 through 371 which represent the lower lead extensions. Furthermore, inspection of Fig. 19 shows that the entire TF system model could be similarly treated by solving for a total of seven (7) such "constant" values of mesh currents.

Determining terminal currents is simplified by equivalent-circuit reductions. A Thevenin equivalent of the basic block in the Fig.18b circuit employing an ideal series voltage source is shown in Fig.20. The voltage of this source is the product of the Fig.18b block's source current and resistance, i.e.,
\[
\begin{equation*}
V_{j}=R_{j} N_{T F} I_{T F} \frac{\Psi_{j}}{2 \pi} \tag{24}
\end{equation*}
\]
and its resistance is equal to \(R_{j}\), the same as in the Fig. 18b block. It has the same external terminal node voltage/current characteristics as Fig 18b, but its internal resistor current does not match the current through Fig.18's resistor.

Figure 20: Thevenin Equivalent of the Fig. 21 Circuit, Using A Voltage Source

Converting from Fig.18b-type blocks to the Fig. 20 form allows many series-connected blocks to be merged into a single block by adding their resistances and adding their source voltages. Applying this substitution to Fig. 19 and combining blocks results in the Fig. 21 circuit, which for mesh currents is equivalent to the Fig. 19 circuit but easier to calculate. After solving for them, they are substituted into the Fig. 19 circuit in order to calculate each resistor current there which is analogous and proportional to the internal torque state of the corresponding part of the mechanical system.

Figure 21: Equivalent Electrical Analogy TF Torsional Model for NSTX CSU

To help solve the Fig. 21 circuit it is appropriate to first combine series elements and assign more compact names to designate the resistances, voltage source parameters, and distinct mesh currents in the circuit. This is done in the following diagram which uses 7 mesh loops. Note that the mesh loop carrying the current, i 1 , is the large loop that contains all seven voltage sources.

Figure 22: Simplified equivalent circuit of electrical analogy torsion model

The correspondences with symbols of earlier diagrams and parameter values are as follows:
\[
\begin{aligned}
& \mathrm{r} 1=\mathrm{R}(1: 363)+\mathrm{R}(1638: 2000)+\mathrm{R}(1618: 1638) \\
& =4.86 \mathrm{E}-8+5.8835 \mathrm{E}-10=4.95 \mathrm{E}-8 \text { radian } / \mathrm{N}-\mathrm{m} \\
& \mathrm{r} 2=\mathrm{R}(363: 383)=5.8835 \mathrm{E}-10 \text { radian } / \mathrm{N}-\mathrm{m} \\
& \mathrm{r} 3=\mathrm{R}(383: 566)=5.26 \mathrm{E}-8 \text { radian } / \mathrm{N}-\mathrm{m} \\
& \mathrm{r} 4=\mathrm{R}(566: 838)=1.214 \mathrm{E}-8 \text { radian } / \mathrm{N}-\mathrm{m} \\
& \mathrm{r} 5=\mathrm{R}(838: 1163)=1.45 \mathrm{E}-8 \text { radian } / \mathrm{N}-\mathrm{m} \\
& \mathrm{r} 6=\mathrm{R}(1163: 1435)=1.214 \mathrm{E}-8 \text { radian } / \mathrm{N}-\mathrm{m} \\
& \mathrm{r} 7=\mathrm{R}(1435: 1618)=5.26 \mathrm{E}-8 \text { radian } / \mathrm{N}-\mathrm{m}
\end{aligned}
\]
```

r8=R(2) = 5.388E-9 radian/N-m
r9=R(6A)+R(6B) = 2.17E-8 +3.72E-8 = 5.89E-8 radian/N-m
r10 = R(4B) = 4.61E-9 radian/N-m
r11=R(4A)= 1.22E-10 radian/N-m
r12 = R(5) = 5.634-10 radian/N-m
r13 = R(3A) = 1.22E-10 radian/N-m
r14 = R(3B) = 4.61E-9 radian/N-m
r15 = R(1) = 8.938E-9 radian/N-m

```

The analogous voltage sources result from the series connection of a sequence of elements each containing its own voltage source. When a series sequence of such elements have common torsional "resistance" values which multiply their equivalent current sources, these common resistances can be factored out of the voltage sums yielding a sum over the equivalent sequence of analog current sources. However, since each analog current source is proportional to a difference of successive poloidal flux values, a simplifying cancelation occurs which eliminates poloidal flux at the intermediate nodes results.

In the reciprocal stiffnesses calculated for the TF conductors, constant elemental resistance values result for the constant-radius portions of the TF center-stack. A second constant value per element has been selected for the TF outer leg conductor, extending inwards to the flex straps. The lead extensions were not modeled as having such a constant value but will nevertheless be approximated with their constant average value in order to simplify calculations. The three constant resistance values per element are as follows.
\[
\begin{array}{ll}
\mathrm{R}_{\mathrm{CS} / \mathrm{elt}}=6.7 \mathrm{e}-11 \mathrm{radians} / \mathrm{N}-\mathrm{m} / \mathrm{elt} & =\mathrm{R}_{\mathrm{CSe}} \\
\mathrm{R}_{\text {Leads/elt }}=3.071 \mathrm{E}-11 \text { radians } / \mathrm{N}-\mathrm{m} / \mathrm{elt} & =\mathrm{R}_{\mathrm{Le}} \\
\mathrm{R}_{\mathrm{TFOL} / \mathrm{elt}}=4.45 \mathrm{E}-11 \text { radian } / \mathrm{N}-\mathrm{m} / \mathrm{elt} & =\mathrm{R}_{\mathrm{TFOLe}} \tag{26}
\end{array}
\]

Then the analogy model's ideal voltage sources can be expressed as follows
\[
\begin{equation*}
v 1=\left(R_{\mathrm{CS} / \mathrm{elt}}\left(\sum_{i=1638}^{1999} \Psi_{i}+\sum_{i=1}^{363} \Psi_{i}\right)+R_{\text {Leads } \mathrm{elt}} \sum_{i=1618}^{1637} \Psi_{i}\right) \frac{N_{T F} I_{T F}}{2 \pi} \tag{27a}
\end{equation*}
\]
\[
\begin{align*}
& \text { (11)NSTX= } \\
& v 2=\left(R_{\text {Leadselt }} \sum_{i=364}^{383} \Psi_{i}\right) \frac{N_{T F} I_{T F}}{2 \pi} \tag{27b}\\
& v 3=\left(R_{\text {TFoL Lel }} \sum_{i=384}^{565} \Psi_{i}\right) \frac{N_{T F} I_{T F}}{2 \pi} \tag{27c}\\
& v 4=\left(R_{\text {TFOL ele }} \sum_{i=566}^{837} \Psi_{i}\right) \frac{N_{T F} I_{\text {TF }}}{2 \pi} \tag{27d}\\
& v 5=\left(R_{\text {TFOLLel }} \sum_{i=838}^{1163} \Psi_{i}\right) \frac{N_{\text {TF }} I_{T F}}{2 \pi} \tag{-}\\
& v 6=\left(R_{\text {TFOLLelt }} \sum_{i=1164}^{1434} \Psi_{i}\right) \frac{N_{T F} I_{T F}}{2 \pi} \tag{27f}\\
& v 7=\left(R_{\text {TFoLLelt }} \sum_{i=1435}^{1617} \Psi_{i}\right) \frac{N_{T F} I_{T F}}{2 \pi} \tag{27~g}
\end{align*}
\]

Using these variables the seven mesh equations to be solved for mesh currents are as follows:
```

$r 1^{*} i 1+r 2 *(i 1-i 2)+r 3^{*}(i 1-i 2+i 3)+r 4^{*}(i 1+i 4)+r 5^{*}(i 1+i 5)+r 6 *(i 1+i 6)+r 7 *(i 1+i 7)$
$=-(v 1+v 2+v 3+v 4+v 5+v 6+v 7)$
$r 9 * i 2+r 3 *(i 2-i 1-i 3)+r 2 *(i 2-i 1)=v 2+v 3$
$r 3 *(i 3+i 1-i 2)+r 8 * i 3=-v 3$
$r 4 *(i 1+i 4)+r 11 *(i 4-i 5)+r 10 * i 4=-v 4$
$r 5 *(i 1+i 5)+r 13 *(i 5-i 6)+r 12 * i 5+r 11 *(i 5-i 4)=-v 5$
$r 6 *(i 1+i 6)+r 14 * i 6+r 13 *(i 6-i 5)=-v 6$
$r 7^{*}(i 1+i 7)+r 15^{*} i 7=-v 7$

```
(These equations can be expressed more compactly in vector-matrix form , as follows:
\[
\begin{aligned}
& =\left[\begin{array}{ccccccc}
-1 & -1 & -1 & -1 & -1 & -1 & -1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
v 1 \\
v 2 \\
v 3 \\
v 4 \\
v 5 \\
v 6 \\
v 7
\end{array}\right]
\end{aligned}
\]
where
\[
\left[\begin{array}{c}
v 1 \tag{30}\\
v 2 \\
v 3 \\
v 4 \\
v \\
v \\
v 6 \\
v 7
\end{array}\right]=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & R_{L e} & R_{\text {CSe }} \\
R_{\text {Le }} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & R_{\text {TFOLe }} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & R_{\text {TFOLe }} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & R_{\text {TFOLe }} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & R_{\text {TFOLe }} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & R_{\text {TFOLe }} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\Psi_{364: 383} \\
\Psi_{384: 565} \\
\Psi_{566: 337} \\
\Psi_{838: 163} \\
\Psi_{1164: 1434} \\
\Psi_{1433: 1617} \\
\Psi_{1618: 1637} \\
\Psi_{1638: 1999}+\Psi_{1: 363}
\end{array}\right]\left(\frac{N_{\text {TF }} I_{\text {TF }}}{2 \pi}\right)
\]

\section*{DISCUSSION OF ANALYSIS RESULTS}

For the stiffness parameter values chosen herein and for each of 97 coil current combination cases including the 96 plasma equilibria (specified previously by J. Menard) and a single \(\mathrm{OH}-\) only +24 kA precharge case, the model's solution was obtained via MATLAB. Once the fixed currents i1 and i2 for a parameter case were numerically found the were used to determine the corresponding internal torque and shear stress profile in the TF centerstack. The resulting shear stress profiles are plotted in Appendix 2. The maximum peak absolute shear stress over all 97 cases examined was 25.234 MPa , but many cases had almost this large a value of peak absolute shear stress. Inspection of the profiles shows that the OH coil's effect on peak shear stress is stronger than the combined effects of the other PF coils and the plasma, but that the 25 MPa peak shear only occurs when the OH current magnitude is maximized with the polarity (negative) that reinforces the polarity of shear stress resulting from the equilibrium PF coil and plasma currents alone. In such cases the shear stress at the middle of the inner leg is near zero, indicating that almost all of the torsion load is carried through the vacuum vessel with essentially none is carried through the inner leg.

Stiffness parameters were then perturbed to find their effects on peak shear stress. It was found that reducing the stiffness connecting the TF inner leg to the vacuum vessel reduces the peak shear stress in the inner leg. The stiffness reduction achieves this by reducing the load carried through the vacuum vessel, thus increasing the load share carried through the inner leg. This shifts the inner leg's shear stress profile by a constant amount at all vertical locations, thus decreasing peak torsion in the critical regions near the inner leg's top and bottom while increasing the oppositely directed torsion at the inner leg's middle. Appendix 3 presents results for a case in which the upper lid's stiffness is reduced by 95\%, without any other changes. Comparison of stress distribution plots in Appendix 3 with those of Appendix 2 reveals how this stress profile shift causes peak torsion shear stress to be reduced by \(22.5 \%\).

\section*{APPENDIX 1}

\section*{Out-Of-Plane (OOP) Torque Algorithm Exposition}

\section*{Derivation of Torsion Load Formulae for Out-Of-Plane (OOP) forces on Toroidal Field Coils}

In general, the total moment (i.e., torque) vector of electromagnetic forces about an origin is the volume integral of the following differential:
\(d \vec{M}=\vec{r} \times(\vec{J} \times \vec{B}) d V\)
where \(\vec{r}\) is the position vector of a differential volume, \(d V, \vec{J}\) is the current density vector and \(\vec{B}\) is the magnetic field vector. For a toroidal field coil system it is appropriate to use a cylindrical coordinate system. (\(r, \theta, z\)), in which the vertically oriented z axis is the central axis of symmetry which includes the origin. To analyze OOP forces in a near-axisymmetric system it is sufficient to consider only current densities and magnetic fields lying within the local poloidal plane and depending only on the position vector within that same plane. Thus, these vectors can be rewritten as follows:
\[
\begin{align*}
& \vec{r} \equiv r \hat{r}+z \hat{z} \\
& \vec{J} \equiv J_{r} \hat{r}+J_{z} \hat{z} \tag{A2}\\
& \vec{B} \equiv B_{r} \hat{r}+B_{z} \hat{z}
\end{align*}
\]
where \(\hat{r}, \hat{\theta}, \hat{z}\) are unit vectors aligned with the local coordinate system directions.
The volume differential in cylindrical coordinates becomes:
\[
\begin{equation*}
d V \equiv r d r d \theta d z \tag{A3}
\end{equation*}
\]

Substituting and combining terms to simplify the result, the differential moment vector is rewritten as follows in Eq. (A4)
\[
\begin{equation*}
d \vec{M}=\left(J_{z} B_{r}-J_{r} B_{z}\right)(r \hat{z}+z \hat{r}) r d r d \theta d z \tag{A4}
\end{equation*}
\]

When integrating Eq.(A4) over the full range of toroidal angle, \(0 \leq \theta<2 \pi\), the radial unit vector term, \(\hat{r}\), cancels itself out for rotationally symmetric poloidal magnetic fields and TF coil current densities. The remaining nonzero part of the integral is stated in Eq.(A5).
\[
\begin{equation*}
\vec{M}=\hat{z} \iiint\left(J_{z} B_{r}-J_{r} B_{z}\right) r^{2} d r d \theta d z=\hat{z} 2 \pi \iint\left(J_{z} B_{r}-J_{r} B_{z}\right) r^{2} d r d z \tag{A5}
\end{equation*}
\]

In this last form, the double integral is taken over the (\(\mathrm{r}, \mathrm{z}\)) poloidal half-plane. However, current density components are zero everywhere outside the TF coils so the integration region only needs to include the (\(\mathrm{r}, \mathrm{z)} \mathrm{projection} \mathrm{of} \mathrm{TF} \mathrm{coil} \mathrm{conductors}\).

An important simplification results from changing over to stream function variables. For axisymmetric systems the poloidal flux stream function, \(\Psi(r, z)\), is the total magnetic flux enclosed by the circle centered on and normal to the z axis which passes through (\(\mathrm{r}, \mathrm{z}\)). Poloidal magnetic flux is related to the poloidal magnetic field as stated by Eq.(A6).
\[
\begin{align*}
& B_{r}(r, z)=-\frac{1}{2 \pi r} \frac{d \Psi(r, z)}{d z} \tag{A6}\\
& B_{z}(r, z)=\frac{1}{2 \pi r} \frac{d \Psi(r, z)}{d r}
\end{align*}
\]
so
\[
\begin{equation*}
\vec{B}=\frac{1}{2 \pi r} \hat{\theta} \times \nabla \Psi \tag{A7}
\end{equation*}
\]

We similarly define the toroidal field coil current stream function, \(I(r, z)\), as the total TF coil current enclosed by the circle about the z axis passing through (r,z). This current stream function is related to the TF current density as stated by Eq.(A8).
\[
\begin{align*}
& J_{r}(r, z)=-\frac{1}{2 \pi r} \frac{d I(r, z)}{d z} \\
& J_{z}(r, z)=\frac{1}{2 \pi r} \frac{d I(r, z)}{d r} \tag{A8}
\end{align*}
\]
so
\[
\begin{equation*}
\vec{J}=\frac{1}{2 \pi r} \hat{\theta} \times \nabla I \tag{A9}
\end{equation*}
\]

Substituting these stream functions of Eqs.(A7) and (A9) into the previous integral yields Eq.(A10a).
\[
\begin{align*}
& \vec{M}=\iiint \vec{r} \times(\vec{J} \times \vec{B}) d V= \\
& =\iiint(r \hat{r}+z \hat{z}) \times\left(\left(\frac{1}{2 \pi r} \hat{\theta} \times \nabla I\right) \times\left(\frac{1}{2 \pi r} \hat{\theta} \times \nabla \Psi\right)\right) r d r d z d \theta= \tag{A10a}\\
& =\frac{1}{4 \pi^{2}} \iiint\left(\hat{z}-\frac{z}{r} \hat{r}\right)(\hat{\theta} \bullet(\nabla I \times \nabla \Psi)) d r d z d \theta
\end{align*}
\]

As stated previously, the radially oriented term cancels out while integrating over toroidal angle, leaving Eq.(A10b) as the result.
\[
\begin{equation*}
\vec{M}=\frac{\hat{z}}{2 \pi} \iint d r d z\left(\frac{\partial I}{\partial r} \frac{\partial \Psi}{\partial z}-\frac{\partial I}{\partial z} \frac{\partial \Psi}{\partial r}\right)=\frac{\hat{z}}{2 \pi} \iint(\hat{\theta} \bullet(\nabla I \times \nabla \Psi)) d r d z \tag{A10b}
\end{equation*}
\]

This is a particularly simple and compact formula involving the integral of the cross product of gradients of two scalar functions. The poloidal magnetic flux function can be directly obtained to any desired accuracy by use of Greens functions involving the standard elliptic integral functions, K() and E() , and the current stream function can be approximated using the projected outline of TF conductors. Furthermore, the integral itself can be approximated from these data using very simple algorithms.

\section*{Limit for the case of a slender TF conductor}

Vector identities applied to Eq.(A10b) imply that
\(\vec{M}=-\frac{\hat{z}}{2 \pi} \iint d r d z((\nabla I \times \hat{\theta}) \bullet \nabla \Psi)\)
Here, the integration is over the area of the poloidal projection of the TF conductor segment whose net torque is to be calculated. If the conductor's projection is slender with a small width, w , we can change the element of poloidal area from \(\mathrm{dA}=\mathrm{drdz}\) to \(\mathrm{dA}=\mathrm{dldw}\) where 1 represents distance along the conductor's length. Assuming constant current density in the conductor the gradient vector of the current stream function, \(\nabla I\), has a magnitude equal to the total TF urrent divided by the width, \(|\nabla I|=\frac{I_{T F}}{w}\), and the gradient vector 's direction is perpendicular to the local TF current streamline, pointing towards the coil's bore. It follows that \((\nabla I \times \hat{\theta})\) has the same magnitude but is pointed in the same direction as the flowing TF current, a direction denoted here by the unit vector, \(\hat{n}\). With these substitutions, the net torque over a slender TF conductor segment extending from point A to point B can be rewritten as in Eq.(A12).
\[
\begin{align*}
& \vec{M}=-\frac{\hat{z}}{2 \pi} \iint d r d z((\nabla I \times \hat{\theta}) \bullet \nabla \Psi) \\
& =-\frac{\hat{z}}{2 \pi} \frac{I_{T F}}{w} \int_{0}^{w} d w \int_{A}^{B} d l \hat{n} \bullet \nabla \Psi \tag{A12}\\
& =-\frac{\hat{z}}{2 \pi} I_{T F} \int_{A}^{B} d l \hat{n} \bullet \nabla \Psi
\end{align*}
\]

However, this last integral expression in Eq.(A12) may be immediately recognized as the line integral of the gradient of a scalar function, so it has the following Eq.(A13)exact solution:
\[
\begin{equation*}
\vec{M}=\hat{z} I_{T F} \frac{\Psi_{A}-\Psi_{B}}{2 \pi} \tag{A13}
\end{equation*}
\]

Thus, the general formula of Eq.(A12), when interpreted for slender conductors, asserts that the net torque over a poloidal length of TF conductor is simply the product of the difference between the poloidal flux values at the conductor's ends, divided by \(2 \pi\), then multiplied by the TF current.

\section*{Derivation of Approximation For Wider TF Conductors}

Consider a triangular region in the poloidal half-plane, \(\triangle \mathrm{ABC}\), on which the exact scalar functions \(I(r, z)\) and \(\Psi(r, z)\) are to be linearly approximated by \(\tilde{I}(r, z)\) and \(\widetilde{\Psi}(r, z)\) using function values that are exact at the triangle's three corners. The linear models are as follows:

\(I(r, z) \approx \tilde{I}(r, z)=\left(\tilde{I}_{0}\right)+\left(\frac{\partial \tilde{I}}{\partial r}\right) r+\left(\frac{\partial \tilde{I}}{\partial z}\right) z\)
\(\Psi(r, z) \approx \tilde{\Psi}(r, z)=\left(\tilde{\Psi}_{0}\right)+\left(\frac{\partial \tilde{\Psi}}{\partial r}\right) r+\left(\frac{\partial \tilde{\Psi}}{\partial z}\right) z\)
where \(\left(\tilde{I}_{0}\right),\left(\frac{\partial \tilde{I}}{\partial r}\right),\left(\frac{\partial \tilde{I}}{\partial z}\right),\left(\tilde{\Psi}_{0}\right),\left(\frac{\partial \tilde{\Psi}}{\partial r}\right),\left(\frac{\partial \tilde{\Psi}}{\partial z}\right)\) are linear model coefficient parameters that have constant values throughout the triangle. The requirement to match the approximation to actual function values at triangle corners yields the following matrix equations, where \(\left(r_{A}, z_{A}\right),\left(r_{B}, z_{B}\right),\left(r_{C}, z_{C}\right)\) are the coordinates of the triangle's corners:
\[
\begin{align*}
& {\left[\begin{array}{lll}
1 & r_{A} & z_{A} \\
1 & r_{B} & z_{B} \\
1 & r_{C} & z_{C}
\end{array}\right]\left[\begin{array}{c}
\left(\tilde{\tilde{I}}_{0}\right) \\
\binom{(\tilde{I}}{\partial r} \\
\left(\frac{\partial \tilde{I}}{\partial z}\right)
\end{array}\right]=\left[\begin{array}{c}
I_{A} \\
I_{B} \\
I_{C}
\end{array}\right]} \tag{A15}\\
& {\left[\begin{array}{lll}
1 & r_{A} & z_{A} \\
1 & r_{B} & z_{B} \\
1 & r_{C} & z_{C}
\end{array}\right]\left[\begin{array}{c}
\left(\tilde{\Psi}_{0}\right) \\
\binom{\partial \tilde{\Psi}}{\partial r} \\
\left(\frac{\partial \tilde{\Psi}}{\partial z}\right)
\end{array}\right]=\left[\begin{array}{l}
\Psi_{A} \\
\Psi_{B} \\
\Psi_{C}
\end{array}\right]} \tag{A16}
\end{align*}
\]

These can be readily solved in closed form to find the appropriate coefficient parameter values. For the partial derivative coefficient parameters the solutions are as follows:
\[
\begin{align*}
& \left(\frac{\partial \tilde{I}}{\partial r}\right)=\frac{I_{A}\left(z_{B}-z_{C}\right)+I_{B}\left(z_{C}-z_{A}\right)+I_{C}\left(z_{A}-z_{B}\right)}{r_{A}\left(z_{B}-z_{C}\right)+r_{B}\left(z_{C}-z_{A}\right)+r_{C}\left(z_{A}-z_{B}\right)} \\
& \left(\frac{\partial \tilde{I}}{\partial z}\right)=\frac{I_{A}\left(r_{B}-r_{C}\right)+I_{B}\left(r_{C}-r_{A}\right)+I_{C}\left(r_{A}-r_{B}\right)}{z_{A}\left(r_{B}-r_{C}\right)+z_{B}\left(r_{C}-r_{A}\right)+z_{C}\left(r_{A}-r_{B}\right)} \tag{A17}\\
& \left(\frac{\partial \tilde{\Psi}}{\partial r}\right)=\frac{\Psi_{A}\left(z_{B}-z_{C}\right)+\Psi_{B}\left(z_{C}-z_{A}\right)+\Psi_{C}\left(z_{A}-z_{B}\right)}{r_{A}\left(z_{B}-z_{C}\right)+r_{B}\left(z_{C}-z_{A}\right)+r_{C}\left(z_{A}-z_{B}\right)} \\
& \left(\frac{\partial \tilde{\Psi}}{\partial z}\right)=\frac{\Psi_{A}\left(r_{B}-r_{C}\right)+\Psi_{B}\left(r_{C}-r_{A}\right)+\Psi_{C}\left(r_{A}-r_{B}\right)}{z_{A}\left(r_{B}-r_{C}\right)+z_{B}\left(r_{C}-r_{A}\right)+z_{C}\left(r_{A}-r_{B}\right)}
\end{align*}
\]

Using this approximation the previous integrand becomes:
\[
\begin{align*}
\hat{\theta} \bullet(\nabla I \times \nabla \Psi) \equiv\left(\frac{\partial I}{\partial r} \frac{\partial \Psi}{\partial z}-\frac{\partial I}{\partial z}\right. & \left.\frac{\partial \Psi}{\partial r}\right) \\
& \approx\left(\frac{\partial \tilde{I}}{\partial r} \frac{\partial \tilde{\Psi}}{\partial z}-\frac{\partial \tilde{I}}{\partial z} \frac{\partial \tilde{\Psi}}{\partial r}\right)= \tag{A18}\\
& =\frac{I_{A}\left(\Psi_{B}-\Psi_{C}\right)+I_{B}\left(\Psi_{C}-\Psi_{A}\right)+I_{C}\left(\Psi_{A}-\Psi_{B}\right)}{r_{A}\left(z_{B}-z_{C}\right)+r_{B}\left(z_{C}-z_{A}\right)+r_{C}\left(z_{A}-z_{B}\right)}
\end{align*}
\]

Note that as a result of assuming a linear model over the triangle, this approximation gives a constant value of the integrand over the triangle. Thus, the integral over the triangle is simply this integrand's constant value times the triangle's area, which, assuming the ABC point sequence is counterclockwise, is:
[Area of Triangle \(\triangle \mathrm{ABC}\)] \(=\frac{1}{2}\left|\begin{array}{lll}1 & r_{A} & z_{A} \\ 1 & r_{B} & z_{B} \\ 1 & r_{C} & z_{C}\end{array}\right|=\frac{r_{A}\left(z_{B}-z_{C}\right)+r_{B}\left(z_{C}-z_{A}\right)+r_{C}\left(z_{A}-z_{B}\right)}{2}\)
This cancels all (r,z) coordinates, so the integral over the triangle becomes as stated in Eq.(A20).
\(\vec{M}_{\triangle A B C} \approx \hat{z}\left(\frac{I_{A}\left(\Psi_{B}-\Psi_{C}\right)+I_{B}\left(\Psi_{C}-\Psi_{A}\right)+I_{C}\left(\Psi_{A}-\Psi_{B}\right)}{4 \pi}\right)\)
This formula can be applied to an adjacent bordering triangle, \(\triangle \mathrm{ACD}\), by changing indices as in Eq.(A21).
\[
\begin{equation*}
\vec{M}_{\triangle A C D} \approx \hat{z}\left(\frac{I_{A}\left(\Psi_{C}-\Psi_{D}\right)+I_{C}\left(\Psi_{D}-\Psi_{A}\right)+I_{D}\left(\Psi_{A}-\Psi_{C}\right)}{4 \pi}\right) \tag{A21}
\end{equation*}
\]

The two triangles together form a quadrilateral, ABCD , so the integral over the entire quadrilateral is the sum of the two triangle integrals:

\[
\begin{align*}
& \vec{M}_{A B C D}=\vec{M}_{\triangle A B C}+\vec{M}_{\Delta A C D} \approx \\
& \approx \hat{z}\binom{\frac{I_{A}\left(\Psi_{B}-\Psi_{C}\right)+I_{B}\left(\Psi_{C}-\Psi_{A}\right)+I_{C}\left(\Psi_{A}-\Psi_{B}\right)}{4 \pi}}{+\frac{I_{A}\left(\Psi_{C}-\Psi_{D}\right)+I_{C}\left(\Psi_{D}-\Psi_{A}\right)+I_{D}\left(\Psi_{A}-\Psi_{C}\right)}{4 \pi}}= \tag{A22}\\
&=\hat{z}\left(\frac{\left(I_{A}-I_{C}\right)\left(\Psi_{B}-\Psi_{D}\right)-\left(I_{B}-I_{D}\right)\left(\Psi_{A}-\Psi_{C}\right)}{4 \pi}\right)
\end{align*}
\]

The quadrilateral, ABCD , could alternatively be decomposed in a different way into two triangles, i.e., into triangle \(\triangle A B D\) and triangle \(\triangle \mathrm{BCD}\). Although the linear coefficient parameter sets that would apply for these triangles would be different from the above, the final resulting formula for the moment integral over the quadrilateral ABCD turns out to be identically the same!

Note that in the important special case wherein the quadrilateral's corner points are located on two TF current stream function contour lines, it follows that \(I_{A}=I_{D}\) and \(I_{B}=I_{C}\). In that case the approximate formula for net torque in the quadrilateral region of the poloidal half-plane becomes
 simplified to Eq.(A23).
\[
\begin{equation*}
\vec{M}_{\mathrm{ABCD}}^{\mathrm{AD} \& \mathrm{BC} \text { on TFCurrent Streamlines }}=\hat{z}\left(I_{A}-I_{B}\right)\left(\frac{\Psi_{A}+\Psi_{B}-\Psi_{C}-\Psi_{D}}{4 \pi}\right) . \tag{A23}
\end{equation*}
\]

This is the simple average of the differences between per radian poloidal magnetic fluxes at the two ends of each of the two bounding current stream function contours, multiplied by the TF current enclosed between those two current stream function contours.

Thus, the torsional OOP loading of the TF coil system can be evaluated by taking simple sums and differences of poloidal flux evaluated at points located on TF current streamlines.

\section*{A Higher Accuracy Numerical Approximation}

In the present case of this memo's calculations of net torque in the NSTX CSU TF conductor due to poloidal field interactions with TF current, five TF current streamlines have been chosen and their separation in terms of contour levels is the total TF current divided by four. The adjacent diagram illustrates the five contours and flux evaluation points on those contours for two adjacent poloidal angle locations. Applying the torque formula to each of the for quadrilaterals having the ten indicated locations as their corners, the sum of the net torque is as stated in Eq.(A24).

\[
\begin{align*}
\vec{M}= & \hat{z}\left(\frac{I_{T F}}{4}\right)\left(\frac{\Psi_{1}^{1}+\Psi_{2}^{1}-\Psi_{2}^{2}-\Psi_{1}^{2}}{4 \pi}\right)+\hat{z}\left(\frac{I_{T F}}{4}\right)\left(\frac{\Psi_{2}^{1}+\Psi_{3}^{1}-\Psi_{3}^{2}-\Psi_{2}^{2}}{4 \pi}\right) \\
& +\hat{z}\left(\frac{I_{T F}}{4}\right)\left(\frac{\Psi_{3}^{1}+\Psi_{4}^{1}-\Psi_{4}^{2}-\Psi_{3}^{2}}{4 \pi}\right)+\hat{z}\left(\frac{I_{T F}}{4}\right)\left(\frac{\Psi_{4}^{1}+\Psi_{5}^{1}-\Psi_{5}^{2}-\Psi_{4}^{2}}{4 \pi}\right) \tag{A24}\\
= & \hat{z} \frac{I_{T F}}{2 \pi}\left(\begin{array}{l}
\left.\begin{array}{l}
0.125\left(\Psi_{1}^{1}-\Psi_{1}^{2}\right)+0.25\left(\Psi_{2}^{1}-\Psi_{2}^{2}\right)+0.25\left(\Psi_{3}^{1}-\Psi_{3}^{2}\right) \\
+0.25\left(\Psi_{4}^{1}-\Psi_{4}^{2}\right)+0.125\left(\Psi_{5}^{1}-\Psi_{5}^{2}\right)
\end{array}\right)
\end{array}\right.
\end{align*}
\]

Thus, in the sum over one poloidal interval we must premultiply the column vector of five local flux values by the row vector, [1 222 1], then divide by \(16 \pi\) before subtracting from the corresponding result for the other poloidal location.

Note that if all five flux values at one poloidal location were identical to each other the result would be that single value divided by \(2 \pi\).

Note also that there is no benefit from repeating this summation procedure over many poloidal intervals in a TF conductor segment and summing their results, since the quantities evaluated at all intermediate poloidal locations would identically cancel each other out in taking the poloidal intervals sum. It is mathematically equivalent to directly subtract the quantities calculated on the five contours at the TF conductor segment's ends.

\section*{APPENDIX 2}

Torsion Analysis Results With Nominal Stiffness Parameter Values

Using the stiffness parameter values of this memo, hear stress stress profiles were calculated for the 96 plasma equilibrium cases previously defined by J. Menard and for a single +24 kA OH precharge case. The different shear profiles are all graphed on the following pages. Peak shear stress values are collected in the following table for these cases. The maximum absolute shear was 25.234 MPa , observed for equilibrium case \#1 and again in equilibrium case \#16.

Table A2 and plots show peak shear stress is mostly due to OH , and reaches its maximum when the OH current is -24 kA . PF coils and plasma are smaller contributors to peak shear stress.

Table A2: TF Centerstack Max Absolute Shear Stress ; Precharge and Plasma Cases
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { Case\# } \\
& -24 \mathrm{kA} \mathrm{OH}
\end{aligned}
\] & \begin{tabular}{l}
Peak \\
Shear MPa
\end{tabular} & \[
\begin{aligned}
& \hline \text { Case\# } \\
& 0 \mathrm{kA} \mathrm{OH}
\end{aligned}
\] & \begin{tabular}{l}
Peak \\
Shear MPa
\end{tabular} & Case\# 13 kA OH & \begin{tabular}{l}
Peak \\
Shear MPa
\end{tabular} & \[
\begin{aligned}
& \hline \text { Case } \\
& 24 \mathrm{kA} \mathrm{OH}
\end{aligned}
\] & \begin{tabular}{l}
Peak \\
Shear MPa
\end{tabular} \\
\hline & & & & & & Precharge & 17.075 \\
\hline 1 & 25.2342 & 2 & 7.8607 & 3 & 9.9531 & & \\
\hline 4 & 25.0242 & 5 & 7.7104 & 6 & 9.7952 & & \\
\hline 7 & 24.8916 & 8 & 7.8971 & 9 & 9.7799 & & \\
\hline 10 & 24.7792 & 11 & 8.1233 & 12 & 10.1388 & & \\
\hline 13 & 24.7974 & 14 & 8.1955 & 15 & 10.2218 & & \\
\hline 16 & 25.2342 & 17 & 7.8607 & 18 & 9.9531 & & \\
\hline 19 & 23.5284 & 20 & 7.5095 & 21 & 9.5377 & & \\
\hline 22 & 24.0073 & 23 & 7.7574 & 24 & 9.7794 & & \\
\hline 25 & 24.3660 & 26 & 7.8945 & 27 & 9.8867 & & \\
\hline 28 & 24.6358 & 29 & 8.1082 & 30 & 9.9733 & & \\
\hline 31 & 24.7383 & 32 & 8.4486 & 33 & 10.1411 & & \\
\hline 34 & 22.7757 & 35 & 9.6055 & 36 & 11.8424 & & \\
\hline 37 & 23.1024 & 38 & 9.6302 & 39 & 11.8662 & & \\
\hline 40 & 23.5114 & 41 & 9.5922 & 42 & 11.8414 & & \\
\hline 43 & 23.9825 & 44 & 9.4749 & 45 & 11.7359 & & \\
\hline 46 & 24.3098 & 47 & 9.1979 & 38 & 11.5040 & & \\
\hline 49 & 21.5879 & 50 & 8.5384 & 51 & 10.7784 & & \\
\hline 52 & 21.9790 & 53 & 8.6015 & 54 & 10.8492 & & \\
\hline 55 & 22.5061 & 56 & 8.6266 & 57 & 10.8669 & & \\
\hline 58 & 23.0224 & 59 & 8.5566 & 60 & 10.8048 & & \\
\hline 61 & 23.5439 & 62 & 8.3331 & 63 & 10.6176 & & \\
\hline 64 & 25.1894 & 65 & 8.9480 & 66 & 11.0566 & & \\
\hline 67 & 25.0718 & 68 & 8.7566 & 69 & 10.8486 & & \\
\hline 70 & 24.6347 & 71 & 8.1963 & 72 & 10.2964 & & \\
\hline 73 & 24.1861 & 74 & 7.8472 & 75 & 9.9392 & & \\
\hline 76 & 23.7807 & 77 & 7.5209 & 78 & 9.6075 & & \\
\hline 79 & 23.2512 & 80 & 7.2031 & 81 & 9.2976 & & \\
\hline 82 & 24.6500 & 83 & 10.1626 & 84 & 12.1672 & & \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 85 & 24.7093 & 86 & 9.3389 & 87 & 11.3258 & & \\
\hline 88 & 24.7711 & 89 & 8.7861 & 90 & 10.7808 & & \\
\hline 91 & 24.8086 & 92 & 8.4007 & 93 & 10.3819 & & \\
\hline 94 & 24.8460 & 95 & 8.0646 & 96 & 10.0348 & & \\
\hline
\end{tabular}

(

)

(11) NSTX=

-(1)NSTX

\section*{APPENDIX 3}

Torsion Analysis Results With Reduced Stiffness in Upper Lid

To determine the effects on peak shear stress, the torsional stiffness of the upper lid was reduced by a factor of 20 while all other stiffness parameters were left unchanged from the values used to calculate the Appendix 2 results.

Peak shear stress values are collected in the following table for these cases. The maximum absolute shear was 19.553 MPa , observed for equilibrium case \#1 and again in equilibrium case \#16.

Table A3 and plots show peak shear stress is mostly due to OH , and reaches its maximum when the OH current is -24 kA . PF coils and plasma are smaller contributors to peak shear stress.

Table A3: TF Centerstack Max Absolute Shear Stress ; Precharge and Plasma Cases
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Case\# } \\
& -24 \mathrm{kA} \mathrm{OH}
\end{aligned}
\] & \begin{tabular}{l}
Peak \\
Shear MPa
\end{tabular} & \[
\begin{aligned}
& \hline \text { Case\# } \\
& 0 \mathrm{kA} \mathrm{OH}
\end{aligned}
\] & \begin{tabular}{l}
Peak \\
Shear MPa
\end{tabular} & \[
\begin{aligned}
& \text { Case\# } \\
& 13 \text { kA OH }
\end{aligned}
\] & \begin{tabular}{l}
Peak \\
Shear MPa
\end{tabular} & \[
\begin{aligned}
& \text { Case } \\
& 24 \text { kA OH }
\end{aligned}
\] & \begin{tabular}{l}
Peak \\
Shear MPa
\end{tabular} \\
\hline & & & & & & Precharge & 13.160 \\
\hline 1 & 19.5534 & 2 & 6.5375 & 3 & 10.9944 & & \\
\hline 4 & 19.4016 & 5 & 6.4449 & 6 & 10.8958 & & \\
\hline 7 & 19.2976 & 8 & 6.6634 & 9 & 10.9114 & & \\
\hline 10 & 19.1926 & 11 & 6.8980 & 12 & 11.2799 & & \\
\hline 13 & 19.1987 & 14 & 6.9595 & 15 & 11.3530 & & \\
\hline 16 & 19.5534 & 17 & 6.5375 & 18 & 10.9944 & & \\
\hline 19 & 18.1765 & 20 & 6.5205 & 21 & 10.9161 & & \\
\hline 22 & 18.5628 & 23 & 6.6753 & 24 & 11.0597 & & \\
\hline 25 & 18.8599 & 26 & 6.7516 & 27 & 11.1091 & & \\
\hline 28 & 19.0966 & 29 & 6.9223 & 30 & 11.1563 & & \\
\hline 31 & 19.2033 & 32 & 7.2720 & 33 & 11.3294 & & \\
\hline 34 & 17.6028 & 35 & 8.8235 & 36 & 13.4361 & & \\
\hline 37 & 17.8582 & 38 & 8.7835 & 39 & 13.3987 & & \\
\hline 40 & 18.1871 & 41 & 8.6822 & 42 & 13.3054 & & \\
\hline 43 & 18.5673 & 44 & 8.4675 & 45 & 13.1140 & & \\
\hline 46 & 18.8337 & 47 & 8.1257 & 38 & 12.8219 & & \\
\hline 49 & 16.6842 & 50 & 8.0255 & 51 & 12.6412 & & \\
\hline 52 & 16.9927 & 53 & 8.0063 & 54 & 12.6375 & & \\
\hline 55 & 17.4139 & 56 & 7.9418 & 57 & 12.5644 & & \\
\hline 58 & 17.8337 & 59 & 7.7767 & 60 & 12.4114 & & \\
\hline 61 & 18.2611 & 62 & 7.4595 & 63 & 12.1297 & & \\
\hline 64 & 19.5428 & 65 & 7.6528 & 66 & 12.1223 & & \\
\hline 67 & 19.4479 & 68 & 7.4859 & 69 & 11.9422 & & \\
\hline 70 & 19.0970 & 71 & 7.0231 & 72 & 11.4907 & & \\
\hline 73 & 18.7393 & 74 & 6.7629 & 75 & 11.2275 & & \\
\hline 76 & 18.4170 & 77 & 6.5354 & 78 & 10.9964 & & \\
\hline 79 & 17.9967 & 80 & 6.3280 & 81 & 10.7971 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 82 & 19.1319 & 83 & 9.0096 & 84 & 13.3828 & & \\
\hline 85 & 19.1611 & 86 & 8.1527 & 87 & 12.5073 & & \\
\hline 88 & 19.2045 & 89 & 7.5824 & 90 & 11.9441 & & \\
\hline 91 & 19.2357 & 92 & 7.1888 & 93 & 11.5370 & & \\
\hline 94 & 19.2686 & 95 & 6.8490 & 96 & 11.1865 & & \\
\hline
\end{tabular}

(11) NSTX=

(11) NSTX=

(11) NSTX=

,


```

