NSTX-U-

NSTX Upgrade

DRAFT

DCPS Check Calculations

NSTXU-CALC-13-07-00

December 2016

Prepared By:

Peter Titus, PPPL Mechanical Engineering **Reviewed By:**

Tim Stevenson, NSTXU Cognizant Engineer

PPPL Calculation Form

Calculation # NSTXU-CALC-13-07-00 Revision # 00 WP #, 5200 (ENG-032)

Purpose of Calculation: (Define why the calculation is being performed.)

There are a number of places where calculations were performed to provide algorithm details for the Digital Coil Protection System. Each of the NSTXU calculation was supposed to have a section that provided guidance on the DCPS algorithm that would cover the component in the calculation. This calculation either provides pointers to the appropriate calculation or includes additional algorithm calculations here. The algorithms have been incorporated into a True Basis code that can run the algorithm evaluations for the 96 GRD design point equilibria and other provided scenarios. This can be used to check the DCPS implementation or find limiting equilibria among the provided 96.

References (List any source of design information including computer program titles and revision levels.)

Included in the body of the calculations

Assumptions (Identify all assumptions made as part of this calculation.)

Axisymmetry of the coils

Calculation (Calculation is either documented here or attached)

Included in the body of the calculations

Conclusion (Specify whether or not the purpose of the calculation was accomplished.)

Moment influence coefficients have been calculated and tabulated for checking other's work or inclusion in the DCPS

Cognizant Engineer's printed name, signature, and date

Tim Stevenson

I have reviewed this calculation and, to my professional satisfaction, it is properly performed and correct.

Checker's printed name, signature, and date

Robert Woolley _____

Table of Contents

Table of Contents	
Executive Summary	4.0
DCPS Input	5.0
Design Input	6.0
References	6.1
Drawing Excerpts	6.2
Input Currents	6.3
Analysis Codes	7.0
NTFTM	7.1
True Basic Algorithm Code TBDCPS	7.2
Results	
DCPS Coding Test Cases	8.0
PF1c Upper Forces for the 96 Equilibria	8.1
PF4 Bolting	8.2
PF5U Bolting	8.3
PF5L Bolting	8.4
PF3U Bolting	8.5
8.6	
8./	0.0
Net vertical Load on the CS	8.8
Coil Force Computations	9.0
Unit Current Input for Global Model	9.1
PF1c Radial and Vertical Forces	9.2
Global Moment Sums	10.0
Upper Half Machine	10.1
Lower Half Machine	10.2
Upper Outer TF Legs	10.3
Lower Outer TF Legs	10.4
PF Hoop Stress	11.0
Comparison with Bob Woolley's Moment Coefficients	12.0
Comparison with Ron Hatcher's Results	13.0
Shaped Plasma Results	14.1
Radial Force Limits based on Hoop Stress Limits	15.0
PF1aU Factor Correction	17.0
TF Outer Leg Bending, Algorithm 160	17.0
Spoked Lid Stress	18.0
Fields at Specific Locations in the Machine	19.0
Passive Plate Fields, Algorithm 201	19.1
Fields at the DWM Coiler	19.2
Fields at the KWM Collsr	19.
Radial Force Limits based on Hoop Stress Limits	20.0
Evaluation of force sums	21.0

NSTX-U-

Attachment A TBDCPS Source Listing

4.0 Executive Summary:

The Digital Coil Protection System (DCPS) is a combination of computer hardware and software which is intended to protect the coils from excessive loads and load combinations, and maintain resulting stresses below the stress allowable used in the design.

Prototype DCPS Computer In FCC Rack

Internal View of DCPS Computer with I/O cards installed

The DCPS effort begins with computation of loads from coil currents via influence coefficients. The structural response of NSTX-U often is based on combinations of loads on structural assemblies. One important case is the net launching load on the centerstack which carries net loads from the OH and inner PF coils, PF1a, and b upper and lower. In this case the loads are computed, summer and compared with an allowable based on the bolting and weld details that resist the vertical tensile load. Other DCPS algorithms are based on stress based influence coefficients. An example of this is the torsional shear stress algorithm that is based on shear stress contributions from individual coil unit currents.

In all these cases, the process of structural Lorentz force calculation structural response and final implementation in the computer software needs to be checked. Checking of the Lorentz force calculations and many of the structural calculations that are input to the DCPS algorithms are found in filed calculations. Every calculations done in support of NSTX-U was supposed to have a section which provided guidance on an appropriate algorithm that would address the calculations components. Other calculations were intended to develop the algorithms directly. Some of these are listed below:

[1] NSTX Influence Coefficients, calculation # NSTXU 13 03-00, Ron Hatcher DATE: July 9 2009

[3] NSTX Structural Design Criteria Document, NSTX_DesCrit_IZ_080103.doc I. Zatz

[4] NSTX Design Point Sep 8 2009 http://www.pppl.gov/~neumeyer/NSTX_CSU/Design_Point.html

[5] OOP PF/TF Torques on TF , R. Woolley, NSTXU CALC 132-03-00

NSTX-CSU-RD-DCPS for the National Spherical Torus Experiment Center Stack Upgrade, February 5, 2010 R. Woolley

[9] NSTX Upgrade General Requirements Document, NSTX_CSU-RQMTS-GRD Revision 5, C. Neumeyer, June 14 2012

[11] "NSTX Upgrade TF Inner Leg Torsional Shear, Including Input to the DCPS" NSTXU-CALC-132-07-01 Rev 1 November 6 2015 P Titus, Checked by R. Wooley

[12] "OH Stress and Segmented OH Influence Coefficients for the DCPS" August 2013 P. Titus, Reviewed by S. Gerhardt, Ali Zolfaghari, R. Wooley, Ron Hatcher

It is usual practice to utilize influence coefficient calculations to determine hoop and axial (vertical for

tokamak's) loads from coil currents. However the centroid of the Lorentz loads may not be at the geometric center of the coils. Where there is significant offset between the Lorentz centroid and the geometric center, there will be a moment about the coil geometric center in addition to the net loads. This may be a significant contributor to the support reaction loads and to the stresses in the coils themselves. In design and analysis of coil systems, distributions of fields and forces are typically calculated for a useful structural/magnetic mesh which is typically fine enough to properly distribute the Lorentz forces and resolve any moments about the coil current centers. When influence coefficients are used in operating tokamaks to check coil stresses and support loading the effect of moments has been omitted. To the author's knowledge, this is true of Alcator C-

DCPS Check Calculations

Figure 1 Moments at Current Centers.

Mod, TFTR and NSTX. Addition of the moment coefficients completes the three degrees of freedom available from the axisymmetric analysis of ring coils. For NSTX the effect of the moment coefficients is small for the compact ring coils but is interesting for the thin solenoids - the OH and PF1a,b,and c. Two plasma shapes have been investigated a rectangular cross section and a shaped plasma.

NSTX-U

Excerpt from the Shaped Plasma Moment Influence Coefficients

		ОН	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L	lp
OH	1	0.00E+00	-20165.7	-9837.4	-5246.08	-5607.03	-3893.17	-1291.17	-1209.61	20165.75	9837.401	5246.083	5607.024	3893.168	1291.17	1209.613	1.582384

The largest moment influence factors are for moments on the OH from PF1aU and L currents as might be expected from the coil geometries. The effect on the outer ring coils is minimal. The results of this calculation were compared with R. Hatchers results for the 2009 coil builds and with R. Woolley's calculations for the 2011 coil builds. The comparison with Wooley's moment coefficients show results typically within 2 to 5 % with two outliers at 8% and large difference ratios when the two analyses are both calculating essentially zero factors.

Digital Coil Protection System (DCPS)

Calculations with DCPS section already included

Torus Systems

- Global Model Description, Mesh Generation, and Results
- Seismic Analysis

Vacuum Vessel/Supports

- Disruption Analysis of VV & Passive Plates
- PF2 and PF3 Bolting, Bracket, and Weld Stress
- PF4 and PF5 Support Analysis
- Aluminum Block Analysis
- Umbrella Reinforcement Details
- Lid and Spoke Assembly, Upper and Lower
- Pedestal Analysis

General

- DCPS Moment Influence Matrix

Toroidal Field Coils

- Analysis of TF Outer Leg
- Maximum TF Torsional Shear
- TF Flag Key
- Analysis of Knuckle Clevis

Center Stack

- Center Stack Casing Disruption Inductive and Halo Current Loads
- OH Stress Analysis
- OH Fatigue and Fracture Mechanics

- OH and PF1 Electromagnetic Stability Analysis
- Model Analysis and Normal Operation Transient Load Effects

Calculations missing DCPS section

NSTX-U

Plasma Facing Components

- First Wall Heat Balance NO
- First Wall Final Tile Stress Analysis (ATJ Tiles) YES Art brooks maybe upper bound on PF/TF field used to qualify the tiles
- Armor NO

Vacuum Vessel/Supports

- Opera 2D Analysis No
- Redesigned Vessel Support Bracket No

General

- NSTX Force Influence Matrix Input to DCPS, [1]

Poloidal Coils Field

- Poloidal Magnetic Quantities for the May 2010 Provisional Design Input to DCPS

Toroidal Coils Field

- Out-of-Plane PF/TF Torques on TF Conductors Han Zhang YES keyed to global torque
- TF Coupled Thermo Electromagnetic Diffusion Analysis YES maybe just temp limit
- TF Flex Joint and TF Bundle Stub YES Tom Willard TF current limit PF field limit
- TF Cool Down Using FCOOL YES -Ali Zolfaghari Maybe just temp limit
- Ring Bolted Joint YES Pete Rogoff Han Zhang gave him the loads
- TF Coil Inductance NO

Center Stack

- Structural Analysis of the PF1 Coils and Supports YES Ali Zolfaghari and Len Myatt
- OH Preload System and Belleville Spring Design YES Pete Rogoff
- Halo Current Analysis of Center Stack Casing NO
- OH Coolant Hole Optimization YES Ali Zolfaghari temp limit
- OH Coax Lead Analysis YES Mike Mardenfeld PF and TF field limits
- Center Stack Casing Bellows YES Pete Rogoff

Plasma Heating and Current Drive

- Vessel Port Re-Work for NB and Thompson Scattering Port YES Neway Atnafu
- Armor Backing Plate NO
- HHFW Antenna YES Han Zhang and Bob Ellis
- Turbo Pump Magnetic Shielding Analysis NO
- Stress Analysis of Bay L and 2nd NBI Upgrade Neway Atnafu YES Keyed to global torque
- Diagnostic Review and Database YES limit of PF and TF field

Power Systems

- Modification of TF Coil Power System PSCAD Model NO
- Modification of the OH Coil Power System PSCAD Model NO
- Current Unbalance in the Eight Parallel Branches NO
- Bus Bar Analysis YES

5.0 Digital Coil Protection System (DCPS) Input

The early proposal for the DCPS was described in detail in a draft requirements document by Robert Woolley ref [7]. This was subsequently simplified including elimination of certain look-aheads and measured temperature effects, being replaced with only calculated temperature effects. Force influence coefficients are included in the DCPS. Moment coefficients are also included for specific components like PF2, 3 4, and 5 clamp bolting. In the description of the DCPS, the "systems code" is the collection of algorithms described in the filed structural calculations. There is a global model which is the closest thing we have to a single systems code, but this is augmented in many ways by separate calculations to address specific stress locations and components and support hardware. One examples is:

PF 2,3 supports, welds bolts –These were calculated from influence coefficient matrix loads divided by weld or bolt area. Addition of moment influence coefficients adds overturning moments to the calculation of the bolt loads .

Addition of Moment Influence Coefficients to DCPS

Bolt Loads are calculated only from the vertical force.

Bolt Loads are calculated from the vertical force and the moment divided by the width of the bolt pattern

6.0 Design Input 6.1 References

[1] NSTX Influence Coefficients, calculation # NSTXU 13 03-00, Ron Hatcher DATE: July 9 2009

[2] NSTX-CALC-13-001-00 Rev 1 Global Model – Model Description, Mesh Generation, Results, Peter H. Titus December 2010

[3] NSTX Structural Design Criteria Document, NSTX_DesCrit_IZ_080103.doc I. Zatz

[4] NSTX Design Point Sep 8 2009 http://www.pppl.gov/~neumeyer/NSTX_CSU/Design_Point.html

[5] OOP PF/TF Torques on TF, R. Woolley, NSTXU CALC 132-03-00

[6] "MHD and Fusion Magnets, Field and Force Design Concepts", R.J.Thome, John Tarrh, Wiley Interscience, 1982

[7] DIGITAL COIL PROTECTION SYSTEM (DCPS) REQUIREMENTS DOCUMENT (DRAFT), NSTX-CSU-RD-DCPS for the National Spherical Torus Experiment Center Stack Upgrade, February 5, 2010 R. Woolley

[8] NSTXU-CALC-132-04-00 ANALYSIS OF TF OUTER LEG, Han Zhang, August 31, 2009

[9] NSTX Upgrade General Requirements Document, NSTX_CSU-RQMTS-GRD Revision 5, C. Neumeyer, June 14 2012

[10] "Stress Analysis of the Inner PF Coils (1a,1b &1c), Center Stack Upgrade" NSTXU CALC 133-01-2 L. Myatt and A Zolfaghari

[11] "NSTX Upgrade TF Inner Leg Torsional Shear, Including Input to the DCPS" NSTXU-CALC-132-07-01 Rev 1 November 6 2015 P Titus, Checked by R. Wooley

[12] "OH Stress and Segmented OH Influence Coefficients for the DCPS" August 2013 P. Titus, Reviewed by S. Gerhardt, Ali Zolfaghari, R. Wooley, Ron Hatcher

[13] NSTX-PLAN-12-207 NSTX-U Structural Benchmark Instrumentation, December 2016, P. Titus

6.2 Drawing Excerpts

TF Outer Leg Cross Section

6.3 Input Currents

The DCPS and this evaluation is intended to address the acceptability of any set of currents. These can be the 96 equilibria specified in the design point spreadsheet [4] or actual shot currents. Stefan Gerhardt has run a number of algorithms through the 96 equilibria and the magnitude and character of the resulting response plots can be readily compared with implementation of what should be the same algorithms in the true basic code used in this calculation to produce results plots. These comparisons are included in section 8.0

In addition, actual shot currents can be extracted from early run periods in NSTX-U and these can be compared with actual DCPS output that is logged in the MDS+ data.

-> For signal names see the <u>NSTX Signals and Labels page</u> or the <u>MDSplus Tree Search Tool</u>.

7.0 Analysis Codes

7.1 NTFTM

Mesh generation, calculation of the Lorentz forces, and generation of the influence coefficients is done using a code written by the author of this report. The influence coefficient subroutine is included as appendix A The mesh generation feature of the code is checked visually and within ANSYS during the PREP7 geometry check. The authors code uses elliptic integrals for 2D field calculations, and Biot Savart solution for 3D field calculations. These are based 2D formulations, and single stick field calculations from Dick Thomes book [8] with some help from Pillsbury's FIELD3D code to catch all the coincident current vectors, and other singularities.

The code in various forms has been used for 20 years and is suitable for structural calculations. It is also being used for calculation of load files in an NSTX global model[8]. Recent checks include NSTX out-ofplane load comparisons with ANSYS [9] and MAXWELL and calculations of trim coil fields for W7X compared with Neil Pomphrey's calculations. The analysts in the first ITER EDA went through an exercise to compare loads calculated by the US (using this code), RF and by Cees Jong in ANSYS, and agreements were good. Some information on the code, named FTM (Win98) and NTFTM2 (NT,XP), is available at: http://198.125.178.188/ftm/manual.pdf). or, within PPPL: at P:\public\Snap-srv\Titus\NTFTM

Axisymmetric Analysis Model

Computation of influence coefficients is done by computing contributions of fields and forces in one element group with respect to other element groups. The element groups are identified by real constant numbers for the elements in the group. This allows coils or sections of coils to be considered in the matrix calculation. For this calculation, the element designations used by Ron Hatcher's calculation [1] have been used to allow a comparison with the force influence coefficients. Moment coefficients require the computation of the force contributions with a running summation of forces multiplied by the element force times the appropriate radial or axial lever arm with respect to the element group centroid. So computation of the moment influence coefficients also produces the force influence coefficients.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 OH PF1 PF1 PF1 PF2 PF3 PF4 PF5 PF1 PF1 PF1 PF2 PF3 PF4 PF5 IPTF au bu cu u u U U al bL cL L L L 880 64 32 20 28 30 17 24 64 32 20 28 30 17 24 1 2,220,0,0, 0,0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0 4,217,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0,64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 5, 0,0,32,0,0,0,0,0,0,0, Ο, 0,0,0,0,0,0 6, 7, 0,0,0, 20,0, 0,0, 0, 0, Ο, 0,0, 0,0, 0.0 0,0,0, 0,14, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 8 0,0,0, 0,14, 0,0, 0, 0, 0, 0, 0, 0, 0, 0 Ο, 9. 0,0,0, 0,0, 7,0,0,0, 0, 0, 0, 0, 0, 0, 0 10, 11, 0,0,0, 0,0, 8,0,0,0, ο, 0, 0, 0, 0, 0,0 12 0,0,0, 0,0, 7,0,0,0, Ο, 0, 0, 0,0, 0,0 0, 0, 0, 0, 0, 0, 0 13.0.0.0.0.0.0. 8.0.0.0. 0,4,0,0, 14.0.0.0.0.0.0. 0, 0, 0, 0, 0, 0, 0 15, 0,0,0, 0,0, 0,4,0,0, 0, 0, 0, 0, 0, 0, 0,0 16, 0,0,0, 0,0, 0,9,0,0, Ο, 0, 0, 0, 0, 0,0 17, 0,0,0, 0,0, 0,0,0,0, Ο, Ο, Ο, 0,4, 0,0 18, 0,0,0, 0,0, 0,0,0,0, 0, 0, 0, 0, 5, 0.0 19, 0,0,0, 0,0, 0,0,0,0,0,0,0,0,8,0,0 20, 0,0,0, 0,0, 0,0,12,0, 0, 0, 0, 0, 0, 0, 0 21, 0,0,0, 0,0, 0,0,12,0, Ο, 0, 0, 0, 0, 0, 0 22 0,0,0, 0,0, 0,0,0,0,0, 0,0,0,0,0, Ο, ο, ο, 0,0, 12,0 23, 0,0,0, 0,0, Ο, 0, 0, 0, 0, 12, 0 24, 0,0,0, 0,0, 0,0,0,0, 0, 0, 0, 8, 0, 0, 0 25, 0,0,0, 0,0, 0,0,0,0,0,0,0,7,0, 0,0 26, 0,0,0, 0,0, 0,0,0,0, Ο, 0, 0, 7, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0 27. 0,0,0, 0,0, 28, 0,0,0, 0,0, 29, 0,0,0, 0,0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0 30, 0,0,0, 0,0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0 31, 0,0,0, 0,0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0 32. 0,0,0, 0,0, 0,0,0,64, 0, Ο, 0, 0, 0, 0, 0

Input Geometries

🚺 NSTX-U

Results

7.2 True Basic Algorithm Code TBDCPS

NSTX-U		
1 TF Upper Half Torque no Lp (By Titus) 2 TF Upper Half Torque With Lp (By Wooley) 3 TF Lower Half Torque With Dp (By Roley) 4 TF Lower Half Torque With Dp (By Roley) 5 TF Upper Half Outer Half Torque With Dp (By Roley) 7 TF Upper Half Outer Half Torque No Plasma (By Titus) 8 TF Outer Leg Sum (By Titus) 9 To Outer Stress Middle No Plasma 10 TF Torsional Shear Stress Top No Plasma 11 TF Torsional Shear Stress Top No Plasma 12 Wooley TF Torsional Shear Stress Top No Plasma 13 Wooley TF Torsional Shear Stress Top No Plasma 14 Wooley TF Torsional Shear Stress Top No Plasma 15 Wooley TF Torsional Shear Stress Top No Plasma 16 Wooley TF Torsional Shear Stress Top No Plasma 17 Wooley TF Torsional Shear Stress Top No Plasma 18 Outer TF Torsional Shear Stress Had With Plasma 19 Wooley TF Torsional Shear Stress Had With Plasma 20 Outer TF Torsional Shear Stress Did With Plasma 20 Oil Stress Near FFIa Upper . Tresca Based Evaluation No Plasma 20 OI Stress Near FFIA Lower . Hoop Stress Haed Lucton No Plasma 20 OI Stress Near FFIA Lower . Hoop Stress Haed Evaluation No Plasma 30 TFS Stress Hoop Stress + Bending Evaluation No Plasma Includes Thermal and Packing Fraction 31 FFI Hoop Stress + Bending Evaluation No Plasma Includes Thermal and Packing Fraction 34 FF4 Hoop Stress + Bending Evaluation No Plasma Includes Thermal and Packing Fraction 35 FF4 Hoop Stress + Bending Evaluation No Plasma Includes Thermal and Packing Fraction 36 FF1 L/2 Inch Bolting. Downward Forces Load the Bolts 37 FF1 L/2 Inch Bolting. Downward Forces Load the Bolts 38 FF1 L/2 Inch Bolting. Downward Forces Load the Bolts 39 FF1 L/2 Inch Bolting. Downward Forc	71 PFicL Hoop Stress 72 FF21 Hoop Stress 73 FF31 Hoop Stress 74 ip Hoop Stress 75 FF31 Hoop Stress 76 ip Hoop Stress 78 80 81 82 83 84 85 86 87 88 89 90 91 91 93 94 95 96 97 98 99 100 101 OH Peak Teaperature 102 PF1AU Peak Teaperature 103 PF1AU Peak Teaperature 104 PF1CU Peak Teaperature 105 PF1AU Peak Teaperature 105 PF1AU Peak Teaperature 106 PF2U Peak Teaperature 107 PF1AU Peak Teaperature 108 PF1AU Peak Teaperature 109 PF1AU Peak Teaperature 110 PF1C Peak Teaperature 110 PF1C Peak Teaperature 110 PF1AU Peak Teaperature 111 PF1A Peak Teaperature 112 PF2A Peak Teaperature 113 PF31 Peak Teaperature 114 PF4L Peak Teaperature 115 PF3C Peak Teaperature 116 PF3U Peak Teaperature 117 Pf1A 117 118 119 120 121 123 134 135 136 137 137 137 137 137 137 137 137	141 142 143 144 145 146 147 148 149 150 151 153 154 155 156 156 156 156 156 157 158 159 159 150 150 151 152 153 154 155 156 156 156 157 158 159 150 150 151 152 153 154 155 156 155 156 156 157 157 157 157 157 157 157 157

My (Titus) Results are in the larger plot in the middle of the figure. Stefans's results are the two smaller figures on the right. In the Titus results, the 1.1 headroom factor is applied. I am not sure if it is applied to Stefan's results. The results are qualitatively in agreement and quantitatively in agreement within the limits of reading Stefan's plots

8.2 PF4Upper Bolting

8.3 PF5U Bolting

NSTX-U

8.4 PF5L Bolting

8.5 PF3U Bolting

^{8.7} Total OL OOP Moment

9.1 Unit Current Input for Global Model

NSTX-U-

9.2 PF1c Radial and Vertical Forces

Force Influence Coefficients

Force influence coefficients are provided by Ron Hatcher

	zero ! Influence Coefficient Matrix Check of Ron's Coefficients read ron7 divi 0,2,2,1 snal 1 merge 1,.0001 redu !real no.,nx , ny , nturns, terminal current rcoi 16
PF1c Radial and Vertical Forces	10 1,4,7,64,250 !PF1AU Note that 2,2,5,32,250 !PF1bU Current is not 1000 Amp 3,2,5,20,250 !PF1cU But 250 Because of divi 0,2,2,1 4,4,14,28,250 !PF2U 5,3,10,30,250 !PF3U 6,1,17,17,250 !PF4U 7,4,6,24,250 !PF5L 9,1,17,17,250 !PF4L 10,3,10,30,250 !PF3L 11,4,14,28,250 !PF3L 11,4,14,28,250 !PF2L 12,2,5,20,250 !PF1cL 13,2,5,32,250 !PF1bL 14,4,7,64,250 !PF1aL 15,10,80,884,250 !OH 16,6,8,1,250 !Plasma infl 16 copt r plce pl exit exit

Figure from a comparison with Stefan Gerhard's implementation of the DCPS algorithms

10.0 Global Moment Sums

The analyses of record for these are provided by Bob Woolley. In this calculation, coefficients were derived to check Bob's results are presented.

10.1 Upper Half Machine

10.2 Lower Half Machine

10.3 Net Outer Leg Torque

The total outer leg moment, and total upper half and total lower half moments are not ones that correlate directly to any filed calculation structural assessment.

NSTX-U-

The total outer leg moment was included in Charlie Neumeyer's spreadsheet. Early in the development of the DCPS, the limits were set based on the 96 EQ. The equilibria probably have large opposing upper and lower outer TF loading which nets to a small total torque. If you set the limit on this "canceled" torque from the 96 EQ then it is set to a non-critical value.

The upper outer and Lower Outer moment sums represent loading at the TF outer leg bending, TF trusses and aluminum blocks, also the torque carried by the vessel mid plane. The TF torsional shear is also obviously connected directly with the TF epoxy stress. If these have a comfortable margin, the criteria on the total outer leg moment, and the upper half sums and lower half sums should be relaxed. The spoked lid calculation DCPS section indicates that the spoked lid load and stress correlates with the TF torsional shear Upper Outer TF Legs

10.4 Bob Woolley's 96 EQ Max Min Upper Outer and Lower Outer TF With plasma Both at EQ 79

Upper Max: 2531101 N-m Min: ~0 N-m Lower Max:~0 Min: -2591595 N-m

No plasma Both at EQ 79

Upper Max: 3927760 N-m Min: ~0 N-m Lower Max:~0 Min: -3988254 N-m

P. Titus's 96 EQ Max Min Upper Outer and Lower Outer TF

With plasma Both at EQ 79

NSTX-U

Upper Max: 3014979 N-m Min: ~0 N-m Lower Max:~0 Min: -2995245 N-m

No plasma Both at EQ 79

Upper Max: 4093792.8 N-m Min: ~0 N-m Lower Max:~0 Min: -4077575 N-m

5

10.5 Lower Outer TF Legs

🚺 NSTX-U

Above is a result for the PF1a hoop stress from the DCPS simulator. The hoop stress is approximated with the radial load, a 1/r correction and a "fudge factor" to account for local distributions in the conductor. Below Len Myatt's results are plotted. The results are close .

Stress Analysis of Inner PF Coils (1a, 1b & 1c), Center Stack Upgrade NSTXU-CALC-133-01-02 NSTXU-CALC-133-01-01, Reference [9] October 27, 2011 Note: Biggest Winding Pac Stress is 18 Mpa with an allowable of 125 MPa

12.0 PF1aU Factor Correction

NSTX-U

Plot of Algorithm Constants for Algorithm # 33 and 34 PF4 Hoop Stress + Bending Evaluation No Plasma, Includes Thermal and Packing Fraction

NSTX-U-

17.0 Algorithm 160,161 TF Outer Leg Stress

Figure 17.0-1 Installed Location of Outer Leg FISO Strain Gauges

				Serial	
Item	Description	Sensor Type	Range	Nmbr	GageFactor
1	NE OH(BayD) Upr Pre-Load	Displacement	-390 to +390	-	8053284
2	SE OH Upr(Bay J) Pre-Load	Displacement	-390 to +390	DF10005	8053355
3	Bay E/F Upr Lid Outside	Strain	-5000 to +5000	SF05136	1001034
4	Bay E/F Upr Lid Inside	Strain	-5000 to +5000	SF05135	1001044
5	Bay E/F Lwr Lid Outside	Strain	-5000 to +5000	SF05134	1001054
6	TF COIL "A"	Strain	-5000 to +5000	SF15175	1001342
7	TF COIL "B"	Strain	-5000 to +5000	SFØ5133	1001036
8	TF COIL "C"	Strain	-5000 to +5000	SF15171	1001385
9	TF COIL "D"	Strain	-5000 to +5000	SF15174	1001430
10	TF COIL "E"	Strain	-5000 to +5000	SF15097	1001322
11	TF COIL "F"	Strain	-5000 to +5000	SF15098	1001371
12	TF COIL "G"	Strain	-5000 to +5000	SF15173	1001355
13	TF COIL "H"	Strain	-5000 to +5000	-	-
14	TF COIL "I"	Strain	-5000 to +5000	-	-
15	TF COIL "J"	Strain	-5000 to +5000	SF16016	1001445
16	TF COIL "K" - New	Strain	-5000 to +5000	SF15169	1001359
17	TF COIL "L" - New	Strain	-5000 to +5000	SF15177	1001466

Figure 17.0-2 FISO Strain Gauge Designations

DCPS Check Calculations

TF Outer Leg Stress Influence Coefficients

	1	5.39E+08	2.92E+07	1	5.10E+08
	2	2.40E+07	2.92E+07	2	-5.18E+06
	3	5.33E+07	2.92E+07	3	2.41E+07
	4	5.20E+07	2.92E+07	4	2.28E+07
Pf2U	5	1.10E+08	2.92E+07	5	8.08E+07
PF3U	6	1.03E+07	2.92E+07	6	-1.89E+07
PF4U	7	4.22E+06	2.92E+07	7	-2.50E+07
PF5U	8	6.05E+06	2.92E+07	8	-2.31E+07
	9	2.51E+07	2.92E+07	9	-4.12E+06
	10	2.60E+07	2.92E+07	10	-3.21E+06
	11	2.48E+07	2.92E+07	11	-4.35E+06
	12	1.78E+07	2.92E+07	12	-1.14E+07
	13	4.20E+07	2.92E+07	13	1.28E+07
	14	3.07E+07	2.92E+07	14	1.52E+06
	15	6.69E+06	2.92E+07	15	-2.25E+07
	16	2.45E+07	2.92E+07	16	-4.71E+06
	17	2.92E+07	2.92E+07	17	0.00E+00

The aim of the FISO Outer Leg Strain measurements and the new Fiber Bragg Grating system is ultimately to monitor the insulation shear bonds between the 3 conductors of the TF outer legs. The shear stress in these bonded layers is proportional to the TF outer-leg out-of-plane bending. The strain gauges measure the sum of the effects of TF in-plane loading, Thermal expansion due to heat-up, and TF outer leg out-of-plane bending.

The figure below shows the MDS+ plot output for three of the installed FISO TF outer leg strain gauges. The data shown is for shot 205080 which was a clean shot done prior to the PF1a failure. The FISO gauges measure all the sources of strain including in-plane "bursting" load on the TF, out-of-plane bending from the interaction with the PF field, and the thermal strain due to expansion of the warming TF.

NSTX-U

The upper plot (number 1) in figure 4.5-1 is the OH current which is one contributor to the out-of-plane loading. The bottom plot (number 5 is the TF current that is a measure of the in-plane tensile loading. Plots 2,3,and 4 are the total bending strain in three different upper outer legs. The shift in strain before and after the shot shown in plots 3 and 4 is a measure of the thermal strain that results from the expansion of the TF outer leg. To evaluate just the bending due to the out-of-plane loading, in-plane and thermal strains must be subtracted out of the total strain. This will be true of the FBG system. An appropriate scale factor to be applied to the TF current will be needed for the in-plane strain and the TF end temperature will be needed to quantify the thermal strain. Then ideally these should be subtracted out of the total strain and these values summarized and presented in trending evaluations and COE summary page.

With TF Only Loading, and 130 kA terminal current, the stress in the upper outer leg is 30.6 MPa or 261 micro strain. This will scale with the square of the current so for 80 kA the expected stress is 11.5 MPa or a strain for in-plane loading is 99 micro strain. In figure 3.5-1 the total stress is about MPa for the upper outer TF leg. Thus the out-of-plane stress is MPa.

NSTX-U-

Figure 17.0-8 Stress Components from The Global Model Run

Table 4.5-1	Stresses	for	TF	Upper	Outer	Leg	Midspan
-------------	----------	-----	----	-------	-------	-----	---------

	Thermal	TFON	TFON	Total	OOP Only	OOP (ANSYS
	(MPa)	Only	+Thermal	TFON	From	Load Case
				OOP	Components	Subtraction)
				+Therm		
Base Load	Delta=58 C	130				
		kA				
Load Step	7		8	58		
Upper	34.2	30.6	65.7	99	99-65.7=33.3	33.3
Outer TF						

Figure 17.0-9 Computed and Measured TF Outer Leg Stress and Strain - OOP Adds.

About 70 micro strain TF Heat-up Strain . In figure 17.0-9, the outer-upper TF leg bending stress has been computed from influence coefficients for the sum of TFON+OOP, and for the OOP load only. A two peak plot is produced, for the TFON +OOP case, similar to the plot measured by the FISO strain gauges. In the FISO measurement, the thermal strain is included and this shifts the before and after strain. The measured strain is 90 micro strain and the predicted is 156. This can be a calibration error with the FISO gauges (John Dong provided the factor of 500), or the installed gauges may not be at the same location as was used to compute the stresses from the global model -Or the analysis needs improving. For the monitoring of the results, consistency from coil to coil, and shot to shot will be important.

One additional point is that the results vary depending on which side the strain gauges are mounted on. This determines if the OOP component adds to or subtracts from the TFON and thermal strains.

Figure 4.5-4 Computed and Measured TF Outer Leg Stress and Strain – OOP Subtracts

Figure 4.4-4 is for the case where the strain gauge is on the opposite edge of the coil from the situation plotted in figure 4.4-3. The shape of the curves of the computed total and FISO measurement are similar – These are for two different shots, because John Dong swapped the input to the FISO box. Once installed, we will be able to determine whether the OOP part should be additive or subtractive. If we want to subtract out the before and after shot thermal strain we will either need a measured TF temperature or do a j^2t calculation on the TF current profile.

18.0 Algorithm 165,166 Upper Spoked Lid

Spoked lid stress is a function of the twisting moment and the vertical motion of the OH as it is heated and as it contracts under its self loads. As measured by the FISO LVDT, the OH contracts about 325 mils for 20 kA In the figure above, the stress is 135MPa/8mm = 16.875 MPa/mm or 428.6 MPa per inch. So the spoked lid stress is $428.6 \times .325/20^{\circ}2 \times Ioh^{\circ}2 = .348 \times Ioh^{\circ}2$ with Ioh in kA

Algorithm 165

Because the OH vertical contraction under the centering self load flexes the lid, the stress at the top and the bottom of the lid spoke is substantially different. The top and bottom values were averaged to obtain the OH coefficient.

.130E+09

.1528+09

1958+0

-1.24869 .2172+08 .4332+08 .6502+08 Run#43,nstxU, data set #ts15,1T

6.5

9.5

.8228+07

.1168+08

12.5

15.5

SZ 3

S1 4

.1482+07 .1172+07 Run#43,nstxU, data set #ts16,1T

19.0 Fields at Specific Locations in the Machine 19.1 Algorithm 201 Passive Plate Fields

19.2 Fields at the Resistive Bolometer

Radial Fields from Wooley and Hatcher

NSTX-U

NSTX-U-

19.3 Background fields at the RWM coils

DCPS Check Calculations

20.0 Radial Force Limits based on Hoop Stress Limits

lgorithm 189 = .1239 ithm 189 is .3 Te: ithm 189 is -.3 Te:

20

<u>suit of Al</u> for Algori for Algori 10

The radial forces were previously limited to the 96EQ maxima. This is overly conservative. Vertical forces were found to be much more significant than radial force effects. In fact inNSTX, the radial forces were not set to some limit in the coil protection system, only vertical forces. To get more operating space, the radial force limits were calculated based on an allowed hoop stress based on fatigue of 125 MPa.

Coil	(cente	dR	(cente	dZ	Fill	Fatigue Allowed Stress 125 Mpa Converte d to psi	Coil Name	Fudge Factor to Include Hole Stress and Vertical Stress	Allowed Radial Load Lbs/Coil with 1/r Correction and Fudge Factor	Factor Of Safety Over the 96 EQ DPSS	Factor Of Safety Over the Worst Power DPSS	Max of 96 EQ from DPSS Lbs	Max Power Supply fro DPSS
OH (half-	(11)	(11)		(11)									
plane)	9.531	2.73	41.93	83.87	0.701	1.81E+04	(half-pla	1.54	1.02E+07	1.00		10205047.8	
PF1a	12.78	2.46	62.62	18.25	0.824	1.81E+04	PF1a	1.54	2.47E+06	6.34	2.06E+00	390442	1202680
PF1b	15.76	1.332	71.03	7.142	0.788	1.81E+04	PF1b	1.54	5.31E+05	3.00	1.24E+00	176824	427957
PF1c	21.67	1.478	71.4	6.552	0.85	1.81E+04	PF1c	1.54	5.88E+05	5.95	2.01E+00	98727	291802
PF2	31.5	6.406	74.53	5.352	0.741	1.81E+04	PF2	1.54	1.69E+06	17.07	5.66E+00	98896	298121
PF3	58.84	7.34	62.72	5.352	0.693	1.81E+04	PF3	1.54	1.89E+06	7.94	3.98E+00	237654	474283
PF4	70.65	3.604	33.37	5.352	0.753	1.81E+04	PF4	1.54	1.05E+06	3.61	2.23E+00	289472	468175
PF5	79.24	5.328	24.21	5.4	0.773	1.81E+04	PF5	1.54	1.59E+06	2.54	2.38E+00	625160	667690

The hoop stress computations were implemented in the True Basic DCPS code. These were then checked against the factor of safety reported above for the 96 EQ and they agreed.

```
PF Hoop Stresses
!When I gave Stefan the radial force limits it was based on 125 MPa fatigue
!1.54 fudge factor for hole vertical stress, hoop fill factor is also included
for i=1 to 16
let algor$(60+i)=myname$(i)&" Hoop Stress, incl fill and 1/r and 1.54 fudge"
let AlgAccept(60+i)=125
let algunits$(60+i)="MPa"
for j=1 to curnum
let algresults(60+i,j)= (Fr(j,i)/pfdr(i)/pfdz(i))/1e6*1.54*pfr(i)/(pfr(i)-pfdr(i))/fill(i)
next j
```

21.0 Evaluation of force sums

FZ, PF1aU+PF1bU Maybe important for the case connection to the centerstack - Will quantify

FZ, PF1aU-PF1bU Probably not important - will quantify anyway

FZ, PF1aL+PF1bL Probably could be deleted in favor of the last one below.

FZ, PF1aL-PF1bL Probably not important

FZ, PF3U+PF4U+PF5U+PF4L+PF5L Meaningless - can be deleted

FZ, (PF1AU+PF1BU+PF1BL+PF1AL+OH) This is the centerstack launching load - Upward is limited by the capacity of the bolting in the casing and PF1a,b mandrel structure - This will include some headroom in the bolt stress to take the possibility of halo loads - will quantify. Downward will be much higher.

		C	ЭН	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L	Ip
	FX	h	nfluence	Matrix	N/rad													
ОН		1	25230.3	3806.061	1708.908	967.1191	1134.092	1209.182	776.9004	1080.26	3806.043	1708.914	967.123	1134.096	1209.203	776.8887	1080.252	58.04883
PF1AU		2	-140.673	856.7656	804.679	402.8212	385.0967	267.9286	97.79694	113.873	2.693542	1.662048	1.908569	5.065918	19.87793	25.48993	46.92737	1.891357
PF1bU		3	-111.435	-147.157	344.059	462.4921	333.3344	164.4536	52.2583	60.96289	1.346069	0.843353	0.970917	2.600311	10.30087	13.1109	24.38876	0.834534
PF1cU		4	-49.8817	-66.3434	-186.161	152.8504	363.0069	147.4613	44.34793	51.61908	1.111908	0.69957	0.805283	2.161407	8.583679	10.90804	20.36479	0.65506
PF2U		5	-31.1968	-44.1531	-82.4588	-136.834	292.1378	317.2212	81.96744	95.94821	1.96759	1.253113	1.443481	3.899963	15.58963	19.65652	37.01328	1.009399
PF3U		6	-21.5523	-26.2723	-19.4406	-24.8062	-74.7123	400.619	163.52	198.7234	3.382355	2.227905	2.566162	7.052979	28.73105	35.6076	68.99472	0.94574
PF4U		7	-14.8351	-3.98004	-1.31325	-1.43192	-0.89291	16.79922	150.6147	444.4194	2.456009	1.717377	1.986237	5.62558	23.96396	30.02812	62.74477	-0.35266
PF5U		8	-20.3084	-2.72794	-0.53848	-0.5621	1.093414	15.20554	-199.776	300.6638	2.999451	2.246582	2.606537	7.632538	33.50699	39.08331	86.71771	-1.09036
PF1AL		9	-140.673	2.693604	1.662109	1.908752	5.066101	19.87787	25.4903	46.92773	856.7654	804.6786	402.821	385.0972	267.929	97.79706	113.8729	1.891724
PF1bL		10	-111.435	1.3461	0.843353	0.970947	2.600433	10.30093	13.11102	24.38889	-147.157	344.0589	462.4922	333.3345	164.4537	52.25842	60.96298	0.834717
PF1cL		11	-49.8816	1.111908	0.699554	0.805328	2.161484	8.583694	10.90807	20.36481	-66.3433	-186.161	152.8504	363.007	147.4612	44.34799	51.61909	0.655121
PF2L		12	-31.1969	1.96756	1.253174	1.443481	3.900024	15.58957	19.65646	37.01309	-44.1531	-82.459	-136.834	292.1379	317.2212	81.9675	95.9483	1.00943
PF3L		13	-21.5522	3.382446	2.227753	2.566376	7.05304	28.73096	35.6077	68.99469	-26.2725	-19.4405	-24.8061	-74.7123	400.6189	163.5198	198.7233	0.945801
PF4L		14	-14.8352	2.456024	1.717377	1.986221	5.625595	23.96391	30.02812	62.74481	-3.97992	-1.31326	-1.43192	-0.89294	16.79919	150.6147	444.4194	-0.35263
PF5L		15	-20.3084	2.999481	2.246521	2.606598	7.632538	33.50702	39.0834	86.7178	-2.72781	-0.53839	-0.56195	1.093506	15.20557	-199.776	300.6637	-1.09033
lp		16	-0.65479	0.39844	0.250672	0.287969	0.757769	2.9888	4.106287	6.647198	0.39844	0.250672	0.287969	0.757769	2.9888	4.106287	6.647198	0.205512
	FY	I	nfluence	Matrix	N/rad													
он		1	0.00E+00	101.621	6 132.129	6 87.868	2 115.560	2 56.1875	51 13.2584	9 12.597	33 -101.6	21 -132.1	29 -87.86	77 -115	.56 -56.18	374 -13.25	83 -12.59	974 1.15E-

OH	1	0.00E+00	101.6216	132.1296	87.8682	115.5602	56.18751	13.25849	12.59733	-101.621	-132.129	-87.8677	-115.56	-56.1874	-13.2583	-12.5974	1.15E-04
PF1AU	2	-101.118	0.00E+00	384.1478	118.9599	77.54909	0.139336	-8.96284	-10.4976	-0.15052	-9.56E-02	-0.14978	-0.4568	-2.08736	-2.97952	-5.23168	-0.41885
PF1bU	3	-131.409	-386.426	0.00E+00	13.84991	35.47831	-9.61017	-7.17572	-7.91616	-9.66E-02	-6.30E-02	-9.43E-02	-0.28422	-1.29785	-1.85637	-3.34522	-0.21371
PF1cU	4	-87.757	-119.389	-13.8709	0.00E+00	67.80286	-13.4356	-8.80649	-9.60769	-0.14898	-9.25E-02	-0.12476	-0.35941	-1.56134	-2.19689	-3.96695	-0.23739
PF2U	5	-115.714	-77.7934	-35.61	-68.2043	0.00E+00	-69.1412	-26.9411	-28.6129	-0.45662	-0.28304	-0.36006	-1.00674	-4.25728	-5.93188	-10.8552	-0.55093
PF3U	6	-56.2119	-0.1395	9.6224	13.45625	69.21666	0.00E+00	-157.733	-149.975	-2.08676	-1.29659	-1.56193	-4.25708	-17.5993	-24.5514	-46.0942	-1.64419
PF4U	7	-13.2569	8.966514	7.175429	8.808064	26.94148	157.7714	0.00E+00	-368.7	-0.83501	0.288889	-5.35E-02	-3.78803	-22.4096	-33.9093	-67.3666	0.65353
PF5U	8	-12.5961	10.50075	7.915802	9.609217	28.61358	149.9904	371.0913	0.00E+00	-5.23136	-3.34403	-3.96774	-10.8557	-46.0978	-69.5098	-140.886	-1.53568
PF1AL	9	101.1179	0.150541	9.56E-02	0.149777	0.456797	2.08738	2.979534	5.231685	0.00E+00	-384.148	-118.96	-77.5491	-0.13934	8.962835	10.49761	0.418849
PF1bL	10	131.4086	9.55E-02	6.19E-02	9.32E-02	0.283148	1.296791	1.855291	3.344139	386.4264	0.00E+00	-13.8499	-35.4783	9.61014	7.175722	7.916151	0.213699
PF1cL	11	87.75694	0.149756	9.33E-02	0.125511	0.360171	1.562139	2.197661	3.967718	119.3888	13.87093	0.00E+00	-67.8029	13.43558	8.80649	9.607681	0.23738
PF2L	12	115.7142	0.456672	0.283127	0.360149	1.00679	4.257355	5.931921	10.85529	77.79339	35.61006	68.20438	0.00E+00	69.14127	26.94106	28.61289	0.550955
PF3L	13	56.21167	2.086667	1.296516	1.561787	4.257044	17.59918	24.55125	46.09405	0.139395	-9.62249	-13.4564	-69.2168	0.00E+00	157.7327	149.9749	1.644278
PF4L	14	13.25691	2.97919	1.855294	2.19768	5.932143	24.55371	36.0535	69.51076	-8.96656	-7.17546	-8.80807	-26.9415	-157.772	0.00E+00	368.6999	-0.65354
PF5L	15	12.59614	5.231288	3.343943	3.967732	10.85565	46.09769	69.50972	140.8862	-10.5008	-7.91585	-9.60928	-28.6136	-149.991	-371.092	0.00E+00	1.535666
lp	16	-1.55E-08	0.419172	0.212848	0.238377	0.551498	1.645014	1.489633	1.53422	-0.41917	-0.21285	-0.23838	-0.5515	-1.64501	-1.48963	-1.53422	0.00E+00

Moment Influence Coefficients

		OH	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L	lp
	MZ	Influence	Matrix	N-m/rad													
OH		1 0.00E+00	-5784.29	-2838.07	-1513.56	-1616.71	-1121.45	-371.817	-348.327	5784.292	2 2838.077	1513.561	1616.714	1121.453	371.8189	348.3287	1.54E-03
PF1AU		2 7.152492	2 0.00E+00	-73.6636	-20.0842	-10.7058	-1.67E-02	1.050949	1.221679	4.40E-02	2.56E-02	2.81E-02	2 7.11E-02	0.266337	0.352855	0.613915	4.54E-02
PF1bU		3 0.450232	2 -6.49832	2 0.00E+00	-0.48198	-0.75231	0.146579	0.101039	0.110743	3.10E-03	1.88E-03	2.03E-03	5.06E-03	3 1.95E-02	2.64E-02	4.72E-02	2.47E-03
PF1cU		4 -4.01E-02	2 -1.14453	3 -0.29893	0.00E+00	-1.36518	0.137595	7.59E-02	8.12E-02	2.03E-03	3 1.17E-03	1.35E-03	3.36E-03	3 1.35E-02	1.80E-02	3.27E-02	1.64E-03
PF2U		5 3.73E-02	2 3.25E-02	2 8.51E-03	-3.28E-02	0.00E+00	-2.93E-02	-9.37E-03	-9.36E-03	1.93E-04	4.89E-04	-2.55E-04	-2.66E-05	5 -5.84E-04	-1.09E-03	-2.90E-03	-5.31E-05
PF3U		6 3.28E-02	2 -8.45E-05	5 -1.69E-02	-2.42E-02	-0.13652	0.00E+00	-0.19286	-0.17624	-1.35E-03	3 -6.15E-04	-1.23E-03	3 -2.31E-03	3 -1.18E-02	-1.78E-02	-3.60E-02	1.01E-05
PF4U		7 1.81E-03	3 1.45E-02	2 1.02E-02	1.26E-02	3.48E-02	0.208274	0.00E+00	1.686089	-8.70E-02	2 -8.69E-02	-8.68E-02	2 -8.67E-02	2 -8.36E-02	-7.60E-02	-5.52E-02	-8.88E-02
PF5U		8 6.00E-04	4 2.37E-03	3 1.34E-03	1.66E-03	4.70E-03	2.13E-02	0.34347	0.00E+00	3.96E-04	9.27E-05	2.31E-04	5.87E-04	4.05E-03	4.44E-03	1.63E-02	-6.30E-04
PF1AL		9 -7.1523	5 -4.34E-02	2 -2.57E-02	-2.80E-02	-7.17E-02	-0.2658	-0.35305	-0.61401	0.00E+00	73.66515	20.08523	10.70527	7 1.58E-02	-1.05117	-1.22179	-4.59E-02
PF1bL	1	10 -0.4503	7 -3.05E-03	3 -1.71E-03	-1.99E-03	-5.31E-03	-1.96E-02	-2.65E-02	-4.71E-02	6.498307	7 0.00E+00	0.482262	0.752478	3 -0.14651	-0.1009	-0.11069	-2.63E-03
PF1cL	1	11 3.99E-02	2 -1.98E-03	3 -1.10E-03	-1.35E-03	-3.52E-03	-1.34E-02	-1.81E-02	-3.26E-02	1.14442	0.298811	0.00E+00	1.365146	5 -0.13729	-7.59E-02	-8.14E-02	-1.71E-03
PF2L	1	12 -3.69E-02	2 -3.48E-04	1 -3.97E-04	4.51E-05	-2.21E-04	4.78E-04	1.18E-03	2.56E-03	-3.21E-02	2 -7.84E-03	3.30E-02	0.00E+00	2.88E-02	9.07E-03	8.70E-03	-2.28E-04
PF3L	1	13 -3.30E-02	2 1.25E-03	9.91E-04	1.05E-03	2.59E-03	1.25E-02	1.79E-02	3.62E-02	3.17E-04	1.61E-02	2.39E-02	0.136112	2 0.00E+00	0.193252	0.176294	5.08E-05
PF4L	1	14 -1.84E-03	3 -1.38E-04	4 -1.84E-04	-1.52E-04	-3.86E-04	-3.46E-03	-1.12E-02	-3.20E-02	-0.01459	-1.02E-02	-1.27E-02	2 -3.48E-02	-0.20831	0.00E+00	-1.68622	8.86E-02
PF5L	1	15 -5.71E-04	4 -3.25E-04	4 -9.78E-05	-4.88E-04	-9.94E-04	-3.86E-03	-4.33E-03	-1.58E-02	-2.34E-03	3 -1.28E-03	-1.46E-03	8 -4.74E-03	3 -2.13E-02	-0.34239	0.00E+00	5.13E-04
lp	1	16 -4.60E-10	0 -1.95E-02	2 -1.32E-02	-1.53E-02	-4.05E-02	-0.16181	-0.22447	-0.26779	1.95E-02	1.32E-02	1.53E-02	4.05E-02	0.161809	0.224468	0.267794	0.00E+00

PE411

PF3U

он

FΥ

PE1ALL PE1bLL

Influence Matrix Ib/coil

PF1cU

PF2U

	ΕX	h	offuence	Matrix	lb/coil													
он	• •	1	35636.87	5375 921	2413 77	1366.02	1601 863	1707 925	1097 343	1525 827	5375 896	2413 779	1366.026	1601 869	1707 955	1097 327	1525 816	81 99184
DE1ALL		2	109 605	1210.15	1126.50	569 0702	542 0251	279 4204	129 1246	160 9414	2 20/152	2 2 1 2 3 7 5 9 2	2 605794	7 155 4 24	29 07695	26 00250	66 29210	2 671472
PLIAO		2	-198.095	1210.15	1150.58	308.9702	545.5551	576.4554	138.1340	100.8414	5.60455	2.347382	2.093784	7.155424	28.07085	30.00339	00.28319	2.071473
PF1bU		3	-157.398	-207.854	485.9707	653.2532	470.8225	232.2846	73.81293	86.10785	1.901274	1.191206	1.371384	3.672844	14.54961	18.51867	34.44823	1.178748
PF1cU		4	-70.456	-93.7076	-262.946	215.8956	512.7339	208.2837	62.63983	72.91006	1.570529	0.988117	1.137432	3.052909	12.12413	15.4072	28.76452	0.925248
PF2U		5	-44.0644	-62.3646	-116.47	-193.273	412.634	448.0633	115.776	135.5233	2.779149	1.769976	2.038865	5.508555	22.01978	27.76412	52.2799	1.42574
PF3U		6	-30.4419	-37.1087	-27.4592	-35.0379	-105.528	565.8596	230.966	280.6895	4.777452	3.146835	3.62461	9.962073	40.58155	50.29444	97.45251	1.335823
PF4U		7	-20.9541	-5.62166	-1.85491	-2.02253	-1.26121	23.72829	212.7378	627.7261	3.469023	2.425732	2.805486	7.945925	33.84821	42.41362	88.62468	-0.49812
PF5U		8	-28.6848	-3.85311	-0.76059	-0.79395	1.544408	21.47726	-282.177	424.6766	4.236614	3.173215	3.681638	10.78068	47.32739	55.20375	122.4856	-1.5401
PF1AL		9	-198.695	3.804616	2.347669	2.696043	7.155682	28.07676	36.00411	66.28371	1210.15	1136.579	568.9698	543.9357	378.4399	138.1348	160.8412	2.67199
PF1bL	1	10	-157.397	1.901317	1.191206	1.371427	3.673017	14.54969	18.51884	34.44841	-207.854	485.9706	653.2534	470.8228	232.2848	73.81311	86.10798	1.179007
PF1cL	1	11	-70.456	1.570529	0.988095	1.137497	3.053017	12.12415	15.40724	28.76454	-93.7075	-262.946	215.8956	512.7341	208.2836	62.63991	72.91008	0.925334
PF2L	1	12	-44.0644	2.779106	1.770062	2.038865	5.508642	22.0197	27.76403	52.27964	-62.3647	-116.47	-193.273	412.6341	448.0633	115.7761	135.5235	1.425783
PF3L	1	13	-30.4417	4.777581	3.146619	3.624912	9.96216	40.58142	50.29457	97.45247	-37.109	-27.459	-35.0377	-105.528	565.8595	230.9658	280.6894	1.335909
PF4L	1	14	-20.9542	3.469044	2.425732	2.805465	7.945947	33.84815	42.41362	88.62475	-5.62149	-1.85494	-2.02253	-1.26125	23.72825	212.7378	627.7261	-0.49808
PF5L	1	15	-28.6848	4.236657	3.173129	3.681724	10.78068	47.32743	55.20388	122.4857	-3.85294	-0.76046	-0.79373	1.544537	21.4773	-282.177	424.6765	-1.54005
lp	1	16	-0.92487	0.562782	0.354065	0.406746	1.07032	4.22157	5.799981	9.388924	0.562782	0.354065	0.406746	1.07032	4.22157	5.79998	9.388924	0.290278

PE5U

PE14I

PE1bl

PE1cl

PE21

PERI

PE4I

PE5I

он 1 0.00E+00 143.5368 186.6282 124.1106 163.2246 79.3628 18.72713 17.79327 -143.536 -186.628 -124.11 -163.224 -79.3626 -18.7268 -17.7933 1.63E-04 PF1AU 2 -142.825 0.00E+00 542.5947 168.0264 109.5352 0.196807 -12.6597 -14.8275 -0.21261 -0.13498 -0.21157 -0.64521 -2.94831 -4.20846 -7.38955 -0.59161 PF1bU 3 -185.61 -545.813 0.00E+00 19.56249 50.1118 -13.574 -10.1355 -11.1813 -0.13644 -8.89E-02 -0.13317 -0.40145 -1.83317 -2.62205 -4.725 -0.30186 PF1cU 4 -123.954 -168.632 -19.5922 0.00E+00 95.76905 -18.9773 -12.4388 -13.5705 -0.21043 -0.13065 -0.17622 -0.50765 -2.20534 -3.10303 -5.60317 -0.3353 PF2U 5 -163.442 -109.88 -50.2978 -96.336 0.00E+00 -97.6594 -38.0533 -40.4146 -0.64495 -0.39979 -0.50857 -1.42198 -6.01325 -8.37857 -15.3326 -0.77818 **PF3U** 6 -79.3972 -0.19704 13.59129 19.00645 97.76599 0.00E+00 -222.792 -211.834 -2.94748 -1.83139 -2.20618 -6.01297 -24.8583 -34.6779 -65.1063 -2.32235 7 -18 7248 12 66487 10 13503 12 44107 38 05385 222 8463 0 00F+00 -520 775 -1 17943 0 408045 -7 56F-02 -5 35045 -31 6527 -47 8957 -95 1529 0 923087 PE4U PF5U 8 -17.7915 14.83193 11.18078 13.57267 40.41563 211.856 524.1528 0.00E+00 -7.38911 -4.72331 -5.60429 -15.3333 -65.1114 -98.18 -198.997 -2.16909 PF1AL 9 142.8253 0.212634 0.134995 0.211554 0.645209 2.948348 4.208483 7.389563 0.00E+00 -542.595 -168.026 -109.535 -0.19681 12.65968 14.82749 0.591609 PF1bL 10 185.6099 0.134959 8.74E-02 0.131672 0.399936 1.83167 2.620531 4.723474 545.8131 0.00E+00 -19.5625 -50.1118 13.57397 10.13544 11.18127 0.301843 11 123.9535 0.211524 0.131741 0.17728 0.508729 2.206463 3.104116 5.604257 168.6322 19.59218 0.00E+00 -95.7691 18.97726 12.43884 13.5705 0.335291 PF1cL PF2L 12 163.4421 0.645032 0.399907 0.508697 1.422053 6.013358 8.378621 15.3327 109.8803 50.2979 96.33618 0.00E+00 97.6595 38.05326 40.41466 0.778203 **PF3L** 13 79.39692 2.94734 1.831281 2.205967 6.012919 24.8582 34.67775 65.10616 0.19689 -13.5914 -19.0066 -97.7662 0.00E+00 222.7916 211.8341 2.322483 14 18.7249 4.207996 2.620535 3.104143 8.378935 34.68122 50.92426 98.1814 -12.6649 -10.1351 -12.4411 -38.0539 -222.846 0.00E+00 520.775 -0.9231 PF4L PF5L 15 17.79158 7.389003 4.723197 5.604276 15.33321 65.1113 98.17993 198.9966 -14.832 -11.1809 -13.5728 -40.4157 -211.856 -524.153 0.00E+00 2.169071 16 -2.20E-08 0.592064 0.30664 0.336698 0.778971 2.323522 2.104052 2.16703 -0.59206 -0.30064 -0.3367 -0.77897 -2.32352 -2.10405 -2.16703 0.00E+00 lp

Moment Influence Coefficients

		(он	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L I	lp
	MZ		nfluence	Matrix	in-lb/coil													
ОН		1	0.00E+00	-321657	-157822	-84167.1	-89903.2	-62362.4	-20676.2	-19370	321656.8	157821.7	84167.15	89903.32	62362.52	20676.36	19370.1	8.54E-02
PF1AU		2	397.7406	0.00E+00	-4096.34	-1116.86	-595.338	-0.92864	58.44186	67.93596	2.444199	1.423487	1.561501	3.951034	14.81066	19.62181	34.139	2.523012
PF1bU		3	25.03682	-361.363	0.00E+00	-26.802	-41.8351	8.151034	5.618644	6.158261	0.172254	0.10466	0.112964	0.281341	1.082232	1.468651	2.622284	0.137351
PF1cU		4	-2.22988	-63.6455	-16.6229	0.00E+00	-75.916	7.651491	4.222968	4.517146	0.112876	6.52E-02	7.51E-02	0.186888	0.749204	1.003491	1.818811	9.10E-02
PF2U		5	2.072851	1.806785	0.473095	-1.82446	0.00E+00	-1.62928	-0.52132	-0.5205	1.08E-02	2.72E-02	-1.42E-02	-1.48E-03	-3.24E-02	-6.05E-02	-0.16128	-2.96E-03
PF3U		6	1.826376	-4.70E-03	-0.94109	-1.34819	-7.59144	0.00E+00	-10.7248	-9.80047	-7.53E-02	-3.42E-02	-6.82E-02	-0.1283	-0.65777	-0.98787	-2.00319	5.60E-04
PF4U		7	0.100596	0.807841	0.565928	0.700303	1.934912	11.58186	0.00E+00	93.76116	-4.84022	-4.83304	-4.82831	-4.82088	-4.64866	-4.22488	-3.06851	-4.93602
PF5U		8	3.33E-02	0.132045	7.43E-02	9.26E-02	0.261356	1.182083	19.09991	0.00E+00	2.20E-02	5.15E-03	1.29E-02	3.26E-02	0.225394	0.246646	0.908687	-3.50E-02
PF1AL		9	-397.733	-2.41395	-1.4274	-1.55944	-3.98945	-14.781	-19.6325	-34.1442	0.00E+00	4096.422	1116.913	595.3058	0.876383	-58.4543	-67.9422	-2.55193
PF1bL		10	-25.0447	-0.16964	-9.51E-02	-0.1107	-0.29508	-1.08845	-1.47231	-2.62085	361.3623	0.00E+00	26.81797	41.84433	-8.14722	-5.61095	-6.15559	-0.14611
PF1cL		11	2.22138	-0.10987	-6.13E-02	-7.48E-02	-0.1958	-0.74686	-1.00631	-1.8136	63.63967	16.61646	0.00E+00	75.91399	-7.63428	-4.22323	-4.52402	-9.52E-02
PF2L		12	-2.05474	-1.93E-02	-2.21E-02	2.51E-03	-1.23E-02	2.66E-02	6.56E-02	0.142118	-1.78606	-0.4361	1.835042	0.00E+00	1.602775	0.504313	0.483915	-1.27E-02
PF3L		13	-1.83614	6.95E-02	5.51E-02	5.81E-02	0.144168	0.694368	0.993703	2.012362	1.76E-02	0.894526	1.327448	7.569005	0.00E+00	10.74651	9.803458	2.82E-03
PF4L		14	-0.10234	-7.69E-03	-1.02E-02	-8.44E-03	-2.15E-02	-0.19217	-0.62038	-1.77811	-0.81144	-0.5678	-0.70574	-1.93624	-11.5836	0.00E+00	-93.7685	4.92904
PF5L		15	-3.17E-02	-1.81E-02	-5.44E-03	-2.72E-02	-5.53E-02	-0.21444	-0.24078	-0.879	-0.12985	-7.13E-02	-8.10E-02	-0.26365	-1.1841	-19.0401	0.00E+00	2.85E-02
lp		16	-2.56E-08	-1.08623	-0.73522	-0.84979	-2.25193	-8.99796	-12.4824	-14.8917	1.086227	0.735221	0.849789	2.251943	8.997968	12.48235	14.89168	0.00E+00

Comparison with Bob Woolley's Moment Influence Coefficients (2011 Coil Build)

Titus: 14June2011	PF1	LAU P	PF1bU	PF1cU	PF1cL	PF1bL	PF1AL (OH Ip)
PF1AU	2	0.00E+00	-73.66362	-20.08421	2.81E-02	2.56E-02	4.40E-02	7.152492	4.54E-02
PF1bU	3	-6.49832	0.00E+00	-0.4819759	2.03E-03	1.88E-03	3.10E-03	0.4502322	2.47E-03
PF1cU	4	-1.144525	-0.2989268	0.00E+00	1.35E-03	1.17E-03	2.03E-03	-4.01E-02	1.64E-03
PF1cL	11	-1.98E-03	-1.10E-03	-1.35E-03	0.00E+00	0.2988105	1.14442	3.99E-02	-1.71E-03
PF1bL	10	-3.05E-03	-1.71E-03	-1.99E-03	0.4822623	0.00E+00	6.498307	-0.450373	-2.63E-03
PF1AL	9	-4.34E-02	-2.57E-02	-2.80E-02	20.08523	73.66515	0.00E+00	-7.152351	-4.59E-02
ОН	1	-5784.291	-2838.073	-1513.561	1513.561	2838.077	5784.292	0.00E+00	1.54E-03
lp	16	-1.95E-02	-1.32E-02	-1.53E-02	1.53E-02	1.32E-02	1.95E-02	-4.60E-10	0.000E+00
Woolley: 17Decemb	ber 2010)							
	PF1	LAU P	PF1bU	PF1cU	PF1cL	PF1bL	PF1AL (он ір	0
PF1AU		2.732E-15	7.124E+01	1.957E+01	-2.783E-02	-2.452E-02	-4.129E-02	-7.094E+00	-5.998E-02
PF1bU		6.187E+00	-2.774E-15	4.882E-01	-2.018E-03	-1.770E-03	-2.916E-03	-4.159E-01	-3.896E-03
PF1cU		1.117E+00	3.054E-01	-8.688E-16	-1.353E-03	-1.184E-03	-1.934E-03	5.914E-02	-2.492E-03
PF1cL		1.934E-03	1.184E-03	1.353E-03	-8.688E-16	-3.054E-01	-1.117E+00	-5.914E-02	2.492E-03
PF1bL		2.916E-03	1.770E-03	2.018E-03	-4.882E-01	-2.774E-15	-6.187E+00	4.159E-01	3.896E-03
PF1AL		4.129E-02	2.452E-02	2.783E-02	-1.957E+01	-7.124E+01	2.732E-15	7.094E+00	5.998E-02
ОН		5.763E+03	2.824E+03	1.508E+03	-1.508E+03	-2.824E+03	-5.763E+03	8.050E-13	-9.994E-16
lp		3.579E-02	3.546E-02	4.378E-02	-4.378E-02	-3.546E-02	-3.579E-02	-1.197E-17	-2.262E-19
Ratios=Titus/Woolle	v								
	PF1	LAU F	PF1bU	PF1cU	PF1cL	PF1bL	PF1AL (OH la	
PF1AU		0.0000	-1.0341	-1.0261	-1.0090	-1.0439	-1.0645	-1.0083	-0.7565
PF1bU		-1.0504	0.0000	-0.9873	-1.0065	-1.0634	-1.0622	-1.0826	-0.6340
PF1cU		-1.0247	-0.9787	0.0000	-0.9979	-0.9901	-1.0495	-0.6781	-0.6563
PF1cL		-1.0216	-0.9309	-0.9948	0.0000	-0.9783	-1.0246	-0.6755	-0.6871
PF1bL		-1.0462	-0.9665	-0.9864	-0.9879	0.0000	-1.0504	-1.0830	-0.6744
PF1AL		-1.0513	-1.0468	-1.0077	-1.0262	-1.0341	0.0000	-1.0083	-0.7652
ОН		-1.0037	-1.0049	-1.0040	-1.0040	-1.0049	-1.0037	0.0000	-1.54E+12
lp		-0.5458	-0.3728	-0.3491	-0.3491	-0.3728	-0.5458	3.85E+07	0.0000

Comparison with Ron Hatcher's Radial Influence Coefficients (2010 Coil Build)

(Titus)

FX	Influe	nce I	Matrix	lb/coil/kA													
	OH	F	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L	lp
	1 4828	36.48	2746.325	859.9474	784.5903	1305.204	1988.13	1277.38	1776.095	2746.336	859.9474	784.6454	1305.243	1988.141	1277.352	1776.073	2673.429
	2 -97	7.565	275.8774	115.838	117.4871	166.6145	166.3844	60.38033	70.24693	0.716404	0.334667	0.599698	2.179581	12.22437	15.67624	28.87584	32.34988
	3 -57.	6236	0.11217	52.90043	114.077	110.8109	74.87416	23.47889	27.40892	0.260887	0.123932	0.222529	0.815751	4.620879	5.875896	10.94085	10.30711
	4 -40.	1177	-15.6223	-50.0426	58.41548	191.5191	105.8464	31.54342	36.73657	0.342076	0.163104	0.292742	1.074881	6.101841	7.749259	14.47587	12.90038
	5 -35.	9941	-18.4135	-29.6678	-76.4916	202.2312	313.6473	81.04058	94.86471	0.844124	0.40732	0.731168	2.698974	15.41392	19.43493	36.59594	27.94646
	6 -35.	4348	-16.4775	-9.07299	-18.0052	-73.8474	565.8593	230.9662	280.6903	2.077357	1.03745	1.860798	6.9724	40.5816	50.2947	97.4529	37.40968
	7 -24.	3918	-2.43067	-0.54534	-0.95842	-0.88568	23.72827	212.731	627.7262	1.513631	0.803541	1.44434	5.561359	33.84811	42.41364	88.62479	-13.9465
	8 -33.	3906	-1.65023	-0.19052	-0.33574	1.078615	21.47709	-282.177	424.716	1.854289	1.056847	1.902265	7.545006	47.32739	55.20401	122.4857	-43.1206
	9 -97.	5651	0.716383	0.334602	0.599676	2.179495	12.22435	15.6763	28.87582	275.8775	115.8378	117.4868	166.6143	166.3844	60.38029	70.2468	32.34971
	10 -57.	6236	0.260909	0.123943	0.222535	0.815761	4.620906	5.875912	10.94088	0.112186	52.90041	114.077	110.8109	74.87417	23.47893	27.40894	10.30715
	11 -40.	1176	0.342081	0.163093	0.292753	1.074903	6.101847	7.749259	14.47586	-15.6223	-50.0426	58.41547	191.5191	105.8464	31.5434	36.73655	12.90037
	12 -35.	9942	0.844168	0.407234	0.73106	2.698996	15.41388	19.43486	36.59594	-18.4134	-29.6678	-76.4916	202.2312	313.6472	81.04064	94.86464	27.94639
	13 -35	5.435	2.077185	1.037364	1.86041	6.972702	40.5816	50.29483	97.45264	-16.4777	-9.07308	-18.0052	-73.8476	565.8595	230.9662	280.6898	37.40955
	4 -24.	3918	1.513544	0.803433	1.444232	5.561337	33.84815	42.4136	88.62475	-2.43056	-0.54545	-0.95844	-0.88568	23.72818	212.731	627.7263	-13.9465
	15 -33.	3906	1.854375	1.05702	1.902308	7.545135	47.32731	55.20388	122.4856	-1.65053	-0.19052	-0.33583	1.078788	21.47722	-282.177	424.7159	-43.1206
	16 -30.	1441	6.867763	3.246558	5.819321	20.97625	118.2041	162.3995	262.8898	6.867784	3.246515	5.819321	20.97625	118.2041	162.3996	262.8898	227.5779

(Hatcher ref [1])

	OH	1AU	1BU	1CU	20	30	4U	5U	1AL	1BL	1CL	2L	3L	4L	5L
он	47683	2736	856	780	1839	1909	1225	1690	2736	856	780	1839	1909	1225	1690
1AU	-134	266	115	117	236	162	58	66	1	0.28	1	3	10	14	26
1BU	-68	-2	49	114	158	73	22	25	0.22	0.10	0.18	1	4	5	10
1CU	-50	-17	-52	54	273	103	30	34	0.28	0.13	0.24	1	5	7	13
20	-78	-29	-44	-112	380	436	109	125	1	0.45	1	4	18	24	45
30	-67	-19	-10	-20	-116	495	219	263	2	1	1	7	32	43	84
4U	-44	-3	-1	-2	-5	12	179	617	1	1	1	6	27	37	80
5U	-61	-3	-1	-1	-3	6	-300	353	1	1	1	8	37	47	108
1AL	-134	1	0.28	1	3	10	14	26	266	115	117	236	162	58	66
1BL	-68	0.22	0.10	0.18	1	4	5	10	-2	49	114	158	73	22	25
1CL	-50	0.28	0.13	0.24	1	5	7	13	-17	-52	53	273	103	30	34
2L	-78	1	0.45	1	4	18	24	45	-29	-44	-113	382	436	109	125
3L	-67	2	1	1	7	32	43	84	-19	-10	-20	-116	495	219	263
4L	-44	1	1	1	6	27	37	80	-3	-1	-2	-5	12	178	617
5L	-61	1	1	1	8	37	47	108	-3	-1	-1	-3	6	-300	354

NSTX-U

Titus Results for Axial Coefficients

		FY															
FY		Influence	Matrix	lb/coil/kA													
		OH	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L	lp
	1	0.00E+00	66.64612	73.89371	74.0529	132.9881	92.38018	21,799	20.71244	-66.6462	-73.8939	-74.0536	-132.988	-92.3803	-21,7989	-20.7122	-5.32E-05
	2	-66.2398	0.00E+00	82.92657	42.05192	35.86358	8.84E-02	-5.57602	-6.50188	-3.85E-02	-1.95E-02	-4.68E-02	-0.19482	-1.27565	-1.82401	-3.20804	-7.10529
	3	-73.5044	-83.1167	0.00E+00	-6.06E-06	9.865533	-5.01383	-3.3919	-3.7269	-1.93E-02	-9.78E-03	-2.24E-02	-9.23E-02	-0.60192	-0.8602	-1.55386	-2.70269
	4	-73.9737	-42.1405	8.42E-06	0.00E+00	33.31788	-10.4063	-6.43702	-7.00614	-4.66E-02	-2.24E-02	-4.65E-02	-0.18219	-1.12868	-1.58751	-2.87004	-4.75633
	5	-133.317	-36.0703	-9.97832	-34.0005	0.00E+00	-68.3974	-26.6338	-28.2862	-0.19458	-9.22E-02	-0.18216	-0.69652	-4.2084	-5.86372	-10.7307	-15.2492
	6	-92.4214	-8.87E-02	5.019825	10.42003	68.38245	0.00E+00	-222.792	-211.834	-1.27531	-0.60189	-1.1287	-4.20892	-24.8586	-34.6781	-65.1065	-65.0293
	7	-21.7962	5.577226	3.392086	6.437432	26.63189	222.8464	0.00E+00	-520.775	1.204982	2.168681	1.441272	-2.83587	-31.6523	-47.8954	-95.1527	-55.923
	8	-20.7099	6.503157	3,727408	7.006531	28.28558	211,8561	524,153	0.00E+00	-3.20748	-1.55358	-2.86979	-10.7316	-65.1111	-98.1797	-198.996	-60.7369
	9	66.23981	3.84E-02	1.93E-02	4.66E-02	0.194658	1.275486	1.823841	3.207869	0.00E+00	-82.9266	-42.0519	-35.8636	-8.84E-02	5.57603	6.501875	7.105299
	10	73.5044	1.93E-02	9.77E-03	2.24E-02	9.23E-02	0.601911	0.860187	1.553854	83.11672	0.00E+00	9.09E-06	-9.86554	5.013825	3.39191	3.726894	2.702686
	11	73,97371	4.66E-02	2.24E-02	4.65E-02	0.182191	1.128668	1.587507	2.87004	42.14047	0.00E+00	0.00E+00	-33.3179	10.40627	6.437025	7.006148	4.756346
	12	133.3172	0.194582	9.23E-02	0.182141	0.696529	4.208402	5.863739	10.73066	36.0703	9.978312	34.00047	0.00E+00	68.3974	26.63383	28.28614	15.24921
	13	92.42152	1.275601	0.602023	1.12885	4.209094	24.85861	34,67822	65.10667	8.89E-02	-5.01967	-10.42	-68.3822	0.00E+00	222.7915	211.8342	65.02914
	14	21.79631	1.823763	0.860134	1.58746	5.864709	34,6811	50.92421	98.1814	-5.57716	-3.39207	-6.4375	-26.6319	-222.847	0.00E+00	520.775	55.92292
	15	20.71029	3.207828	1.553992	2.8702	10.73193	65.1114	98.18004	198.9967	-6.5028	-3.72718	-7.00636	-28.2854	-211.856	-524.153	0.00E+00	60,7369
	16	3.45E-06	7.111921	2.705377	4,760818	15.26805	65.0586	58.91345	60.67682	-7.11192	-2.70537	-4.76081	-15.268	-65.0586	-58.9135	-60.6768	0.00E+00

Hatcher	Results	for Axial	Coefficients	[1	1
---------	---------	-----------	--------------	----	---

	OH	1AU	1BU	1CU	2U	3U	4 U	5U	1AL	1BL	1CL	2L	3L	4L	5L
OH	6	73	77	78	201	98	23	22	-73	-78	-78	-201	-98	-23	-22
1AU	-73	-0.02	84	43	52	0	-6	-7	-0.11	-0.05	-0.08	-0.41	-2	-2	-4
1BU	-77	-84	0.10	-0.09	14	-5	-4	-4	-0.05	-0.02	-0.04	-0.18	-1	-1	-2
1CU	-78	-43	-0.02	1	48	-11	-7	-8	-0.08	-0.04	-0.07	-0.33	-1	-2	-3
2U	-203	-52	-14	-48	-1	-102	-40	-43	-0.42	-0.18	-0.33	-2	-7	-9	-17
3U	-104	-0.46	5	10	96	-7	-228	-219	-2	-1	-1	-6	-26	-36	-68
4U	-25	6	3	6	38	222	-3	-530	-2	-1	-2	-9	-35	-52	-100
5U	-25	7	4	7	40	210	527	-2	-3	-2	-3	-15	-65	-99	-201
1AL	73	0.11	0.05	0.08	0.41	2	2	4	0.36	-84	-43	-52	0.27	6	7
1BL	77	0.05	0.02	0.04	0.18	1	1	2	84	0.08	0.10	-14	5	4	4
1CL	78	0.08	0.04	0.07	0.33	1	2	3	43	0.03	-1	-48	11	7	8
2L	203	0.42	0.18	0.33	2	7	9	17	52	14	49	1	102	40	43
3L	104	2	1	1	6	26	36	68	0.46	-5	-10	-96	7	228	219
4L	25	2	1	2	9	35	52	100	-6	-3	-6	-38	-222	1	530
5L	25	3	2	3	15	65	99	201	-7	-4	-7	-40	-210	-526	2

Page 46)
---------	---

FX	- h	nfluence I	Matrix I	b/coil													
	1	2184.633	337.0884	150.602	85.25023	100.0352	106.7215	68.57568	95.35145	337.088	150.6022	85.24972	100.0361	106.7212	68.57516	95.35179	4.36636
	2	-13.0325	74.58116	70.85085	35.52862	33.98438	23.64041	8.633018	10.05266	0.237816	0.146751	0.168535	0.4473	1.75518	2.250726	4.143437	0.220924
	3	-9.86305	-13.0077	30.02943	40.7569	29.4003	14.51467	4.613392	5.381883	0.118819	7.44E-02	8.57E-02	0.229553	0.909404	1.157479	2.153139	9.16E-02
	4	-4.42417	-5.86005	-16.4218	13.3616	31.99938	13.01482	3.915083	4.557014	9.81E-02	6.18E-02	7.11E-02	0.1908	0.757789	0.96299	1.797866	6.94E-02
	5	-2.77526	-3.89755	-7.30427	-12.1373	25.79114	28.00179	7.23583	8.470176	0.173665	0.110615	0.127421	0.344258	1.376226	1.735252	3.267518	9.54E-02
	6	-1.90668	-2.32413	-1.71882	-2.19336	-6.60047	35.25877	14.42838	17.53952	0.298596	0.196661	0.226562	0.62261€	2.536441	3.143634	6.091092	4.55E-02
	- 7	-1.30992	-0.35125	-0.11587	-0.12634	-7.89E-02	1.478745	13.28975	39.2435	0.216831	0.151606	0.175344	0.496588	2.11547	2.651024	5.539451	-4.06E-02
	8	-1.793	-0.24064	-4.75E-02	-4.95E-02	9.65E-02	1.340241	-17.6072	26.26867	0.264815	0.198318	0.230105	0.67373€	2.957825	3.450646	7.656071	-7.45E-02
	9	-13.0325	0.237816	0.146751	0.168535	0.4473	1.75518	2.25072	4.143432	74.58116	70.85085	35.52862	33.9843£	23.64041	8.633013	10.05265	0.226263
	10	-9.86304	0.118822	7.45E-02	8.57E-02	0.229556	0.90941	1.157487	2.153144	-13.0077	30.02942	40.7569	29.40031	14.51467	4.6134	5.381889	9.28E-02
	11	-4.42417	9.81E-02	6.18E-02	7.11E-02	0.190799	0.757788	0.962989	1.797865	-5.86005	-16.4218	13.3616	31.99938	13.01482	3.915082	4.557014	7.01E-02
	12	-2.77527	0.173656	0.110615	0.127424	0.34425	1.376226	1.735249	3.26752	-3.89755	-7.30427	-12.1373	25.79114	28.00179	7.235833	8.470171	9.58E-02
	13	-1.90666	0.298596	0.196664	0.226562	0.622622	2.536449	3.143647	6.091086	-2.32414	-1.71882	-2.19335	-6.60048	35.25877	14.42838	17.53951	4.50E-02
	14	-1.30992	0.216826	0.1516	0.175342	0.496584	2.115465	2.651018	5.539452	-0.35126	-0.11587	-0.12634	-7.89E-02	1.478737	13.28975	39.2435	-4.08E-02
	15	-1.793	0.26481	0.198318	0.230105	0.673736	2.957825	3.450652	7.656082	-0.24064	-4.75E-02	-4.95E-02	9.65E-02	1.340244	-17.6072	26.26867	-7.47E-02
	16	-5.88E-02	2.04E-02	1.94E-02	2.41E-02	6.99E-02	0.274461	0.306199	0.453967	2.14E-02	2.02E-02	2.50E-02	7.18E-02	0.277376	0.307423	0.455098	7.49E-03
FY	1	nfluence 1	Matrix I	b/coil													
	1	0.00E+00	9.084172	11.79914	7.778748	10.1807	4.957735	1.170719	1.1123	-9.08418	-11.7992	-7.77876	-10.1807	-4.95773	-1.17074	-1.11231	-3.35E-04
	2	-8.90795	0.00E+00	33.41848	10.41854	6.813034	1.23E-02	-0.79055	-0.92614	-1.33E-02	-8.43E-03	-1.32E-02	-4.03E-02	-0.18431	-0.26305	-0.46184	-5.35E-02
	3	-11.5449	-34.244	0.00E+00	1.215617	3.118256	-0.84721	-0.63327	-0.69865	-8.48E-03	-5.51E-03	-8.28E-03	-2.50E-02	-0.11453	-0.16382	-0.29525	-2.86E-02
	4	-7.73862	-10.5711	-1.22274	0.00E+00	5.944123	-1.18458	-0.77738	-0.84813	-1.32E-02	-8.24E-03	-1.11E-02	-3.18E-02	-0.13792	-0.19402	-0.35027	-3.18E-02
	5	-10.2351	-6.89944	-3.16445	-6.0861	0.00E+00	-6.10059	-2.37802	-2.52554	-4.03E-02	-2.50E-02	-3.18E-02	-8.88E-02	-0.37576	-0.52355	-0.9581	-6.78E-02
	6	-4.96639	-1.24E-02	0.851848	1.191608	6.127147	0.00E+00	-13.9167	-13.2359	-0.18414	-0.11443	-0.13786	-0.37572	-1.5534	-2.16692	-4.06834	-0.14459
	7	-1.17017	0.791866	0.633507	0.777671	2.378207	13.93041	0.00E+00	-31.9479	0.498561	0.597741	0.56751	0.237863	-1.40619	-2.42129	-5.37498	0.683196
	8	-1.11185	0.927222	0.698843	0.84838	2.525815	13.24138	32.79659	0.00E+00	-0.46171	-0.29517	-0.35023	-0.95821	-4.06954	-6.13612	-12.4371	-7.34E-02
	9	8.907958	1.33E-02	8.44E-03	1.32E-02	4.03E-02	0.184313	0.263052	0.461845	0.00E+00	-33.4185	-10.4185	-6.81304	-1.23E-02	0.790547	0.926145	5.66E-02
	10	11.54489	8.43E-03	5.46E-03	8.23E-03	2.50E-02	0.114481	0.163774	0.295201	34.24399	0.00E+00	-1.21562	-3.11826	0.847207	0.633268	0.698649	2.95E-02
	11	7.738616	1.32E-02	8.23E-03	1.11E-02	3.18E-02	0.137909	0.194005	0.350258	10.5711	1.222739	0.00E+00	-5.94412	1.184575	0.777384	0.848128	3.26E-02
	12	10.23509	4.03E-02	2.50E-02	3.18E-02	8.88E-02	0.375764	0.523551	0.958107	6.899436	3.164451	6.086101	0.00E+00	6.100593	2.37802	2.525542	6.88E-02
	13	4.966392	0.184122	0.11442	0.137849	0.375706	1.553401	2.166912	4.068331	1.24E-02	-0.85185	-1.1916	-6.12715	0.00E+00	13.9167	13.23593	0.144982
	14	1.170164	0.262943	0.163759	0.193992	0.523643	2.167689	3.182792	6.136477	-0.79186	-0.63351	-0.77767	-2.3782	-13.9304	0.00E+00	31.94787	-0.6834
	15	1.111855	0.461736	0.295182	0.350249	0.958232	4.06956	6.136151	12.43711	-0.92722	-0.69884	-0.84838	-2.5258	-13.2414	-32.7966	0.00E+00	7.30E-02
	16	3.36E-04	5.38E-02	2.87E-02	3.19E-02	6.82E-02	0.144496	7.82E-02	7.32E-02	-5.69E-02	-2.96E-02	-3.27E-02	-6.91E-02	-0.14488	-7.79E-02	-7.29E-02	0.00E+00
MZ	- h	nfluence I	Matrix i	n-lb/coil													
	1	0.00E+00	-20165.7	-9837.4	-5246.08	-5607.03	-3893.17	-1291.17	-1209.61	20165.75	9837.401	5246.083	5607.024	3893.168	1291.17	1209.613	1.582384
	2	24.48505	0.00E+00	-249.019	-68.2512	-36.4968	-5.93E-02	3.597156	4.181828	0.150695	8.74E-02	9.74E-02	0.246144	0.910378	1.21158	2.102748	0.238253
	3	1.561877	-22.3793	0.00E+00	-1.62305	-2.53606	0.495806	0.342246	0.375138	1.03E-02	5.81E-03	7.06E-03	1.78E-02	6.64E-02	8.90E-02	0.159802	1.40E-02
	4	-0.12537	-3.91461	-1.01542	0.00E+00	-4.59226	0.466528	0.258501	0.276698	6.85E-03	4.21E-03	4.69E-03	1.18E-02	4.58E-02	6.13E-02	0.110545	8.91E-03
	5	8.86E-02	3.45E-02	-3.11E-02	-0.27883	0.00E+00	-1.14E-02	-8.58E-03	-7.34E-03	1.60E-03	7.40E-04	2.57E-04	1.01E-03	1.01E-03	-6.79E-06	-3.68E-04	-2.33E-04
	6	9.00E-02	1.22E-03	-3.92E-02	-5.83E-02	-0.33361	0.00E+00	-0.4789	-0.43358	-1.60E-03	-1.95E-03	-2.38E-03	-5.77E-03	-2.91E-02	-4.36E-02	-8.77E-02	2.63E-03
	7	2.45E-02	5.89E-02	3.93E-02	4.80E-02	0.129275	0.739098	0.00E+00	4.723598	-0.79548	-0.79455	-0.79473	-0.7995	-0.81921	-0.80366	-0.78433	-0.79449
	8	2.84E-03	1.01E-02	6.44E-03	7.02E-03	1.74E-02	8.83E-02	1.399876	0.00E+00	1.08E-03	1.20E-03	2.08E-03	3.77E-03	1.58E-02	1.76E-02	6.35E-02	-1.16E-03
	9	-24.4851	-0.15059	-8.70E-02	-9.73E-02	-0.2457	-0.90958	-1.21081	-2.10158	0.00E+00	249.0188	68.25115	36.49831	5.93E-02	-3.59795	-4.18141	-0.25066
	10	-1.56241	-1.08E-02	-6.81E-03	-7.76E-03	-1.83E-02	-6.74E-02	-9.01E-02	-0.16021	22.37927	0.00E+00	1.623067	2.536109	-0.49601	-0.34273	-0.37514	-1.42E-02
	11	0.125455	-6.82E-03	-4.15E-03	-4.44E-03	-1.19E-02	-4.57E-02	-6.13E-02	-0.11049	3.914487	1.015485	0.00E+00	4.592257	-0.46678	-0.25859	-0.27669	-8.80E-03
	12	-8.81E-02	-1.24E-03	-5.91E-04	-8.94E-04	-9.79E-04	-1.72E-03	-1.09E-04	4.62E-05	-3.37E-02	3.17E-02	0.279924	0.00E+00	1.05E-02	8.16E-03	7.37E-03	-3.99E-05
	13	-8.99E-02	9.69E-04	9.41E-04	2.02E-03	4.21E-03	2.79E-02	4.14E-02	8.62E-02	-1.28E-03	3.94E-02	5.73E-02	0.333646	U.00E+00	0.479147	0.433768	-3.37E-03
	14	-2.47E-02	3.76E-03	2.97E-03	2.90E-03	7.61E-03	2.75E-02	1.17E-02	-7.64E-03	-5.89E-02	-3.94E-02	-4.82E-02	-0.12919	-0.73952	0.00E+00	-4.72365	0.794663
	15	-3.01E-03	-2.25E-03	-1.54E-03	-2.56E-03	-5.34E-03	-1.63E-02	-1.85E-02	-6.40E-02	-1.05E-02	-6.80E-03	-8.08E-03	-1.85E-02	-8.90E-02	-1.40106	0.00E+00	6.94E-04
	16	-9.10E-03	-3.99E-02	-0.28514	-0.3971	-1.25175	-4.40203	-3.21643	-3.18252	0.120331	0.328038	0.440437	1.313949	4.390471	3.108759	3.006638	0.00E+00

FX

NSTX-U

Test Cases

PF 4 and 5 Moment Study

Attachment A TBDCPS Source Listing

Attachment A Influence Coefficient Subroutine

```
Subroutine Influence (numcoils)
       include 'scommon.blk'
       DIMENSION rinffx(50,50)
       DIMENSION rinffy(50,50)
       DIMENSION rinfmz (50,50)
        do 9 i=1,50
do 9 j=1,50
        rinffx(i,j)=0
        rinffy(i,j)=0
        rinfmz(i,j)=0
  9
       Continue
        do 10 i=1, numcoils
        do 10 j=1, numcoils
        call snal(0)
call seal(0)
        ia1=1
        ia2=2
         ia3=3
        ia4=4
         ib1=0
         ib2=0
         ib3=0
        ib4=0
       CALL Sreal(i,i)
        CALL Sreal(j,i)
         call SNELEM(i,i)
       typekeydum=typekey
        typekey=7
        egrpkeydum=egrpkey
        egrpkey=7
       r=0.0
                                                   Creating Current Elements from Quad Elements
С
       call CCUR(R,i,ia1,ia2,ia3,ia4,ib1,ib2,ib3,ib4)
       call stype (7, 70)
        call snelem(70,70)
       call sfield(i)
        call snal(0)
        call seal(0)
       call stype (7,70)
        call gerase(70)
        call reduce
CALL Sreal(i,i)
       call SNELEM(i,i)
        CALL Sreal(j,j)
       call SNELEM(j,j)
       call mfor(i,ia1,ia2,ia3,ia4,ib1,ib2,ib3,ib4)
        call mfsum(i,i,fxsum,fysum,xmzsum)
rinffx(i,j)=fxsum
        rinffy(i,j)=fysum
        rinfmz(i,j)=xmzsum
        bxs=0.0
        bys=0.0
        byz=0.0
       call bscale(i,bxs,bys,bzs)
       call fscale(i,bxs,bys,bzs)
       call bscale(j,bxs,bys,bzs)
       call fscale(j,bxs,bys,bzs)
10
       CONTINUE
 54
       CONTINUE
        do 15 i=1, numcoils
        do 15 j=1, numcoils
        if (i.ne.j) rinffx(i,j)=rinffx(i,j)-rinffx(i,i)
rinffy(i,j)=rinffy(i,j)-rinffy(i,i)
rinfmz(i,j)=rinfmz(i,j)-rinfmz(i,i)
15
       Continue
       write(7,*) 'FX Influence Matrix N/rad'
        do 11 i=1, numcoils
      write(7,*) i,rinffx(i,1),rinffx(i,2),rinffx(i,3),rinffx(i,4),
     c rinffx(i,5),rinffx(i,6),rinffx(i,7),rinffx(i,8),rinffx(i,9),
c rinffx(i,10),rinffx(i,11),rinffx(i,12),rinffx(i,13),rinffx(i,14),
```

```
c rinffx(i,15), rinffx(i,16), rinffx(i,17), rinffx(i,18), rinffx(i,19)
 11
       continue
       write(7,*) 'FY Influence Matrix N/rad'
do 12 i=1,numcoils
       write(7,*) i,rinffy(i,1),rinffy(i,2),rinffy(i,3),rinffy(i,4),
      c rinffy(i,5),rinffy(i,6),rinffy(i,7),rinffy(i,8),rinffy(i,9),
c rinffy(i,10),rinffy(i,11),rinffy(i,12),rinffy(i,13),rinffy(i,14),
      c rinffy(i,15), rinffy(i,16), rinffy(i,17), rinffy(i,18), rinffy(i,19)
 12
      continue
       write(7,*) 'MZ Influence Matrix N-m/rad'
         do 13 i=1, numcoils
      uo 15 -1, Homoor15
write (7,*) i, rinfmz (i, 1), rinfmz (i, 2), rinfmz (i, 3), rinfmz (i, 4),
c rinfmz (i, 5), rinfmz (i, 6), rinfmz (i, 7), rinfmz (i, 8), rinfmz (i, 9),
c rinfmz (i, 10), rinfmz (i, 11), rinfmz (i, 12), rinfmz (i, 13), rinfmz (i, 14),
c rinfmz (i, 10), rinfmz (i, 11), rinfmz (i, 12), rinfmz (i, 14),
      c rinfmz(i,15), rinfmz(i,16), rinfmz(i,17), rinfmz(i,18), rinfmz(i,19)
 13
       continue
         do 16 i=1.numcoils
         do 16 j=1, numcoils
         rinffx(i,j)=rinffx(i,j)*.2248*2*3.1416
         rinffy(i,j)=rinffy(i,j)*.2248*2*3.1416
rinffy(i,j)=rinffy(i,j)*.2248*2*3.1416
rinfmz(i,j)=rinfmz(i,j)*.2248*2*3.1416*39.37
 16
       Continue
       write(7,*) 'FX Influence Matrix lb/coil'
do 17 i=1,numcoils
      write(7,*) i, rinffx(i,1), rinffx(i,2), rinffx(i,3), rinffx(i,4),
c rinffx(i,5), rinffx(i,6), rinffx(i,7), rinffx(i,8), rinffx(i,9),
      c rinffx(i,10),rinffx(i,11),rinffx(i,12),rinffx(i,13),rinffx(i,14),
      c rinffx(i,15),rinffx(i,16),rinffx(i,17),rinffx(i,18),rinffx(i,19)
 17
      continue
       write(7,*) 'FY Influence Matrix lb/coil'
         do 18 i=1, numcoils
       write(7,*) i,rinffy(i,1),rinffy(i,2),rinffy(i,3),rinffy(i,4),
      c rinffy(i,5), rinffy(i,6), rinffy(i,7), rinffy(i,8), rinffy(i,9),
      c rinffy(i,10),rinffy(i,11),rinffy(i,12),rinffy(i,13),rinffy(i,14),
      c rinffy(i,15), rinffy(i,16), rinffy(i,17), rinffy(i,18), rinffy(i,19)
 18
       continue
       write(7,*) 'MZ Influence Matrix in-lb/coil'
do 19 i=1,numcoils
       write(7,*) i, rinfmz(i,1), rinfmz(i,2), rinfmz(i,3), rinfmz(i,4),
      c rinfmz(i,5),rinfmz(i,6),rinfmz(i,7),rinfmz(i,8),rinfmz(i,9),
c rinfmz(i,10),rinfmz(i,11),rinfmz(i,12),rinfmz(i,13),rinfmz(i,14),
      c rinfmz(i,15), rinfmz(i,16), rinfmz(i,17), rinfmz(i,18), rinfmz(i,19)
 19
      continue
       typekey=typekeydum
         egrpkey=egrpkeydum
       return
       end
       SUBROUTINE mFSUM(IGRPs,igrpe,fxsum,fysum,xmzsum)
       include 'scommon.blk'
       do 13 igrp=igrps,igrpe
         numn=0
         centx=0
         centy=0
       FxSUM=0.
       FYSUM=0.
         xmzsum=0
       ymzsum=0
1
        FZSUM=0.
       DO 12 I=1 , N
IF(NGROUP(I).EQ.IGRP) THEN
         numn=numn+1
         centx=centx+x(i)
         centy=centy+y(i)
       FXSUM=FXSUM+FX(I)
       FYSUM=FYSUM+FY(I)
       FZSUM=FZSUM+FZ(I)
!
         xMZSUM=xMZSUM-FX(I) *Y(I)
       yMZSUM=yMZSUM+FY(I) *X(I)
       end if
       CONTINUE
 12
       centx=centx/numn
         centy=centy/numn
         ymom= -xmzsum/fxsum
         xmom=ymzsum/fysum
       xMZSUM=-fxsum* (ymom-centy)+fysum* (xmom-centx)
       write(7,*) igrp,',',fxsum,',',fysum,',',fzsum,',',
```

NSTX-U

```
cxmxsum,',',xmysum,',',xmzsum
13 CONTINUE
RETURN
END
```

Some of the subroutines in this subroutine may be called in scripts, the script commands are described below:

NSTX-U

mfsu	Prompts for the start and end node group Calculates the x force sum, y force sum and moment sum about the centroid of nodes defined by node groups starting at igrps and ending at ,igrpe
mfor	Calculates Lorentz forces on a brick or quad element from fields corner nodes, currents specified as real constants, and current directions specified by inputting an element nodal sequence that defines the brick element start and end face. For an axisymmetric analysis using, the connectivity specification is 1,2,3,4,0,0,0,0. Forces computed for an axisymmetric analysis are per radian. For ANSYS analyses these loads need to be multiplied by 2*pi.
sfie	Computes 2D fields using Elliptic Integrals from loops defined by type 7 elements.

Attachment B Influence Coefficient Matrix Script

