-ONSTX-

NSTX Upgrade

Moment Influence Coefficients

NSTXU-CALC-13-05-00

Rev 0

January 18 2011

Prepared By:

Peter Titus, PPPL Mechanical Engineering Reviewed By:

R. Woolley

Ron Hatcher, NSTX Cognizant Engineer

Approved By:

Phil Heitzenroeder, Head, Mechanical Engineering

PPPL Calculation Form

Calculation # NSTXU-CALC-13-05-00 Revision # 00

WP #, <u>5200</u> (ENG-032)

Purpose of Calculation: (Define why the calculation is being performed.)

Force coefficients are an input to the digital coil protection system (DCPS)[7]. This document is a calculation of the moment influence coefficients to be applied to the PF currents. Previously, influence coefficients were computed for only radial and axial loads on the coils. There was no adjustment for the force centroid, which could be substantially displaced from the geometric centroid. Where force centers differ from the coil geometric centers, reaction forces at supports may differ significantly from loads computed with the assumption that the forces are at the coil centroid. Moment coefficients are also being computed by R. Wooley and this calculation may serve as a check for his results, or this calculation may produce coefficients for the DCPS

References (List any source of design information including computer program titles and revision levels.)

Included in the body of the calculations

Assumptions (Identify all assumptions made as part of this calculation.)

Axisymmetry of the coils

Calculation (Calculation is either documented here or attached)

Included in the body of the calculations

Conclusion (Specify whether or not the purpose of the calculation was accomplished.)

Moment influence coefficients have been calculated and tabulated for checking other's work or inclusion in the DCPS

Cognizant Engineer's printed name, signature, and date

Ronald Hatcher

I have reviewed this calculation and, to my professional satisfaction, it is properly performed and correct.

Checker's printed name, signature, and date

Robert Woolley _____

Table of Contents

Table of Contents	3
Executive Summary	3
Input to the Digital Coil Protection System (DCPS	3
References	4
Analysis Code	4
Axisymmetric Analysis Finite Element Model	4
Results	6
Comparison with Bob Woolley's Moment Coefficients	
Comparison with Ron Hatcher's Results	7
Shaped Plasma Results	
Test Cases	
Attachment A Influence Coefficient Subroutine in NTFTM	9

Executive Summary:

It is usual practice to utilize influence coefficient calculations to determine hoop and axial (vertical for

tokamak's) loads from coil currents. However the centroid of the Lorentz loads may not be at the geometric center of the coils. Where there is significant offset between the Lorentz centroid and the geometric center, there will be a moment about the coil geometric center in addition to the net loads. This may be a significant contributor to the support reaction loads and to the stresses in the coils themselves. In design and analysis of coil systems, distributions of fields and forces are typically calculated for a useful structural/magnetic mesh which is typically fine enough to properly distribute the Lorentz forces and resolve any moments about the coil current centers. When influence coefficients are used in operating tokamaks to check coil stresses and support loading the effect of moments has been omitted. To the author's knowledge, this is true of Alcator C-Mod, TFTR and NSTX . Addition of the moment coefficients completes the three degrees of freedom available from the axisymmetric analysis of ring coils. For NSTX the effect of the moment coefficients is small for the compact ring coils

Figure 1 Moments at Current Centers.

but is interesting for the thin solenoids - the OH and PF1a,b,and c. Two plasma shapes have been investigated a rectangular cross section and a shaped plasma.

		Ex	cerpt i	from t	he Sha	aped P	lasma	Mom	ent In	fluenc	e Coe	cfficie	nts			
	OH	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L	lp
OH	1 0.00	E+00 -20165.	7 -9837.4	-5246.08	-5607.03	-3893.17	-1291.17	-1209.61	20165.75	9837.401	5246.083	5607.024	3893.168	1291.17	1209.613	1.582384

The largest moment influence factors are for moments on the OH from PF1aU and L currents as might be expected from the coil geometries. The effect on the outer ring coils is minimal. The results of this calculation were compared with R. Hatchers results for the 2009 coil builds and with R. Woolley's calculations for the 2011 coil builds. The comparison with Wooley's moment coefficients show results typically within 2 to 5 % with two outliers at 8% and large difference ratios when the two analyses are both calculating essentially zero factors.

Digital Coil Protection System (DCPS) Input

The proposed DCPS is described in detail in a draft requirements document by Robert Woolley ref [7]. Force influence coefficients are already included in plans for the DCPS. Inclusion of these moment coefficients is proposed, depending on their usefulness in quantifying stresses for specific components. In the description of the DCPS, the "systems code" will actually be the analyses described in the filed structural calculations. There is a global model which is the closest thing we have to a single systems code,

but this is augmented in many ways by separate calculations to address specific stress locations and components and support hardware. During the final design activity, Each preparer of a calculation will be assigned the development of "mini algorithms" These may make use of moment influence coefficients. One examples is:

PF 2,3 supports, welds bolts – At this stage, these are just calculated from influence coefficient matrix loads divided by weld or bolt area. Addition of moment influence coefficients adds overturning moments to the calculation of the bolt loads .

Addition of Moment Influence Coefficients to DCPS

Bolt Loads are calculated only from the vertical force.

Bolt Loads are calculated from the vertical force and the moment divided by the width of the bolt pattern

References

[1] NSTX Influence Coefficients, calculation # NSTXU 13 03-00, Ron Hatcher DATE: July 9 2009
 [2] NSTX-CALC-13-001-00 Rev 1 Global Model – Model Description, Mesh Generation, Results, Peter H. Titus December 2010

[3] NSTX Structural Design Criteria Document, NSTX_DesCrit_IZ_080103.doc I. Zatz

[4] NSTX Design Point Sep 8 2009 <u>http://www.pppl.gov/~neumeyer/NSTX_CSU/Design_Point.html</u>

[5] OOP PF/TF Torques on TF, R. Woolley, NSTXU CALC 132-03-00

[6] "MHD and Fusion Magnets, Field and Force Design Concepts", R.J.Thome, John Tarrh, Wiley Interscience, 1982

[7] DIGITAL COIL PROTECTION SYSTEM (DCPS) REQUIREMENTS DOCUMENT (DRAFT), NSTX-CSU-RD-DCPS for the National Spherical Torus Experiment Center Stack Upgrade, February 5, 2010 R. Woolley

[8] NSTXU-CALC-132-04-00 ANALYSIS OF TF OUTER LEG, Han Zhang, August 31, 2009

Analysis Code, NTFTM

Mesh generation, calculation of the Lorentz forces, and generation of the influence coefficients is done using a code written by the author of this report. The influence coefficient subroutine is included as appendix A The mesh generation feature of the code is checked visually and within ANSYS during the PREP7 geometry check. The authors code uses elliptic integrals for 2D field calculations, and Biot Savart solution for 3D field calculations. These are based 2D formulations, and single stick field calculations from Dick Thomes book [8] with some help from Pillsbury's FIELD3D code to catch all the coincident current vectors, and other singularities.

The code in various forms has been used for 20 years and is suitable for structural calculations. It is also being used for calculation of load files in an NSTX global model[8]. Recent checks include NSTX out-ofplane load comparisons with ANSYS [9] and MAXWELL and calculations of trim coil fields for W7X compared with Neil Pomphrey's calculations. The analysts in the first ITER EDA went through an exercise to compare loads calculated by the US (using this code), RF and by Cees Jong in ANSYS, and agreements were good. Some information on the code, named FTM (Win98) and NTFTM2 (NT,XP), is available at: http://198.125.178.188/ftm/manual.pdf). or, within PPPL: at P:\public\Snap-srv\Titus\NTFTM

Axisymmetric Analysis Model

Computation of influence coefficients is done by computing contributions of fields and forces in one element group with respect to other element groups. The element groups are identified by real constant numbers for the elements in the group. This allows coils or sections of coils to be considered in the matrix calculation. For this calculation, the element designations used by Ron Hatcher's calculation [1] have been used to allow a comparison with the force influence coefficients. Moment coefficients require the computation of the force contributions with a running summation of forces multiplied by the element force times the appropriate radial or axial lever arm with respect to the element group centroid. So computation of the moment influence coefficients also produces the force influence coefficients.

PF Model Consistent with J. Menard's 33 coil set Ecuilıbria Used as a starting point to create the model at right

NTFTM inputFile

read mn2divi 0,2,2,1 snal me 1.0001

nedu. ne o i

infl

16

r pice

ρĮ, init

copt

開

Figure 2 Axisymmetric Models

									rcoi 16	
	(cm)	(cm)	(cm)	(cm)				0	1,10,80,884,250 2,4,7,64,250	
OH (half-				, í					3 2 5 32 250	IPF1bU
plane)	24.2083	6.934	106.04	212.08	4	110	442	0.701	4 2 5 20 250	IPF1c
PF1a	32.4434	6.2454	159.06	46.3296	4	16	64	0.825	5.4.10.28.250	
PF1b	40.038	3.36	180.42	18.1167	2	16	32	0.794	6,3,10,30,250	
PF1c	55.052	3.7258	181.36	16.6379	2	10	20	0.856	7,1,17,17,250	
PF2a	79.9998	16.271	193.3473	6.797	7	2	14	0.741	8,4,6,24,250	
PF2b	79.9998	16.271	185.26	6.797	7	2	14	0.741	9,4,7,64,250	
PF3a	149.446	18.644	163.3474	6.797	7.5	2	15	0.693	10,2,5,32,250	
PF3b	149.446	18.644	155.26	6.797	7.5	2	15	0.693	11,2,5,20,250	
PF4b	179.4612	9.1542	80.7212	6.797	2	4	8	0.753	12,4,10,28,250	
PF4c	180.6473	11.527	88.8086	6.797	4.5	2	9	0.672	13,3,10,30,250	
PF5a	201.2798	13.533	65.2069	6.858	6	2	12	0.773	14,1,17,17,250	
PF5b	201.2798	13.533	57.8002	6.858	6	2	12	0.773	15,4,6,24,250	
	•	-							16,6,8,1,250	

PF Builds and Number of Turns from the Design Point Spreadsheet [4]

Results

			ОН	PF1AU	PF1bU	PF1cU I	PF2U F	PF3U I	PF4U F	PF5U I	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L	lp
	FX	1	Influence	Matrix	N/rad													
ОН		1	25230.3	3806.061	1708.908	967.1191	1134.092	1209.182	776.9004	1080.26	3806.043	1708.914	967.123	1134.096	1209.203	776.8887	1080.252	58.04883
PF1AU		2	-140.673	856.7656	804.679	402.8212	385.0967	267.9286	97.79694	113.873	2.693542	1.662048	1.908569	5.065918	19.87793	25.48993	46.92737	1.891357
PF1bU		3	-111.435	-147.157	344.059	462.4921	333.3344	164.4536	52.2583	60.96289	1.346069	0.843353	0.970917	2.600311	10.30087	13.1109	24.38876	0.834534
PF1cU		4	-49.8817	-66.3434	-186.161	152.8504	363.0069	147.4613	44.34793	51.61908	1.111908	0.69957	0.805283	2.161407	8.583679	10.90804	20.36479	0.65506
PF2U		5	-31.1968	-44.1531	-82.4588	-136.834	292.1378	317.2212	81.96744	95.94821	1.96759	1.253113	1.443481	3.899963	15.58963	19.65652	37.01328	1.009399
PF3U		5	-21.5523	-26.2723	-19.4406	-24.8062	-/4./123	400.619	163.52	198.7234	3.382355	2.227905	2.566162	7.052979	28.73105	35.6076	68.99472	0.94574
PF4U DESU		,	-14.8351	-3.98004	-1.31325	-1.43192	-0.89291	15 20554	150.0147	200 6629	2.456009	2 246592	2 606527	5.02558	23.90390	30.02812	96 71 771	-0.35266
PF1AI		9	-20.3084	2 693604	1 662109	1 908752	5.066101	19 87787	25 / 903	16 92773	856 7654	2.240382	402 821	385 0972	267 929	97 79706	113 8729	1 891724
PF1hl		10	-111 435	1 3461	0.843353	0.970947	2 600433	10 30093	13 11102	24 38889	-147 157	344.0780	402.821	333 3345	164 4537	52 25842	60 96298	0.834717
PF1cL		11	-49.8816	1.111908	0.699554	0.805328	2.161484	8.583694	10.90807	20.36481	-66.3433	-186.161	152.8504	363.007	147.4612	44.34799	51.61909	0.655121
PF2L		12	-31.1969	1.96756	1.253174	1.443481	3.900024	15.58957	19.65646	37.01309	-44.1531	-82.459	-136.834	292.1379	317.2212	81.9675	95.9483	1.00943
PF3L		13	-21.5522	3.382446	2.227753	2.566376	7.05304	28.73096	35.6077	68.99469	-26.2725	-19.4405	-24.8061	-74.7123	400.6189	163.5198	198.7233	0.945801
PF4L		14	-14.8352	2.456024	1.717377	1.986221	5.625595	23.96391	30.02812	62.74481	-3.97992	-1.31326	-1.43192	-0.89294	16.79919	150.6147	444.4194	-0.35263
PF5L		15	-20.3084	2.999481	2.246521	2.606598	7.632538	33.50702	39.0834	86.7178	-2.72781	-0.53839	-0.56195	1.093506	15.20557	-199.776	300.6637	-1.09033
Ip		16	-0.65479	0.39844	0.250672	0.287969	0.757769	2.9888	4.106287	6.647198	0.39844	0.250672	0.287969	0.757769	2.9888	4.106287	6.647198	0.205512
	FY		Influence	Matrix	N/rad													
ОН		1	0.00E+00	101.621	6 132.129	5 87.8682	115.5602	56.1875	1 13.2584	9 12.5973	3 -101.6	21 -132.1	29 -87.86	77 -115	.56 -56.18	74 -13.2	583 -12.5	974 1.15E-04
PF1AU		2	-101.118	0.00E+0	0 384.147	3 118.9599	77.54909	0.13933	6 -8.9628	4 -10.497	6 -0.150	52 -9.56E-	02 -0.149	78 -0.45	68 -2.087	36 -2.97	952 -5.23	168 -0.41885
PF1bU		3	-131.409	-386.42	6 0.00E+0	0 13.84991	35.47831	-9.6101	7 -7.1757	2 -7.9161	6 -9.66E-	02 -6.30E-	02 -9.43E-	02 -0.284	22 -1.297	85 -1.85	637 -3.34	522 -0.21371
PF1cU		4	-87.757	-119.38	9 -13.870	9 0.00E+00	67.80286	5 -13.435	6 -8.8064	9 -9.6076	9 -0.148	98 -9.25E-	02 -0.124	76 -0.359	41 -1.561	34 -2.19	689 -3.96	695 -0.23739
PF2U		5	-115.714	-77.793	4 -35.6	1 -68.2043	0.00E+00	-69.141	2 -26.941	1 -28.612	9 -0.456	52 -0.283	04 -0.360	06 -1.006	74 -4.257	28 -5.93	188 -10.8	552 -0.55093
PE3U		6	-56 2119	-0 139	5 9 6 2 2	1 13 45625	69 21666	0.00F+0	0 -157 73	3 -149 97	5 -2 086	76 -1 296	59 -1 561	93 -4 257	08 -17 59	93 -24 5	514 -46.0	942 -1 64419
DEALL		7	.12 2560	9 96651	A 7 17542	2 2 20 20 20 20 20 20 20 20 20 20 20 20	76 04149	157 771	4 0.005+0	0 .269	7 .0.925	1 0 2000	20 5 255	02 2 799	02 .22.40	06 220	102 672	666 0.65252
		,	12 5061	10 5007	F 7.01590	0.60001	20.34140	140.000	4 371 001		0 5 2 2 1	26 2 2 4 4		74 10.05	E7 46.00	70 -55.5	000 140	000 0.00000
PT JU		0	101 1170	0.15054	1 0.565.0	0 1 4 0 7 7 7	28.01350	2 2 0 0 7 2	+ 371.031	5 0.00L+0	-5.251	0 2044	10 110	74 -10.85	01 0 1 20	24 0.000	035 10.40	761 0 410040
PFIAL		9	101.1179	0.15054	1 9.56E-U.	0.149777	0.456797	2.0873	8 2.97953	4 5.23168	5 0.00E+	JU -384.1	48 -118.	90 -77.54	91 -0.139	34 8.962	835 10.49	/61 0.418849
PF16L		10	131.4086	9.55E-0	2 6.19E-0.	2 9.32E-02	2 0.283148	3 1.29679	1 1.85529	1 3.34413	9 386.42	54 0.00E+	JU -13.84	99 -35.47	83 9.610	14 7.175	/22 /.916	151 0.213699
PF1cL		11	87.75694	0.14975	6 9.33E-0	2 0.125511	0.360171	1.56213	9 2.19766	1 3.96771	8 119.38	88 13.870	93 0.00E+	00 -67.80	29 13.435	58 8.80	649 9.607	681 0.23738
PF2L		12	115.7142	0.45667	2 0.28312	7 0.360149	1.00679	4.25735	5 5.93192	1 10.8552	9 77.793	39 35.610	06 68.204	38 0.00E+	00 69.141	27 26.94	106 28.61	289 0.550955
PF3L		13	56.21167	2.08666	7 1.29651	5 1.561787	4.257044	17.5991	8 24.5512	5 46.0940	5 0.1393	95 -9.622	49 -13.45	64 -69.21	.68 0.00E+	00 157.7	327 149.9	749 1.644278
PF4L		14	13.25691	2.9791	9 1.85529	1 2.19768	5.932143	24.5537	1 36.053	5 69.5107	6 -8.966	56 -7.175	46 -8.808	07 -26.94	15 -157.7	72 0.00E	+00 368.6	999 -0.65354
PF5L		15	12.59614	5.23128	8 3.34394	3 3.967732	10.85565	46.0976	9 69.5097	2 140.886	2 -10.50	08 -7.915	85 -9.609	28 -28.61	.36 -149.9	91 -371.	092 0.00E	+00 1.535666
lp		16	-1.55E-08	0.41917	2 0.21284	3 0.238377	0.551498	3 1.64501	4 1.48963	3 1.5342	2 -0.419	17 -0.212	85 -0.238	38 -0.55	15 -1.645	01 -1.48	963 -1.53	422 0.00E+00

Moment Influence Coefficients

		OH	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L	lp
	MZ	Influence	Matrix	N-m/rad													
OH		1 0.00E+0	-5784.29	-2838.07	-1513.56	-1616.71	-1121.45	-371.817	-348.327	5784.292	2 2838.077	1513.561	1616.714	1121.453	371.8189	348.3287	7 1.54E-03
PF1AU		2 7.15249	2 0.00E+00	-73.6636	-20.0842	-10.7058	-1.67E-02	1.050949	1.221679	4.40E-02	2.56E-02	2.81E-02	7.11E-02	0.266337	0.352855	0.613915	5 4.54E-02
PF1bU		3 0.45023	2 -6.49832	0.00E+00	-0.48198	-0.75231	0.146579	0.101039	0.110743	3.10E-03	1.88E-03	2.03E-03	5.06E-03	1.95E-02	2.64E-02	4.72E-02	2 2.47E-03
PF1cU		4 -4.01E-0	2 -1.14453	-0.29893	0.00E+00	-1.36518	0.137595	7.59E-02	8.12E-02	2.03E-03	3 1.17E-03	1.35E-03	3.36E-03	1.35E-02	1.80E-02	3.27E-02	2 1.64E-03
PF2U		5 3.73E-0	2 3.25E-02	8.51E-03	-3.28E-02	0.00E+00	-2.93E-02	-9.37E-03	-9.36E-03	1.93E-04	4.89E-04	-2.55E-04	-2.66E-05	-5.84E-04	-1.09E-03	-2.90E-03	3 -5.31E-05
PF3U		6 3.28E-0	2 -8.45E-05	-1.69E-02	-2.42E-02	-0.13652	0.00E+00	-0.19286	-0.17624	-1.35E-03	8 -6.15E-04	-1.23E-03	-2.31E-03	-1.18E-02	-1.78E-02	-3.60E-02	2 1.01E-05
PF4U		7 1.81E-0	3 1.45E-02	1.02E-02	1.26E-02	3.48E-02	0.208274	0.00E+00	1.686089	-8.70E-02	2 -8.69E-02	-8.68E-02	-8.67E-02	-8.36E-02	-7.60E-02	-5.52E-02	2 -8.88E-02
PF5U		8 6.00E-04	4 2.37E-03	1.34E-03	1.66E-03	4.70E-03	2.13E-02	0.34347	0.00E+00	3.96E-04	9.27E-05	2.31E-04	5.87E-04	4.05E-03	4.44E-03	1.63E-02	2 -6.30E-04
PF1AL		9 -7.1523	5 -4.34E-02	-2.57E-02	-2.80E-02	-7.17E-02	-0.2658	-0.35305	-0.61401	0.00E+00	73.66515	20.08523	10.70527	1.58E-02	-1.05117	-1.22179	9 -4.59E-02
PF1bL		10 -0.4503	7 -3.05E-03	-1.71E-03	-1.99E-03	-5.31E-03	-1.96E-02	-2.65E-02	-4.71E-02	6.498307	7 0.00E+00	0.482262	0.752478	-0.14651	-0.1009	-0.11069	9 -2.63E-03
PF1cL		11 3.99E-0	2 -1.98E-03	-1.10E-03	-1.35E-03	-3.52E-03	-1.34E-02	-1.81E-02	-3.26E-02	1.14442	0.298811	0.00E+00	1.365146	-0.13729	-7.59E-02	-8.14E-02	2 -1.71E-03
PF2L		12 -3.69E-0	2 -3.48E-04	-3.97E-04	4.51E-05	-2.21E-04	4.78E-04	1.18E-03	2.56E-03	-3.21E-02	2 -7.84E-03	3.30E-02	0.00E+00	2.88E-02	9.07E-03	8.70E-03	3 -2.28E-04
PF3L		13 -3.30E-0	2 1.25E-03	9.91E-04	1.05E-03	2.59E-03	1.25E-02	1.79E-02	3.62E-02	3.17E-04	1.61E-02	2.39E-02	0.136112	0.00E+00	0.193252	0.176294	4 5.08E-05
PF4L		14 -1.84E-0	3 -1.38E-04	-1.84E-04	-1.52E-04	-3.86E-04	-3.46E-03	-1.12E-02	-3.20E-02	-0.01459	-1.02E-02	-1.27E-02	-3.48E-02	-0.20831	0.00E+00	-1.68622	2 8.86E-02
PF5L		15 -5.71E-04	4 -3.25E-04	-9.78E-05	-4.88E-04	-9.94E-04	-3.86E-03	-4.33E-03	-1.58E-02	-2.34E-03	8 -1.28E-03	-1.46E-03	-4.74E-03	-2.13E-02	-0.34239	0.00E+00	5.13E-04
lp		16 -4.60E-1	0 -1.95E-02	-1.32E-02	-1.53E-02	-4.05E-02	-0.16181	-0.22447	-0.26779	1.95E-02	1.32E-02	1.53E-02	4.05E-02	0.161809	0.224468	0.267794	4 0.00E+00

		0	н	PFIAU	PFIDU	PFICU	PFZO	PF30	PF40	PESU	PPIAL	PF10L	PFICL	PFZL	PF3L	PF4L	PESE	lp
	FX .	h	nfluence	Matrix	lb/coil													
он		1	35636.87	5375.921	2413.77	1366.02	1601.863	1707.925	1097.343	1525.827	5375.896	2413.779	1366.026	1601.869	1707.955	1097.327	1525.816	81.99184
PF1AU		2	-198.695	1210.15	1136.58	568.9702	543.9351	378.4394	138.1346	160.8414	3.80453	2.347582	2.695784	7.155424	28.07685	36.00359	66.2.8319	2.671473
PF1bU		3	-157.398	-207.854	485.9707	653.2532	470.8225	232.2846	73.81298	86.10785	1.901274	1.191206	1.371384	3.672844	14.54961	18.51867	34.44823	1.178748
PF1dU		4	-70.456	-93.7076	-262.946	215.8956	512.7339	208.2837	62.63983	72.91006	1.570529	0.988117	1.137432	3.052909	12.12.413	15,4072	28.76452	0.925248
PF2U		5	-44.0644	-62.3646	-116.47	-193.273	412.634	448.0633	115.776	135.5233	2.779149	1.769976	2.038865	5.508555	22.01978	27.76412	52,2799	1.42574
PF3U		6	-30.4419	-37.1087	-27.4592	-35.0379	-105.528	565.8596	239.966	280.6895	4.777452	3.146835	3.62461	9.962073	40.58155	50.29444	97.45251	1.335823
PF4U		7	-20.9541	-5.62166	-1.85491	-2.02253	-1.26121	23.72829	212.7378	627.7261	3.469023	2.425732	2.805486	7.945925	33.84821	42,41362	88.62468	-0.49812
PF5U		8	-28.6848	-3.85311	-0.76059	-0.79395	1.544406	21.47726	-282.177	424.6766	4.236614	3.173215	3.681638	10.78068	47.32.739	55.20375	12.2.4856	-1.5401
PFIAL		9	-198.695	3.804616	2.347669	2.696043	7.155682	28.07676	36.00411	66.28371	1210.15	1136.579	568.96 9 8	543.9357	378.4399	138.1348	160.8412	2.67199
PFIBL	:	10	-157.397	1.901317	1.191206	1.371427	3.673017	14.54969	18.51884	34.44841	-207.854	485.9706	653.2534	470.8228	232.2848	73.81311	86.10798	1.179007
PF1dL	:	11	-70.456	1.570529	0.988095	1.137497	3.053017	12.12415	15.40724	28.76454	-93.7075	-262.946	215.8956	512.7341	208.2.836	62,63991	72.91008	0.925334
PF2L	:	12	-44.0644	2.779106	1.770062	2.038865	5.508642	22.0197	27.76403	52.27964	-62.3647	-116.47	-19 3.273	412.6341	448.0633	115.7761	135.5235	1,425783
PF3L	:	13	-30.4417	4.777583	3.146619	3.624912	9.96216	40.58142	50.29457	97.452.47	-37.109	-27.459	-35.0377	-105.528	565.8595	230.9658	280.6894	1.335909
PF4L	:	14	-20.9542	3.469044	2.425732	2.805465	7.945947	33.84815	42.41362	\$8.62475	-5.62149	-1.85494	-2.022.53	-1.26125	23.72825	212.7378	627.7261	-0.49808
PF5L	:	15	-28.6848	4.236657	3.173129	3.681724	10.78068	47.32743	55.20388	122.4857	-3.85294	-0.76046	-0.79373	1.544537	21.4773	-282.177	424.6765	-1.54005
lp 🛛	:	16	-0.92487	0.562782	0.354065	0.406746	1.07032	4.22157	5.799981	9.388924	0.562782	0.354065	0.406746	1.07032	4.22157	5.79998	9.388924	0.290278

FY Influence Matrix Ib/coil 1 0.00E-00 143.5368 186.6282 124.1106 163.2246 79.3628 18.72713 17.79327 -143.536 -186.628 -124.11 -163.224 -79.3626 -18.7268 -17.7933 1.63E-04 он 2 -142.825 0.00E-00 542.5947 168.0264 109.5352 0.196807 -12.6597 -14.8275 -0.21261 -0.13498 -0.21157 -0.64521 -2.94831 -4.20846 -7.38955 -0.59161 PF1AU PF16U 3 -185.61 -545.813 0.00E-00 19.56249 50.1118 -13.574 -10.1355 -11.1813 -0.13644 -8.89E-02 -0.13317 -0.40145 -1.83317 -2.62205 -4.725 -0.30186 4 -123.954 -168.632 -19.5922 0.00E-00 95.76905 -18.9773 -12.4388 -13.5705 -0.21043 -0.13065 -0.17622 -0.50765 -2.20534 -3.10303 -5.60317 -0.3353 PF1dU PF2U 5 -163.442 -109.88 -50.2978 -96.336 0.00E-00 -97.6594 -38.0533 -40.4146 -0.64495 -0.39979 -0.50857 -1.42198 -6.01325 -8.37857 -15.3326 -0.77818 PF3U 6 -79.3972 -0.19704 13.59129 19.00645 97.76599 0.00E-00 -222.792 -211.834 -2.94748 -1.83139 -2.20618 -6.01297 -24.8583 -34.6779 -65.1063 -2.32235 7 -18 7248 12 66487 10 13 503 12 44107 38 05385 222 8463 0 00E-00 -520 775 -1 17943 0 408045 -7 56E-02 -5 35045 -31 6527 -47 8957 -95 1529 0 923082 PF4U PF5V 8 -17.7915 14.83193 11.18078 13.57267 40.41563 211.856 524.1528 0.00E-00 -7.38911 -4.72331 -5.60429 -15.3333 -65.1114 -98.18 -198.997 -2.16909 PFIAL 9 142.8253 0.212634 0.134995 0.211554 0.645209 2.948348 4.208488 7.389563 0.00E-00 -542.595 -168.026 -109.535 -0.19681 12.65968 14.82749 0.591609 PETH 10 185,6099 0.134959 8.74E-02 0.131672 0.399936 1.83167 2.620531 4.723474 545,8131 0.00E-00 -19,5625 -50,1118 13,57397 10,13544 11,18127 0.301843 11 123.9535 0.211524 0.131741 0.17728 0.508729 2.205463 3.104116 5.604257 168.6322 19.59218 0.00E-00 -95.7691 18.97726 12.43884 13.5705 0.335291 PFId 12 163.4421 0.645032 0.399907 0.508697 1.422053 6.013358 8.378621 15.3327 109.8803 50.2979 96.33618 0.00E-00 97.6595 38.05326 40.41466 0.778203 PF2L PF3L 13 79.39692 2.94734 1.831281 2.205967 6.012919 24.8582 34.67775 65.10616 0.19689 -13.5914 -19.0066 -97.7662 0.00E-00 222.7916 211.8341 2.322483 PF4L 14 18.7249 4.207996 2.620535 3.104143 8.378935 34.68122 50.92426 98.1814 -12.6649 -10.1351 -12.4411 -38.0539 -222.846 0.00E-00 520.775 -0.9231 PF5L 15 17.79158 7.389003 4.723197 5.604276 15.33321 65.1113 98.17993 198.9966 -14.832 -11.1809 -13.5728 -40.4157 -211.856 -524.153 0.00E-00 2.169071 16 -2.20E-08 0.592064 0.30664 0.336698 0.778971 2.323522 2.104052 2.16703 -0.59206 -0.30664 -0.3367 -0.77897 -2.32352 -2.10405 -2.16703 0.00E-00 lp |

Moment Influence Coefficients

		0	ЭН	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L I	p
	MZ	1	nfluence	Matrix	in-lb/coil													
ОН		1	0.00E+00	-321657	7 -157822	-84167.1	-89903.2	-62362.4	-20676.2	-19370	321656.8	157821.7	84167.19	89903.32	62362.52	20676.36	19370.1	8.54E-02
PF1AU		2	397.7406	0.00E+00	-4096.34	-1116.86	-595.338	-0.92864	58.44186	67.93596	2.444199	1.423487	1.561501	3.951034	14.81066	19.62181	34.139	2.523012
PF1bU		з	25.03682	-361.363	0.00E+00	-26.802	-41.8351	8.151034	5.618644	6.158261	0.172254	0.10466	0.112964	0.281341	1.082232	1.468651	2.622284	0.137351
PF1cU		4	-2.22988	-63.6459	-16.6229	0.00E+00	-75.916	7.651491	4.222968	4.517146	0.112876	6.52E-02	7.51E-02	0.186888	0.749204	1.003491	1.818811	9.10E-02
PF2U		5	2.072851	1.806785	0.473095	-1.82446	0.00E+00	-1.62928	-0.52132	-0.5205	1.08E-02	2.72E-02	-1.42E-02	-1.48E-03	-3.24E-02	-6.05E-02	-0.16128	-2.96E-03
PF3U		6	1.826376	-4.70E-03	-0.94109	-1.34819	-7.59144	0.00E+00	-10.7248	-9.80047	-7.53E-02	-3.42E-02	-6.82E-02	-0.1283	-0.65777	-0.98787	-2.00319	5.60E-04
PF4U		7	0.100596	0.807841	0.565928	0.700303	1.934912	11.58186	0.00E+00	93.76116	-4.84022	-4.83304	-4.82831	-4.82088	-4.64866	-4.22488	-3.06851	-4.93602
PF5U		8	3.33E-02	0.132049	5 7.43E-02	9.26E-02	0.261356	1.182083	19.09991	0.00E+00	2.20E-02	5.15E-03	1.29E-02	3.26E-02	0.225394	0.246646	0.908687	-3.50E-02
PF1AL		9	-397.733	-2.41399	5 -1.4274	-1.55944	-3.98945	-14.781	-19.6325	-34.1442	0.00E+00	4096.422	1116.913	595.3058	0.876383	-58.4543	-67.9422	-2.55193
PF1bL	:	10	-25.0447	-0.16964	-9.51E-02	-0.1107	-0.29508	-1.08845	-1.47231	-2.62085	361.3623	0.00E+00	26.81797	41.84433	-8.14722	-5.61095	-6.15559	-0.14611
PF1cL	:	11	2.22138	-0.10987	-6.13E-02	-7.48E-02	-0.1958	-0.74686	-1.00631	-1.8136	63.63967	16.61646	0.00E+00	75.91399	-7.63428	-4.22323	-4.52402	-9.52E-02
PF2L	:	12	-2.05474	-1.93E-02	-2.21E-02	2.51E-03	-1.23E-02	2.66E-02	6.56E-02	0.142118	-1.78606	-0.4361	1.835042	0.00E+00	1.602775	0.504313	0.483915	-1.27E-02
PF3L	:	13	-1.83614	6.95E-02	5.51E-02	5.81E-02	0.144168	0.694368	0.993703	2.012362	1.76E-02	0.894526	1.327448	7.569005	0.00E+00	10.74651	9.803458	2.82E-03
PF4L	:	14	-0.10234	-7.69E-03	-1.02E-02	-8.44E-03	-2.15E-02	-0.19217	-0.62038	-1.77811	-0.81144	-0.5678	-0.70574	-1.93624	-11.5836	0.00E+00	-93.7685	4.92904
PF5L	:	15	-3.17E-02	-1.81E-02	-5.44E-03	-2.72E-02	-5.53E-02	-0.21444	-0.24078	-0.879	-0.12985	-7.13E-02	-8.10E-02	-0.26365	-1.1841	-19.0401	0.00E+00	2.85E-02
lp	:	16	-2.56E-08	-1.08623	-0.73522	-0.84979	-2.25193	-8.99796	-12.4824	-14.8917	1.086227	0.735221	0.849789	2.251943	8.997968	12.48235	14.89168	0.00E+00

Comparison with Bob Woolley's Moment Influence Coefficients (2011 Coil Build)

Titus: 14June2011	PF1A	U PI	F1bU I	PF1cU	PF1cL	PF1bL	PF1AL (DH lp)
PF1AU	2	0.00E+00	-73.66362	-20.08421	2.81E-02	2.56E-02	4.40E-02	7.152492	4.54E-02
PF1bU	3	-6.49832	0.00E+00	-0.4819759	2.03E-03	1.88E-03	3.10E-03	0.4502322	2.47E-03
PF1cU	4 ·	-1.144525	-0.2989268	0.00E+00	1.35E-03	1.17E-03	2.03E-03	-4.01E-02	1.64E-03
PF1cL	11	-1.98E-03	-1.10E-03	-1.35E-03	0.00E+00	0.2988105	1.14442	3.99E-02	-1.71E-03
PF1bL	10	-3.05E-03	-1.71E-03	-1.99E-03	0.4822623	0.00E+00	6.498307	-0.450373	-2.63E-03
PF1AL	9	-4.34E-02	-2.57E-02	-2.80E-02	20.08523	73.66515	0.00E+00	-7.152351	-4.59E-02
OH	1 -	-5784.291	-2838.073	-1513.561	1513.561	2838.077	5784.292	0.00E+00	1.54E-03
lp	16	-1.95E-02	-1.32E-02	-1.53E-02	1.53E-02	1.32E-02	1.95E-02	-4.60E-10	0.000E+00
Woolley: 17Decemb	er 2010								
	PF1A	U PI	F1bU I	PF1cU	PF1cL	PF1bL	PF1AL (ОН Ір	0
PF1AU		2.732E-15	7.124E+01	1.957E+01	-2.783E-02	-2.452E-02	-4.129E-02	-7.094E+00	-5.998E-02
PF1bU	6	5.187E+00	-2.774E-15	4.882E-01	-2.018E-03	-1.770E-03	-2.916E-03	-4.159E-01	-3.896E-03
PF1cU	1	1.117E+00	3.054E-01	-8.688E-16	-1.353E-03	-1.184E-03	-1.934E-03	5.914E-02	-2.492E-03
PF1cL		1.934E-03	1.184E-03	1.353E-03	-8.688E-16	-3.054E-01	-1.117E+00	-5.914E-02	2.492E-03
PF1bL		2.916E-03	1.770E-03	2.018E-03	-4.882E-01	-2.774E-15	-6.187E+00	4.159E-01	3.896E-03
PF1AL		4.129E-02	2.452E-02	2.783E-02	-1.957E+01	-7.124E+01	2.732E-15	7.094E+00	5.998E-02
OH	5	5.763E+03	2.824E+03	1.508E+03	-1.508E+03	-2.824E+03	-5.763E+03	8.050E-13	-9.994E-16
lp		3.579E-02	3.546E-02	4.378E-02	-4.378E-02	-3.546E-02	-3.579E-02	-1.197E-17	-2.262E-19
Potion-Titus (Moollo)									
Ratios- fitus/ wooney	0514		51 b ()	051-11	051-1	05161	05141		
DE1 AU	PFIA	0 0000	-1 03/1	-1 0261	-1 0090	-1 0/39	-1.0645	-1 0083	-0.7565
PE1bU		-1.0504	-1.0341	-0.9872	-1.0050	-1.0433	-1.0622	-1.0085	-0.7303
PF1cU		-1.0247	-0.9787	0.0000	-0.9979	-0.9901	-1.0022	-0.6781	-0.6563
PE1cl		-1.0247	-0.9309	-0.9948	0.0000	-0.9783	-1.0245	-0.6755	-0.6871
PF1bl		-1.0210	-0.9565	-0.9948	-0.9879	0.0000	-1.0240	-1.0830	-0.6744
PF1AL		-1.0513	-1.0468	-1.0077	-1 0252	-1 0341	0.0000	-1.0083	-0.7652
OH		-1.0037	-1.0408	-1.00//	-1.0202	-1.0041	-1.0037	0.0000	-1 54F+12
In		-0.5458	-0 3728	-0 3491	-0 3/101	-0 3728	-0.5458	3.85F±07	0.0000
41		0.0400	-0.3728	-0.5491	-0.3491	-0.3728	-0.5458	3.33LT07	0.0000

Comparison with Ron Hatcher's Radial Influence Coefficients (2010 Coil Build)

(Titus)

FX	Influence	Matrix	lb/coil/kA													
	OH	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L	lp
	1 48286.4	8 2746.325	859.9474	784.5903	1305.204	1988.13	1277.38	1776.095	2746.336	859.9474	784.6454	1305.243	1988.141	1277.352	1776.073	2673.429
	2 -97.56	5 275.8774	115.838	117.4871	166.6145	166.3844	60.38033	70.24693	0.716404	0.334667	0.599698	2.179581	12.22437	15.67624	28.87584	32.34988
	3 -57.623	6 0.11217	52.90043	114.077	110.8109	74.87416	23.47889	27.40892	0.260887	0.123932	0.222529	0.815751	4.620879	5.875896	10.94085	10.30711
	4 -40.117	7 -15.6223	-50.0426	58.41548	191.5191	105.8464	31.54342	36.73657	0.342076	0.163104	0.292742	1.074881	6.101841	7.749259	14.47587	12.90038
	5 -35.994	1 -18.4135	-29.6678	-76.4916	202.2312	313.6473	81.04058	94.86471	0.844124	0.40732	0.731168	2.698974	15.41392	19.43493	36.59594	27.94646
	6 -35.434	8 -16.4775	-9.07299	-18.0052	-73.8474	565.8593	230.9662	280.6903	2.077357	1.03745	1.860798	6.9724	40.5816	50.2947	97.4529	37.40968
	7 -24.391	8 -2.43067	-0.54534	-0.95842	-0.88568	23.72827	212.731	627.7262	1.513631	0.803541	1.44434	5.561359	33.84811	42.41364	88.62479	-13.9465
	8 -33.390	6 -1.65023	-0.19052	-0.33574	1.078615	21.47709	-282.177	424.716	1.854289	1.056847	1.902265	7.545006	47.32739	55.20401	122.4857	-43.1206
	9 -97.565	0.716383	0.334602	0.599676	2.179495	12.22435	15.6763	28.87582	275.8775	115.8378	117.4868	166.6143	166.3844	60.38029	70.2468	32.34971
1	0 -57.623	6 0.260909	0.123943	0.222535	0.815761	4.620906	5.875912	10.94088	0.112186	52.90041	114.077	110.8109	74.87417	23.47893	27.40894	10.30715
1	1 -40.117	6 0.342081	0.163093	0.292753	1.074903	6.101847	7.749259	14.47586	-15.6223	-50.0426	58.41547	191.5191	105.8464	31.5434	36.73655	12.90037
1	2 -35.994	2 0.844168	0.407234	0.73106	2.698996	15.41388	19.43486	36.59594	-18.4134	-29.6678	-76.4916	202.2312	313.6472	81.04064	94.86464	27.94639
1	3 -35.43	5 2.077185	1.037364	1.86041	6.972702	40.5816	50.29483	97.45264	-16.4777	-9.07308	-18.0052	-73.8476	565.8595	230.9662	280.6898	37.40955
1	4 -24.391	8 1.513544	0.803433	1.444232	5.561337	33.84815	42.4136	88.62475	-2.43056	-0.54545	-0.95844	-0.88568	23.72818	212.731	627.7263	-13.9465
1	5 -33.390	6 1.854375	1.05702	1.902308	7.545135	47.32731	55.20388	122.4856	-1.65053	-0.19052	-0.33583	1.078788	21.47722	-282.177	424.7159	-43.1206
1	6 -30.144	1 6.867763	3.246558	5.819321	20.97625	118.2041	162.3995	262.8898	6.867784	3.246515	5.819321	20.97625	118.2041	162.3996	262.8898	227.5779

(Hatcher ref [1])

	OH	1AU	1BU	1CU	20	30	4U	50	1AL	1BL	1CL	2L	3L	4L	5L
OH	47683	2736	856	780	1839	1909	1225	1690	2736	856	780	1839	1909	1225	1690
1AU	-134	266	115	117	236	162	58	66	1	0.28	1	3	10	14	26
1BU	-68	-2	49	114	158	73	22	25	0.22	0.10	0.18	1	4	5	10
1CU	-50	-17	-52	54	273	103	30	34	0.28	0.13	0.24	1	5	7	13
20	-78	-29	-44	-112	380	436	109	125	1	0.45	1	4	18	24	45
30	-67	-19	-10	-20	-116	495	219	263	2	1	1	7	32	43	84
40	-44	-3	-1	-2	-5	12	179	617	1	1	1	6	27	37	80
50	-61	-3	-1	-1	-3	6	-300	353	1	1	1	8	37	47	108
1AL	-134	1	0.28	1	3	10	14	26	266	115	117	236	162	58	66
1BL	-68	0.22	0.10	0.18	1	4	5	10	-2	49	114	158	73	22	25
1CL	-50	0.28	0.13	0.24	1	5	7	13	-17	-52	53	273	103	30	34
2L	-78	1	0.45	1	4	18	24	45	-29	-44	-113	382	436	109	125
3L	-67	2	1	1	7	32	43	84	-19	-10	-20	-116	495	219	263
4L	-44	1	1	1	6	27	37	80	-3	-1	-2	-5	12	178	617
5L	-61	1	1	1	8	37	47	108	-3	-1	-1	-3	6	-300	354

Titus Results for Axial Coefficients

						117119	s Kes	uits to	or Axi	ai Co	etticie	nts					
		FY															
FY		Influence	Matrix	lb/coil/kA													
		OH	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L	lp
	1	0.00E+00	66.64612	73.89371	74.0529	132.9881	92.38018	21.799	20.71244	-66.6462	-73.8939	-74.0536	-132.988	-92.3803	-21.7989	-20.7122	-5.32E-05
	2	-66.2398	0.00E+00	82.92657	42.05192	35.86358	8.84E-02	-5.57602	-6.50188	-3.85E-02	-1.95E-02	-4.68E-02	-0.19482	-1.27565	-1.82401	-3.20804	-7.10529
	3	-73.5044	-83.1167	0.00E+00	-6.06E-06	9.865533	-5.01383	-3.3919	-3.7269	-1.93E-02	-9.78E-03	-2.24E-02	-9.23E-02	-0.60192	-0.8602	-1.55386	-2.70269
	4	-73.9737	-42.1405	8.42E-06	0.00E+00	33.31788	-10.4063	-6.43702	-7.00614	-4.66E-02	-2.24E-02	-4.65E-02	-0.18219	-1.12868	-1.58751	-2.87004	-4.75633
	5	-133.317	-36.0703	-9.97832	-34.0005	0.00E+00	-68.3974	-26.6338	-28.2862	-0.19458	-9.22E-02	-0.18216	-0.69652	-4.2084	-5.86372	-10.7307	-15.2492
	6	-92.4214	-8.87E-02	5.019825	10.42003	68.38245	0.00E+00	-222.792	-211.834	-1.27531	-0.60189	-1.1287	-4.20892	-24.8586	-34.6781	-65.1065	-65.0293
	7	-21.7962	5.577226	3.392086	6.437432	26.63189	222.8464	0.00E+00	-520.775	1.204982	2.168681	1.441272	-2.83587	-31.6523	-47.8954	-95.1527	-55.923
	8	-20.7099	6.503157	3.727408	7.006531	28.28558	211.8561	524.153	0.00E+00	-3.20748	-1.55358	-2.86979	-10.7316	-65.1111	-98.1797	-198.996	-60.7369
	9	66.23981	3.84E-02	1.93E-02	4.66E-02	0.194658	1.275486	1.823841	3.207869	0.00E+00	-82.9266	-42.0519	-35.8636	-8.84E-02	5.57603	6.501875	7.105299
	10	73.5044	1.93E-02	9.77E-03	2.24E-02	9.23E-02	0.601911	0.860187	1.553854	83.11672	0.00E+00	9.09E-06	-9.86554	5.013825	3.39191	3.726894	2.702686
	11	73.97371	4.66E-02	2.24E-02	4.65E-02	0.182191	1.128668	1.587507	2.87004	42.14047	0.00E+00	0.00E+00	-33.3179	10.40627	6.437025	7.006148	4.756346
	12	133.3172	0.194582	9.23E-02	0.182141	0.696529	4.208402	5.863739	10.73066	36.0703	9.978312	34.00047	0.00E+00	68.3974	26.63383	28.28614	15.24921
	13	92.42152	1.275601	0.602023	1.12885	4.209094	24.85861	34.67822	65.10667	8.89E-02	-5.01967	-10.42	-68.3822	0.00E+00	222.7915	211.8342	65.02914
	14	21.79631	1.823763	0.860134	1.58746	5.864709	34.6811	50.92421	98.1814	-5.57716	-3.39207	-6.4375	-26.6319	-222.847	0.00E+00	520.775	55.92292
	15	20.71029	3.207828	1.553992	2.8702	10.73193	65.1114	98.18004	198.9967	-6.5028	-3.72718	-7.00636	-28.2854	-211.856	-524.153	0.00E+00	60.7369
	16	3.45E-06	7.111921	2.705377	4.760818	15.26805	65.0586	58.91345	60.67682	-7.11192	-2.70537	-4.76081	-15.268	-65.0586	-58.9135	-60.6768	0.00E+00

Hatcher Results for Axial Coefficients [1]

	OH	1AU	1BU	1CU	2U	3U	4U	5U	1AL	1BL	1CL	2L	3L	4L	5L
OH	6	73	77	78	201	98	23	22	-73	-78	-78	-201	-98	-23	-22
1AU	-73	-0.02	84	43	52	0	-6	-7	-0.11	-0.05	-0.08	-0.41	-2	-2	-4
1BU	-77	-84	0.10	-0.09	14	-5	-4	-4	-0.05	-0.02	-0.04	-0.18	-1	-1	-2
1CU	-78	-43	-0.02	1	48	-11	-7	-8	-0.08	-0.04	-0.07	-0.33	-1	-2	-3
2U	-203	-52	-14	-48	-1	-102	-40	-43	-0.42	-0.18	-0.33	-2	-7	-9	-17
3U	-104	-0.46	5	10	96	-7	-228	-219	-2	-1	-1	-6	-26	-36	-68
4U	-25	6	3	6	38	222	-3	-530	-2	-1	-2	-9	-35	-52	-100
5U	-25	7	4	7	40	210	527	-2	-3	-2	-3	-15	-65	-99	-201
1AL	73	0.11	0.05	0.08	0.41	2	2	4	0.36	-84	-43	-52	0.27	6	7
1BL	77	0.05	0.02	0.04	0.18	1	1	2	84	0.08	0.10	-14	5	4	4
1CL	78	0.08	0.04	0.07	0.33	1	2	3	43	0.03	-1	-48	11	7	8
2L	203	0.42	0.18	0.33	2	7	9	17	52	14	49	1	102	40	43
3L	104	2	1	1	6	26	36	68	0.46	-5	-10	-96	7	228	219
4L	25	2	1	2	9	35	52	100	-6	-3	-6	-38	-222	1	530
5L	25	3	2	3	15	65	99	201	-7	-4	-7	-40	-210	-526	2

	1	2184.633	337.0884	150.602	85.25023	100.0352	106.7215	68.57568	95.35145	337.088	150.6022	85.24972	100.0361	106.7212	68.57516	95.35179	4.36636
	2	-13.0325	74.58116	70.85085	35.52862	33.98438	23,64041	8.633018	10.05266	0.237816	0.146751	0.168535	0.4473	1.75518	2.250726	4.143437	0.220924
	3	-9.86305	-13.0077	30.02943	40.7569	29,4003	14.51467	4.613392	5.381883	0.118819	7.44E-02	8.57E-02	0.229553	0.909404	1.157479	2.153139	9.16E-02
	4	-4.42417	-5.86005	-16.4218	13,3616	31,99938	13.01482	3,915083	4.557014	9.81E-02	6.18E-02	7.11E-02	0.1908	0.757789	0.96299	1,797866	6.94E-02
	5	-2 77526	-3.89755	-7.30427	-12,1373	25 79114	28 00179	7,23583	8 470176	0.173665	0.110615	0 127421	0 344258	1.376226	1,735252	3 267518	9.54E-02
	6	-1 90668	-2 32413	-1 71882	-2 19336	-6 60047	35 25877	14 42838	17 53952	0 298596	0 196661	0 226562	0.622616	2 536441	3 143634	6 091092	4 55E-02
	7	-1 30992	-0.35125	-0 11587	-0.12634	-7 89E-02	1 478745	13 28975	39 2435	0.216831	0.151606	0 175344	0 496588	2 11547	2 651024	5 539451	-4 06E-02
		1 792	0.24064	4 755 02	4 955 02	9 655 02	1 240241	17 6072	26 26967	0.264916	0 199219	0.220105	0 672726	2 957925	2 450646	7 656071	7 455 02
		12 0225	0.227014	0.146761	0.169525	0.4472	1 75510	2 25072	4 142422	74 59116	70 95095	25 5 2 2 5 2 2 5 2 2 5 2 5 2 5 2 5 2 5	22 00/26	22.557625	9 6 2 2 0 1 2	10.05265	0.006062
	10	-15.0525	0.237818	7.455.02	0.100355	0.33955.6	0.00041	1 157497	9.159144	12 0077	70.83083	40.75.002	39,40031	14 51467	4 6124	5 201000	0.220205
	10	-5.66504	0.110022	7.456-02	0.576-02	0.229350	0.30341	1.15/46/	1.707000	-15.0077	10.02342	40.7565	29.40051	12.01482	4.0154	3.501005	7.015.02
	11	-4.42417	0.172656	0.110616	0.127424	0.150/55	1 276226	1 735349	2.26752	-5.66005	7 20427	12,2010	25 70114	28.00170	7 225 022	9.357014	0.595.02
	12	-2.77527	0.175656	0.110615	0.127424	0.54425	1.576226	1.755245	5.20752	-5.65/55	1 71 882	-12.1575	25.75114	28.00179	14 43939	17 5 2051	4.505.02
	10	-1.90666	0.296596	0.156664	0.226562	0.622622	2.550445	5.145047	5.091066	-2.52414	-1./1002	-2.19555	-0.00042	55.256/7	19.92000	17.55551	4.505-02
	14	-1.30992	0.216826	0.1516	0.175342	0.496584	2.115465	2.651018	5.539452	-0.35126	-0.11587	-0.12634	-7.89E-02	1.4/8/5/	15.28975	59.2455	-4.08E-02
	15	-1.793	0.26481	0.198318	0.230105	0.673736	2.957825	3.450652	7.656082	-0.24064	-4.75E-02	-4.95E-02	9.65E-02	1.340244	-17.6072	26.26867	-/.4/E-02
	16	-5.88E-02	2.04E-02	1.94E-02	2.41E-02	6.99E-02	0.274461	0.306199	0.453967	2.14E-02	2.02E-02	2.50E-02	7.18E-02	0.277376	0.307423	0.455098	7.49E-03
FY	h	nfluence I	Matrix I	b/coil													
	1	0.00E+00	9.084172	11.79914	7.778748	10.1807	4.957735	1.170719	1.1123	-9.08418	-11.7992	-7.77876	-10.1807	-4.95773	-1.17074	-1.11231	-3.35E-04
	2	-8.90795	0.00E+00	33.41848	10.41854	6.813034	1.23E-02	-0.79055	-0.92614	-1.33E-02	-8.43E-03	-1.32E-02	-4.03E-02	-0.18431	-0.26305	-0.46184	-5.35E-02
	3	-11.5449	-34.244	0.00E+00	1.215617	3.118256	-0.84721	-0.63327	-0.69865	-8.48E-03	-5.51E-03	-8.28E-03	-2.50E-02	-0.11453	-0.16382	-0.29525	-2.86E-02
	4	-7.73862	-10.5711	-1.22274	0.00E+00	5.944123	-1.18458	-0.77738	-0.84813	-1.32E-02	-8.24E-03	-1.11E-02	-3.18E-02	-0.13792	-0.19402	-0.35027	-3.18E-02
	5	-10.2351	-6.89944	-3.16445	-6.0861	0.00E+00	-6.10059	-2.37802	-2.52554	-4.03E-02	-2.50E-02	-3.18E-02	-8.88E-02	-0.37576	-0.52355	-0.9581	-6.78E-02
	6	-4.96639	-1.24E-02	0.851848	1.191608	6.127147	0.00E+00	-13.9167	-13.2359	-0.18414	-0.11443	-0.13786	-0.37572	-1.5534	-2.16692	-4.06834	-0.14459
	7	-1.17017	0.791866	0.633507	0.777671	2.378207	13.93041	0.00E+00	-31.9479	0.498561	0.597741	0.56751	0.237863	-1.40619	-2.42129	-5.37498	0.683196
	8	-1.11185	0.927222	0.698843	0.84838	2.525815	13.24138	32.79659	0.00E+00	-0.46171	-0.29517	-0.35023	-0.95821	-4.06954	-6.13612	-12.4371	-7.34E-02
	9	8.907958	1.33E-02	8.44E-03	1.32E-02	4.03E-02	0.184313	0.263052	0.461845	0.00E+00	-33.4185	-10.4185	-6.81304	-1.23E-02	0.790547	0.926145	5.66E-02
	10	11.54489	8.43E-03	5.46E-03	8.23E-03	2.50E-02	0.114481	0.163774	0.295201	34.24399	0.00E+00	-1.21562	-3.11826	0.847207	0.633268	0.698649	2.95E-02
	11	7.738616	1.32E-02	8.23E-03	1.11E-02	3.18E-02	0.137909	0.194005	0.350258	10.5711	1.222739	0.00E+00	-5.94412	1.184575	0.777384	0.848128	3.26E-02
	12	10.23509	4.03E-02	2.50E-02	3.18E-02	8.88E-02	0.375764	0.523551	0.958107	6.899436	3.164451	6.086101	0.00E+00	6.100593	2.37802	2.525542	6.88E-02
	13	4.966392	0.184122	0.11442	0.137849	0.375706	1.553401	2.166912	4.068331	1.24E-02	-0.85185	-1.1916	-6.12715	0.00E+00	13.9167	13.23593	0.144982
	14	1.170164	0.262943	0.163759	0.193992	0.523643	2.167689	3.182792	6.136477	-0.79186	-0.63351	-0.77767	-2.3782	-13.9304	0.00E+00	31.94787	-0.6834
	15	1.111855	0.461736	0.295182	0.350249	0.958232	4.06956	6.136151	12.43711	-0.92722	-0.69884	-0.84838	-2.5258	-13.2414	-32.7966	0.00E+00	7.30E-02
	16	3.36E-04	5.38E-02	2.87E-02	3.19E-02	6.82E-02	0.144496	7.82E-02	7.32E-02	-5.69E-02	-2.96E-02	-3.27E-02	-6.91E-02	-0.14488	-7.79E-02	-7.29E-02	0.00E+00
MZ	- h	nfluence I	Matrix i	n-lb/coil													
	1	0.00E+00	-20165.7	-9837.4	-5246.08	-5607.03	-3893.17	-1291.17	-1209.61	20165.75	9837.401	5246.083	5607.024	3893.168	1291.17	1209.613	1.582384
	2	24.48505	0.00E+00	-249.019	-68.2512	-36.4968	-5.93E-02	3.597156	4.181828	0.150695	8.74E-02	9.74E-02	0.246144	0.910378	1.21158	2.102748	0.238253
	3	1.561877	-22.3793	0.00E+00	-1.62305	-2.53606	0.495806	0.342246	0.375138	1.03E-02	5.81E-03	7.06E-03	1.78E-02	6.64E-02	8.90E-02	0.159802	1.40E-02
	4	-0.12537	-3.91461	-1.01542	0.00E+00	-4.59226	0.466528	0.258501	0.276698	6.85E-03	4.21E-03	4.69E-03	1.18E-02	4.58E-02	6.13E-02	0.110545	8.91E-03
	5	8.86E-02	3.45E-02	-3.11E-02	-0.27883	0.00E+00	-1.14E-02	-8.58E-03	-7.34E-03	1.60E-03	7.40E-04	2.57E-04	1.01E-03	1.01E-03	-6.79E-06	-3.68E-04	-2.33E-04
	6	9.00E-02	1.22E-03	-3.92E-02	-5.83E-02	-0.33361	0.00E+00	-0.4789	-0.43358	-1.60E-03	-1.95E-03	-2.38E-03	-5.77E-03	-2.91E-02	-4.36E-02	-8.77E-02	2.63E-03
	7	2.45E-02	5.89E-02	3.93E-02	4.80E-02	0.129275	0.739098	0.00E+00	4.723598	-0.79548	-0.79455	-0.79473	-0.7995	-0.81921	-0.80366	-0.78433	-0.79449
	8	2.84E-03	1.01E-02	6.44E-03	7.02E-03	1.74E-02	8.83E-02	1.399876	0.00E+00	1.08E-03	1.20E-03	2.08E-03	3.77E-03	1.58E-02	1.76E-02	6.35E-02	-1.16E-03
	9	-24,4851	-0.15059	-8.70E-02	-9.73E-02	-0.2457	-0.90958	-1.21081	-2.10158	0.00E+00	249.0188	68.25115	36,49831	5.93E-02	-3.59795	-4.18141	-0.25066
	10	-1.56241	-1.08E-02	-6.81E-03	-7.76E-03	-1.83E-02	-6.74E-02	-9.01E-02	-0.16021	22.37927	0.00E+00	1.623067	2.536109	-0.49601	-0.34273	-0.37514	-1.42E-02
	11	0 125455	-6.82E-03	-4 15E-03	-4 44E-03	-1 19F-02	-4 57E-02	-6 13E-02	-0 11049	3 914487	1 015485	0.00E+00	4 592257	-0.46678	-0.25859	-0 27669	-8.80E-03
	12	-8.81E-02	-1 24E-03	-5 91E-04	-8 94F-04	-9 79F-04	-1 72E-03	-1 09E-04	4 62E-05	-3 37E-02	3 17E-02	0 279924	0.00E+00	1.055-02	8 165-03	7 37F-03	-3.995-05
	13	-8.99E-02	9.69E-04	9.41E-04	2.02E-03	4.21E-03	2.79E-02	4.14E-02	8.62E-02	-1.28E-03	3.94E-02	5.73E-02	0.333646	0.00E+00	0.479147	0.433768	-3.37E-03
	14	-2 47E-02	3 765-03	2 975-02	2 905-03	7.615-03	2 755-02	1 175-02	-7 64E-03	-5 89E-02	3 945.02	-4 82E-02	-0.12919	-0 73952	0.00E+00	4 72365	0 794663
	15	-3.015-03	-2 255-03	-1 545-03	-2 565-03	-5 345-03	-1.635-02	-1.855-02	-6.40E-02	-1.05E-02	-6.805-03	-8.085-03	-1.85E-02	-8 905-02	-1 40106	0.005+00	6 94F-04
	16	-9.105-02	-2.200-00	-1.346-05	-0.3971	-0.040-05	-4.40202	-2.0000-02	-3.18252	0.120321	0.228020	0 440427	1 212940	4 390471	2 102750	3 006629	0.005+00
	10	-2.105-05	-2.226-02	-0.20514	-0.55/1	-1.431/3	-4.40205	-3.21045	-2.10252	0.120351	0.320030	0.440457	1.010040	7.5504/1	2.100/33	2.000050	0.00000000

FX

Influence Matrix Ib/coil

Test Cases

PF 4 and 5 Moment Study

Attachment A Influence Coefficient Subroutine

```
Subroutine Influence(numcoils)
       include 'scommon.blk'
DIMENSION rinffx(50,50)
        DIMENSION rinffy(50,50)
        DIMENSION rinfmz(50,50)
         do 9 i=1,50
do 9 j=1,50
rinffx(i,j)=0
rinffy(i,j)=0
          rinfmz(i,j)=0
  9
        Continue
          do 10 i=1,numcoils
          do 10 j=1,numcoils
          call snal(0)
          call seal(0)
          ial=1
          ia2=2
          ia3=3
          ia4=4
          ib1=0
          ib2=0
          ib3=0
          ib4=0
        CALL Sreal(i,i)
          CALL Sreal(j,i)
call SNELEM(i,i)
        typekeydum=typekey
          typekey=7
          eqrpkeydum=eqrpkey
          egrpkey=7
        r=0.0
С
                                                           Creating Current Elements from Quad Elements
        call CCUR(R,i,ia1,ia2,ia3,ia4,ib1,ib2,ib3,ib4)
        call stype(7,70)
          call snelem(70,70)
        call sfield(i)
          call snal(0)
call seal(0)
        call stype(7,70)
          call gerase(70)
call reduce
          CALL Sreal(i,i)
        call SNELEM(i,i)
          CALL Sreal(j,j)
        call SNELEM(j,j)
        call mfor(i,ia1,ia2,ia3,ia4,ib1,ib2,ib3,ib4)
          call mfsum(i,i,fxsum,fysum,xmzsum)
          rinffx(i,j)=fxsum
          rinffy(i,j)=fysum
rinfmz(i,j)=xmzsum
          bxs=0.0
          bys=0.0
         byz=0.0
        call bscale(i,bxs,bys,bzs)
        call fscale(i,bxs,bys,bzs)
       call bscale(j,bxs,bys,bzs)
call fscale(j,bxs,bys,bzs)
        CONTINUE
 10
 54
        CONTINUE
          do 15 i=1, numcoils
          do 15 j=1,numcoils
         if (i.ne.j) rinffx(i,j)=rinffx(i,j)-rinffx(i,i)
rinffy(i,j)=rinffy(i,j)-rinffy(i,i)
rinfmz(i,j)=rinfmz(i,j)-rinfmz(i,i)
 15
       Continue
        write(7,*) 'FX Influence Matrix N/rad'
         do 11 i=1, numcoils
      write(7,*) i, rinffx(i,1), rinffx(i,2), rinffx(i,3), rinffx(i,4),
c rinffx(i,5), rinffx(i,6), rinffx(i,7), rinffx(i,8), rinffx(i,9),
c rinffx(i,10), rinffx(i,11), rinffx(i,12), rinffx(i,13), rinffx(i,14),
c rinffx(i,10), rinffx(i,11), rinffx(i,12), rinffx(i,13), rinffx(i,14),
      c rinffx(i,15),rinffx(i,16),rinffx(i,17),rinffx(i,18),rinffx(i,19)
 11
       continue
        write(7,*) 'FY Influence Matrix N/rad'
          do 12 i=1,numcoils
        write(7,*) i,rinffy(i,1),rinffy(i,2),rinffy(i,3),rinffy(i,4),
```

```
c rinffy(i,5),rinffy(i,6),rinffy(i,7),rinffy(i,8),rinffy(i,9),
c rinffy(i,10),rinffy(i,11),rinffy(i,12),rinffy(i,13),rinffy(i,14),
     c rinffy(i,15), rinffy(i,16), rinffy(i,17), rinffy(i,18), rinffy(i,19)
12
       continue
       write(7,*) 'MZ Influence Matrix N-m/rad'
        do 13 i=1, numcoils
       write(7,*) i,rinfmz(i,1),rinfmz(i,2),rinfmz(i,3),rinfmz(i,4),
      c rinfmz(i,5), rinfmz(i,6), rinfmz(i,7), rinfmz(i,8), rinfmz(i,9),
      c rinfmz(i,10), rinfmz(i,11), rinfmz(i,12), rinfmz(i,13), rinfmz(i,14),
     c rinfmz(i,15), rinfmz(i,16), rinfmz(i,17), rinfmz(i,18), rinfmz(i,19)
13
      continue
        do 16 i=1,numcoils
        do 16 j=1, numcoils
        rinffx(i,j)=rinffx(i,j)*.2248*2*3.1416
rinffy(i,j)=rinffy(i,j)*.2248*2*3.1416
rinfmz(i,j)=rinfmz(i,j)*.2248*2*3.1416*39.37
16
       Continue
       write(7,*) 'FX Influence Matrix lb/coil'
        do 17 i=1, numcoils
       write(7,*) i,rinffx(i,1),rinffx(i,2),rinffx(i,3),rinffx(i,4),
     c rinffx(i,5),rinffx(i,6),rinffx(i,7),rinffx(i,8),rinffx(i,9),
c rinffx(i,10),rinffx(i,11),rinffx(i,12),rinffx(i,13),rinffx(i,14),
     c rinffx(i,15), rinffx(i,16), rinffx(i,17), rinffx(i,18), rinffx(i,19)
17
      continue
      write(7,*) 'FY Influence Matrix lb/coil'
        do 18 i=1,numcoils
     write(7,*) i,rinffy(i,1),rinffy(i,2),rinffy(i,3),rinffy(i,4),
c rinffy(i,5),rinffy(i,6),rinffy(i,7),rinffy(i,8),rinffy(i,9),
      c rinffy(i,10), rinffy(i,11), rinffy(i,12), rinffy(i,13), rinffy(i,14),
     c rinffy(i,15),rinffy(i,16),rinffy(i,17),rinffy(i,18),rinffy(i,19)
18
     continue
       write(7,*) 'MZ Influence Matrix in-lb/coil'
        do 19 i=1, numcoils
       write(7,*) i,rinfmz(i,1),rinfmz(i,2),rinfmz(i,3),rinfmz(i,4),
      c rinfmz(i,5),rinfmz(i,6),rinfmz(i,7),rinfmz(i,8),rinfmz(i,9),
c rinfmz(i,10),rinfmz(i,11),rinfmz(i,12),rinfmz(i,13),rinfmz(i,14),
     c rinfmz(i,15), rinfmz(i,16), rinfmz(i,17), rinfmz(i,18), rinfmz(i,19)
19
       continue
       typekey=typekeydum
        eqrpkey=eqrpkeydum
       return
       end
       SUBROUTINE mFSUM(IGRPs, iqrpe, fxsum, fysum, xmzsum)
       include 'scommon.blk'
       do 13 igrp=igrps,igrpe
        numn=0
        centx=0
        centy=0
       FxSUM=0.
       FYSUM=0.
        xmzsum=0
       ymzsum=0
1
        FZSUM=0.
       DO 12 I=1 , N
IF(NGROUP(I).EQ.IGRP) THEN
        numn=numn+1
         centx=centx+x(i)
        centy=centy+y(i)
       FXSUM=FXSUM+FX(I)
       FYSUM=FYSUM+FY(I)
1
       FZSUM=FZSUM+FZ(I)
        xMZSUM=xMZSUM-FX(I)*Y(I)
       yMZSUM=yMZSUM+FY(I)*X(I)
       end if
       CONTINUE
12
       centx=centx/numn
        centy=centy/numn
        ymom= -xmzsum/fxsum
        xmom=ymzsum/fysum
       xMZSUM=-fxsum* (ymom-centy)+fysum* (xmom-centx)
     print*,igrp,fxsum,fysum,xmzsum
write(7,*) igrp,',',fxsum,',',fysum,',',fzsum,',',
cxmxsum,',',xmysum,',',xmzsum
13
       CONTINUE
       RETURN
       END
```

Some of the subroutines in this subroutine may be called in scripts, the script commands are described below:

mfsu	Prompts for the start and end node group Calculates the x force sum, y force sum and moment sum about the centroid of nodes defined by node groups starting at igrps and ending at ,igrpe
mfor	Calculates Lorentz forces on a brick or quad element from fields corner nodes, currents specified as real constants, and current directions specified by inputting an element nodal sequence that defines the brick element start and end face. For an axisymmetric analysis using, the connectivity specification is 1,2,3,4,0,0,0,0. Forces computed for an axisymmetric analysis are per radian. For ANSYS analyses these loads need to be multiplied by 2*pi.
sfie	Computes 2D fields using Elliptic Integrals from loops defined by type 7 elements.

Attachment B Influence Coefficient Matrix Script

! Influence Coefficient Matrix Test read ron2 divi 0,2,2,1 snal 1 merge 1,.0001 redu rcoi 16 1,10,80,1029,250 2,4,7,28,250 3,2,5,10,250 4,2,5,10,250 5,4,10,28,250 5,4,10,28,250 6,3,10,30,250 7,1,17,17,250 8,4,6,24,250 9,4,7,28,250 10,2,5,10,250 12,4,10,28,250 13,3,10,30,250 14,1,17,17,250 15,4,6,24,250 16,6,8,28,250infl 16 copt r plce pl exit

