NSTX Upgrade

Moment Influence Coefficients

NSTXU-CALC-13-05-00

Rev 0
January 182011

Approved By:

Phil Heitzenroeder, Head, Mechanical Engineering

PPPL Calculation Form

Calculation \# NSTXU-CALC-13-05-00
Revision \# $0 \underline{0}$
WP \#, $\underline{5200}$
(ENG-032)

Purpose of Calculation: (Define why the calculation is being performed.)
Force coefficients are an input to the digital coil protection system (DCPS)[7]. This document is a calculation of the moment influence coefficients to be applied to the PF currents. Previously, influence coefficients were computed for only radial and axial loads on the coils. There was no adjustment for the force centroid, which could be substantially displaced from the geometric centroid. Where force centers differ from the coil geometric centers, reaction forces at supports may differ significantly from loads computed with the assumption that the forces are at the coil centroid. Moment coefficients are also being computed by R. Wooley and this calculation may serve as a check for his results, or this calculation may produce coefficients for the DCPS

References (List any source of design information including computer program titles and revision levels.)

Included in the body of the calculations

Assumptions (Identify all assumptions made as part of this calculation.)

Axisymmetry of the coils

Calculation (Calculation is either documented here or attached)

Included in the body of the calculations

Conclusion (Specify whether or not the purpose of the calculation was accomplished.)
Moment influence coefficients have been calculated and tabulated for checking other's work or inclusion in the DCPS

Cognizant Engineer's printed name, signature, and date Ronald Hatcher Ronald E Hatcher

I have reviewed this calculation and, to my professional satisfaction, it is properly performed and correct.

Checker's printed name, signature, and date
Robert Woolley Robert D Woolley

Digitally signed by Robert D Woolley DN: $\mathrm{Cn}=$ Robert D Woolley, o, ou, email=rwoolley@pppl.gov, c=US DN: cn =Robert D Woolley, o, ou, em
Date: 2011.10.05 10:44:27-04'00'

Table of Contents

Table of Contents 3
Executive Summary 3
Input to the Digital Coil Protection System (DCPS 3
References. 4
Analysis Code 4
Axisymmetric Analysis Finite Element Model...... 4
Results 6Comparison with Bob Woolley's Moment CoefficientsComparison with Ron Hatcher's Results7
Shaped Plasma Results
Test Cases
Attachment A Influence Coefficient Subroutine in NTFTM9

Executive Summary:

It is usual practice to utilize influence coefficient calculations to determine hoop and axial (vertical for tokamak's) loads from coil currents. However the centroid of the Lorentz loads may not be at the geometric center of the coils. Where there is significant offset between the Lorentz centroid and the geometric center, there will be a moment about the coil geometric center in addition to the net loads. This may be a significant contributor to the support reaction loads and to the stresses in the coils themselves. In design and analysis of coil systems, distributions of fields and forces are typically calculated for a useful structural/magnetic mesh which is typically fine enough to properly distribute the Lorentz forces and resolve any moments about the coil current centers. When influence coefficients are used in operating tokamaks to check coil stresses and support loading the effect of moments has been omitted. To the author's knowledge, this is true of Alcator CMod, TFTR and NSTX . Addition of the moment coefficients completes the three degrees of freedom available from the axisymmetric analysis of ring coils. For NSTX the effect of the moment coefficients is small for the compact ring coils

Figure 1 Moments at Current Centers. but is interesting for the thin solenoids - the OH and $\mathrm{PF} 1 \mathrm{a}, \mathrm{b}$, and c. Two plasma shapes have been investigated a rectangular cross section and a shaped plasma.

Excerpt from the Shaped Plasma Moment Influence Coecfficients																	
		OH	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bl.	PF1cL	PF2L	PF3L	PF4L	PF5L	Ip
OH	1	0.00E +00	-20165.7	-9837.4	-5246.08	-5607.03	-3893.17	-1291.17	-1209.61	20165.75	9837.401	5246.083	5607.024	3893.168	1291.17	1209.613	1.582384

The largest moment influence factors are for moments on the OH from PF1aU and L currents as might be expected from the coil geometries. The effect on the outer ring coils is minimal. The results of this calculation were compared with R. Hatchers results for the 2009 coil builds and with R. Woolley's calculations for the 2011 coil builds. The comparison with Wooley's moment coefficients show results typically within 2 to 5% with two outliers at 8% and large difference ratios when the two analyses are both calculating essentially zero factors.

Digital Coil Protection System (DCPS) Input

The proposed DCPS is described in detail in a draft requirements document by Robert Woolley ref [7]. Force influence coefficients are already included in plans for the DCPS. Inclusion of these moment coefficients is proposed, depending on their usefulness in quantifying stresses for specific components. In the description of the DCPS, the "systems code" will actually be the analyses described in the filed structural calculations. There is a global model which is the closest thing we have to a single systems code,
but this is augmented in many ways by separate calculations to address specific stress locations and components and support hardware. During the final design activity, Each preparer of a calculation will be assigned the development of "mini algorithms" These may make use of moment influence coefficients. One examples is:

PF 2,3 supports, welds bolts - At this stage, these are just calculated from influence coefficient matrix loads divided by weld or bolt area. Addition of moment influence coefficients adds overturning moments to the calculation of the bolt loads .

Addition of Moment Influence Coefficients to DCPS

Bolt Loads are calculated only
from the vertical force.

Bolt Loads are calculated from the vertical force and the moment divided by the width of the bolt pattern

References

[1] NSTX Influence Coefficients, calculation \# NSTXU 13 03-00, Ron Hatcher DATE: July 92009
[2] NSTX-CALC-13-001-00 Rev 1 Global Model - Model Description, Mesh Generation, Results, Peter
H. Titus December 2010
[3] NSTX Structural Design Criteria Document, NSTX_DesCrit_IZ_080103.doc I. Zatz
[4] NSTX Design Point Sep 82009 http://www.pppl.gov/~neumeyer/NSTX_CSU/Design_Point.html
[5] OOP PF/TF Torques on TF , R. Woolley, NSTXU CALC 132-03-00
[6] "MHD and Fusion Magnets, Field and Force Design Concepts", R.J.Thome, John Tarrh, Wiley Interscience, 1982
[7] DIGITAL COIL PROTECTION SYSTEM (DCPS) REQUIREMENTS DOCUMENT (DRAFT), NSTX-CSU-RD-DCPS for the National Spherical Torus Experiment Center Stack Upgrade, February 5, 2010 R. Woolley
[8] NSTXU-CALC-132-04-00 ANALYSIS OF TF OUTER LEG, Han Zhang, August 31, 2009

Analysis Code, NTFTM

Mesh generation , calculation of the Lorentz forces, and generation of the influence coefficients is done using a code written by the author of this report. The influence coefficient subroutine is included as appendix A The mesh generation feature of the code is checked visually and within ANSYS during the

PREP7 geometry check. . The authors code uses elliptic integrals for 2D field calculations, and Biot Savart solution for 3D field calculations. These are based 2D formulations, and single stick field calculations from Dick Thomes book [8] with some help from Pillsbury's FIELD3D code to catch all the coincident current vectors, and other singularities.

The code in various forms has been used for 20 years and is suitable for structural calculations. It is also being used for calculation of load files in an NSTX global model[8]. Recent checks include NSTX out-ofplane load comparisons with ANSYS [9] and MAXWELL and calculations of trim coil fields for W7X compared with Neil Pomphrey's calculations. The analysts in the first ITER EDA went through an exercise to compare loads calculated by the US (using this code), RF and by Cees Jong in ANSYS, and agreements were good. Some information on the code, named FTM (Win98) and NTFTM2 (NT,XP), is available at: http://198.125.178.188/ftm/manual.pdf). or, within PPPL: at P:\public\Snap-srv\Titus\NTFTM

Axisymmetric Analysis Model

Computation of influence coefficients is done by computing contributions of fields and forces in one element group with respect to other element groups. The element groups are identified by real constant numbers for the elements in the group. This allows coils or sections of coils to be considered in the matrix calculation. For this calculation, the element designations used by Ron Hatcher's calculation [1] have been used to allow a comparison with the force influence coefficients. Moment coefficients require the computation of the force contributions with a running summation of forces multiplied by the element force times the appropriate radial or axial lever arm with respect to the element group centroid. So computation of the moment influence coefficients also produces the force influence coefficients.

NTFTM InputFle

PFModel Consistent with J. Menard's 33 coil set Equillbria Usedes a sterting point to create the model at right.

Figure 2 Axisymmetric Models

	(cm)	(cm)	(cm)	(cm)				0
OH (half- plane)	24.2083	6.934	106.04	212.08	4	110	442	0.701
PF1a	32.4434	6.2454	159.06	46.3296	4	16	64	0.825
PF1b	40.038	3.36	180.42	18.1167	2	16	32	0.794
PF1c	55.052	3.7258	181.36	16.6379	2	10	20	0.856
PF2a	79.9998	16.271	193.3473	6.797	7	2	14	0.741
PF2b	79.9998	16.271	185.26	6.797	7	2	14	0.741
PF3a	149.446	18.644	163.3474	6.797	7.5	2	15	0.693
PF3b	149.446	18.644	155.26	6.797	7.5	2	15	0.693
PF4b	179.4612	9.1542	80.7212	6.797	2	4	8	0.753
PF4c	180.6473	11.527	88.8086	6.797	4.5	2	9	0.672
PF5a	201.2798	13.533	65.2069	6.858	6	2	12	0.773
PF5b	201.2798	13.533	57.8002	6.858	6	2	12	0.773

rcoi
16
1,10,80,884,250 IOH 2,4,7,64,250 IPF1AU 3,2,5,32,250 IPF1bU 4,2,5,20,250 5,4,10,28,250 6,3,10,30,250 7,1,17,17,250 8,4,6,24,250
9,4,7,64,250
10,2,5,32,250
11,2,5,20,250
12,4,10,28,250
13,3,10,30,250
14,1,17,17,250
15,4,6,24,250
$16,6,8,1,250$
PF Builds and Number of Turns from the Design Point Spreadsheet [4]

Results

	FX		OH Influence	PF1AU Matrix	PF1bu $\mathrm{N} / \mathrm{rad}$	PF1cU	PF2U	PF3U P	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L P	PF4L	PF5L	
OH		1	25230.3	3806.061	1708.908	967.1191	1134.092	1209.182	776.9004	1080.26	3806.043	1708.914	967.123	1134.096	1209.203	776.8887	1080.252	58.04883
PF1AU		2	-140.673	856.7656	804.679	402.8212	385.0967	267.9286	97.79694	113.873	2.693542	1.662048	1.908569	5.065918	19.87793	25.48993	46.92737	1.891357
PF1bU		3	-111.435	-147.157	344.059	462.4921	333.3344	164.4536	52.2583	60.96289	1.346069	0.843353	0.970917	2.600311	10.30087	13.1109	24.38876	0.834534
PF1cU		4	-49.8817	-66.3434	-186.161	152.8504	363.0069	147.4613	44.34793	51.61908	1.111908	0.69957	0.805283	2.161407	8.583679	10.90804	20.36479	0.65506
PF2U		5	-31.1968	-44.1531	-82.4588	-136.834	292.1378	317.2212	81.96744	95.94821	1.96759	1.253113	1.443481	3.899963	15.58963	19.65652	37.01328	1.009399
PF3U		6	-21.5523	-26.2723	-19.4406	-24.8062	-74.7123	400.619	163.52	198.7234	3.382355	2.227905	2.566162	7.052979	28.73105	35.6076	68.99472	0.94574
PF4U		7	-14.8351	-3.98004	-1.31325	-1.43192	-0.89291	16.79922	150.6147	444.4194	2.456009	1.717377	1.986237	5.62558	23.96396	30.02812	62.74477	-0.35266
PF5U		8	-20.3084	-2.72794	-0.53848	-0.5621	1.093414	15.20554	-199.776	300.6638	2.999451	2.246582	2.606537	7.632538	33.50699	39.08331	86.71771	-1.09036
PF1AL		9	-140.673	2.693604	1.662109	1.908752	5.066101	19.87787	25.4903	46.92773	856.7654	804.6786	402.821	385.0972	267.929	97.79706	113.8729	1.891724
PF1bL		10	-111.435	1.3461	0.843353	0.970947	2.600433	10.30093	13.11102	24.38889	-147.157	344.0589	462.4922	333.3345	164.4537	52.25842	60.96298	0.834717
PF1cL		11	-49.8816	1.111908	0.699554	0.805328	2.161484	8.583694	10.90807	20.36481	-66.3433	-186.161	152.8504	363.007	147.4612	44.34799	51.61909	0.655121
PF2L		12	-31.1969	1.96756	1.253174	1.443481	3.900024	15.58957	19.65646	37.01309	-44.1531	-82.459	-136.834	292.1379	317.2212	81.9675	95.9483	1.00943
PF3L		13	-21.5522	3.382446	2.227753	2.566376	7.05304	28.73096	35.6077	68.99469	-26.2725	-19.4405	-24.8061	-74.7123	400.6189	163.5198	198.7233	0.945801
PF4L		14	-14.8352	2.456024	1.717377	1.986221	5.625595	23.96391	30.02812	62.74481	-3.97992	-1.31326	-1.43192	-0.89294	16.79919	150.6147	444.4194	-0.35263
PF5L		15	-20.3084	2.999481	2.246521	2.606598	7.632538	33.50702	39.0834	86.7178	-2.72781	-0.53839	-0.56195	1.093506	15.20557	-199.776	300.6637	-1.09033
Ip		16	-0.65479	0.39844	0.250672	0.287969	0.757769	2.9888	4.106287	6.647198	0.39844	0.250672	0.287969	0.757769	2.9888	4.106287	6.647198	0.205512

FY Influence Matrix $\mathrm{N} / \mathrm{rad}$
$\begin{array}{lllllllllllllllllllllllll}1 & 0.00 \mathrm{E}+00 & 101.6216 & 132.1296 & 87.8682 & 115.5602 & 56.18751 & 13.25849 & 12.59733 & -101.621 & -132.129 & -87.8677 & -115.56 & -56.1874 & -13.2583 & -12.5974 & 1.15 \mathrm{E}-04\end{array}$ $\begin{array}{llllllllllllllllll}2 & -101.118 & 0.00 \mathrm{E}+00 & 384.1478 & 118.9599 & 77.54909 & 0.139336 & -8.96284 & -10.4976 & -0.15052 & -9.56 \mathrm{E}-02 & -0.14978 & -0.4568 & -2.08736 & -2.97952 & -5.23168 & -0.41885\end{array}$ PF1AU PF1bu $\begin{array}{llllllllllllllllll}3 & -131.409 & -386.426 & 0.00 \mathrm{E}+00 & 13.84991 & 35.47831 & -9.61017 & -7.17572 & -7.91616 & -9.66 \mathrm{E}-02 & -6.30 \mathrm{E}-02 & -9.43 \mathrm{E}-02 & -0.28422 & -1.29785 & -1.85637 & -3.34522 & -0.21371\end{array}$ $\begin{array}{llllllllllllllllllll}\text { PF1CU } & 4 & -87.757 & -119.389 & -13.8709 & 0.00 \mathrm{E}+00 & 67.80286 & -13.4356 & -8.80649 & -9.60769 & -0.14898 & -9.25 E-02 & -0.12476 & -0.35941 & -1.56134 & -2.19689 & -3.96695 & -0.23739\end{array}$
 PF3U PF4U $\begin{array}{lllllllllllllllllll}6 & -56.2119 & -0.1395 & 9.6224 & 13.45625 & 69.21666 & 0.00 \mathrm{E}+00 & -157.733 & -149.975 & -2.08676 & -1.29659 & -1.56193 & -4.25708 & -17.5993 & -24.5514 & -46.0942 & -1.64419\end{array}$ $\begin{array}{lllllllllllllllllll}7 & -13.2569 & 8.966514 & 7.175429 & 8.808064 & 26.94148 & 157.7714 & 0.00 \mathrm{E}+00 & -368.7 & -0.83501 & 0.288889 & -5.35 \mathrm{E}-02 & -3.78803 & -22.4096 & -33.9093 & -67.3666 & 0.65353\end{array}$ PF5U $\begin{array}{lllllllllllllllllll}8 & -12.5961 & 10.50075 & 7.915802 & 9.609217 & 28.61358 & 149.9904 & 371.0913 & 0.00 \mathrm{E}+00 & -5.23136 & -3.34403 & -3.96774 & -10.8557 & -46.0978 & -69.5098 & -140.886 & -1.53568\end{array}$ $\begin{array}{llllllllllllllll}9 & 101.1179 & 0.150541 & 9.56 \mathrm{E}-02 & 0.149777 & 0.456797 & 2.08738 & 2.979534 & 5.231685 & 0.00 \mathrm{E}+00 & -384.148 & -118.96 & -77.5491 & -0.13934 & 8.962835 & 10.49761\end{array} 0.418849$
 $\begin{array}{llllllllllllllllllll}\text { PF1cL } & 11 & 87.75694 & 0.149756 & 9.33 \mathrm{E}-02 & 0.125511 & 0.360171 & 1.562139 & 2.197661 & 3.967718 & 119.3888 & 13.87093 & 0.00 \mathrm{E}+00 & -67.8029 & 13.43558 & 8.80649 & 9.607681 & 0.23738\end{array}$ $\begin{array}{llllllllllllllllllllllll}\text { PF2L } & 12 & 115.7142 & 0.456672 & 0.283127 & 0.360149 & 1.00679 & 4.257355 & 5.931921 & 10.85529 & 77.79339 & 35.61006 & 68.20438 & 0.00 \mathrm{E}+00 & 69.14127 & 26.94106 & 28.61289 & 0.550955\end{array}$ PF3L $\begin{array}{llllllllllllllllllll}13 & 56.21167 & 2.086667 & 1.296516 & 1.561787 & 4.257044 & 17.59918 & 24.55125 & 46.09405 & 0.139395 & -9.62249 & -13.4564 & -69.2168 & 0.00 \mathrm{E}+00 & 157.7327 & 149.9749 & 1.644278\end{array}$ $\begin{array}{llllllllllllllllll}14 & 13.25691 & 2.97919 & 1.855294 & 2.19768 & 5.932143 & 24.55371 & 36.0535 & 69.51076 & -8.96656 & -7.17546 & -8.80807 & -26.9415 & -157.772 & 0.00 \mathrm{E}+00 & 368.6999 & -0.65354\end{array}$ $\begin{array}{llllllllllllllllll}15 & 12.59614 & 5.231288 & 3.343943 & 3.967732 & 10.85565 & 46.09769 & 69.50972 & 140.8862 & -10.5008 & -7.91585 & -9.60928 & -28.6136 & -149.991 & -371.092 & 0.00 \mathrm{E}+00 & 1.535666\end{array}$ PF5L $\begin{array}{llllllllllllllllll}16 & -1.55 \mathrm{E}-08 & 0.419172 & 0.212848 & 0.238377 & 0.551498 & 1.645014 & 1.489633 & 1.53422 & -0.41917 & -0.21285 & -0.23838 & -0.5515 & -1.64501 & -1.48963 & -1.53422 & 0.00 \mathrm{E}+00\end{array}$

Moment Influence Coefficients

	OH	PF1AU	PF1bU	PF1cU	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	PF5L
MZ	Influence	Matrix	N-m/												

7 1.81E-03 1.45E-02 $1.02 \mathrm{E}-02126 \mathrm{E}-023.48 \mathrm{E}-020.208274000 \mathrm{E}+00-1686089-8.70 \mathrm{E}-02-8.69 \mathrm{E}-02-8.68 \mathrm{E}-02-8.67 \mathrm{E}-02-8.36 \mathrm{E}-02-7.60 \mathrm{E}-02-5.52 \mathrm{E}-02-8.88 \mathrm{E}-02$ $\begin{array}{lllllllllllllll}8 & 6.00 \mathrm{E}-04 & 2.37 \mathrm{E}-03 & 1.34 \mathrm{E}-03 & 1.66 \mathrm{E}-03 & 4.70 \mathrm{E}-03 & 2.13 \mathrm{E}-02 & 0.34347 & 0.00 \mathrm{E}+00 & 3.96 \mathrm{E}-04 & 9.27 \mathrm{E}-05 & 2.31 \mathrm{E}-04 & 5.87 \mathrm{E}-04 & 4.05 \mathrm{E}-03 & 4.44 \mathrm{E}-03 \\ 1.63 \mathrm{E}-02 & -6.30 \mathrm{E}-04\end{array}$ $\begin{array}{llllllllllllllllllllllllll}9 & -7.15235 & -4.34 \mathrm{E}-02 & -2.57 \mathrm{E}-02 & -2.80 \mathrm{E}-02 & -7.17 \mathrm{E}-02 & -0.2658 & -0.35305 & -0.61401 & 0.00 \mathrm{E}+00 & 73.66515 & 20.08523 & 10.70527 & 1.58 \mathrm{E}-02 & -1.05117 & -1.22179 & -4.59 \mathrm{E}-02\end{array}$ $10-0.45037-3.05 \mathrm{E}-03-1.71 \mathrm{E}-03-1.99 \mathrm{E}-03-5.31 \mathrm{E}-03-1.96 \mathrm{E}-02-2.65 \mathrm{E}-02-4.71 \mathrm{E}-02 \quad 6.498307 \quad 0.00 \mathrm{E}+000.482262 \quad 0.752478-0.14651-0.1009-0.11069-2.63 \mathrm{E}-03$ $113.99 \mathrm{E}-02-1.98 \mathrm{E}-03-1.10 \mathrm{E}-03-1.35 \mathrm{E}-03-3.52 \mathrm{E}-03-1.34 \mathrm{E}-02-1.81 \mathrm{E}-02-3.26 \mathrm{E}-02 \quad 1.14442 \quad 0.2988110 .00 \mathrm{E}+00 \quad 1.365146 \quad-0.13729-7.59 \mathrm{E}-02-8.14 \mathrm{E}-02-1.71 \mathrm{E}-03$ $\begin{array}{llllllllllllllllllll}12 & -3.69 E-02 & -3.48 \mathrm{E}-04 & -3.97 \mathrm{E}-04 & 4.51 \mathrm{E}-05 & -2.21 \mathrm{E}-04 & 4.78 \mathrm{E}-04 & 1.18 \mathrm{E}-03 & 2.56 \mathrm{E}-03 & -3.21 \mathrm{E}-02 & -7.84 \mathrm{E}-03 & 3.30 \mathrm{E}-02 & 0.00 \mathrm{E}+00 & 2.88 \mathrm{E}-02 & 9.07 \mathrm{E}-03 & 8.70 \mathrm{E}-03 & -2.28 \mathrm{E}-04\end{array}$ $\begin{array}{lllllllllllllllllllll}13 & -3.30 \mathrm{E}-02 & 1.25 \mathrm{E}-03 & 9.91 \mathrm{E}-04 & 1.05 \mathrm{E}-03 & 2.59 \mathrm{E}-03 & 1.25 \mathrm{E}-02 & 1.79 \mathrm{E}-02 & 3.62 \mathrm{E}-02 & 3.17 \mathrm{E}-04 & 1.61 \mathrm{E}-02 & 2.39 \mathrm{E}-02 & 0.136112 & 0.00 \mathrm{E}+00 & 0.193252 & 0.176294 & 5.08 \mathrm{E}-05\end{array}$ $14-1.84 \mathrm{E}-03-1.38 \mathrm{E}-04-1.84 \mathrm{E}-04-1.52 \mathrm{E}-04-3.86 \mathrm{E}-04-3.46 \mathrm{E}-03-1.12 \mathrm{E}-02-3.20 \mathrm{E}-02 \quad-0.01459-1.02 \mathrm{E}-02-1.27 \mathrm{E}-02-3.48 \mathrm{E}-02 \quad-0.208310 .00 \mathrm{E}+00-1.68622 \quad 8.86 \mathrm{E}-02$ $15-5.71 \mathrm{E}-04-3.25 \mathrm{E}-04-9.78 \mathrm{E}-05-4.88 \mathrm{E}-04-9.94 \mathrm{E}-04-3.86 \mathrm{E}-03-4.33 \mathrm{E}-03-1.58 \mathrm{E}-02-2.34 \mathrm{E}-03-1.28 \mathrm{E}-03-1.46 \mathrm{E}-03-4.74 \mathrm{E}-03-2.13 \mathrm{E}-02-0.34239 \quad 0.00 \mathrm{E}+00 \quad 5.13 \mathrm{E}-04$ $\begin{array}{lllllllllllllllllllll}16-4.60 E-10 & -1.95 E-02 & -1.32 \mathrm{E}-02 & -1.53 \mathrm{E}-02 & -4.05 \mathrm{E}-02 & -0.16181 & -0.22447 & -0.26779 & 1.95 \mathrm{E}-02 & 1.32 \mathrm{E}-02 & 1.53 \mathrm{E}-02 & 4.05 \mathrm{E}-02 & 0.161809 & 0.224468 & 0.267794 & 0.00 \mathrm{E}+00\end{array}$

	FX		${ }^{\circ} \mathrm{H}$.		PFIbU	PFId	PF2U	PF3U	PF4U	PF5U	PFIAL P	PFIbl	PFIt	PF2L P	PF	PF4L P	51	
OH		1	35636.87	5375.921	2413.77	1366.02	1601863	1707.925	1097.343	1525.827	5375.896	2413.779	1366.026	1601.869	1707.955	1097.327	1525.816	4
pfial		2	-198.695	15	1136.58	568.9702	543.9351	378.4394	138.1346	160.8414	3.80453	2.347582	2695784	7.155424	28.07685	36.00359	19	73
pfibu		3	-157.398	-207.854	485,9707	653.2532	470.8225	232.2846	73.81298	86.10785	1.901274	1.191206	1371384	3.672844	14.54961	18.51867	34.44823	48
PFId		4	-70.456	93,7076	-262946	215.8956	5127339	208.2837	6263983	72.91006	1.570529	0.988117	1137432	3.052909	12.12413	15.4072	28.76452	0.925248
PF2U		5	-44,0644	-62,3646	-176.4T	-193.273	412.634	448.0633	115.776	135.5233	2.779149	1.769976	2036665	5.508555	22,01978	27.76412	522799	142574
PF3U		6	-30.4419	-37.1087	-27,4592	-35.0379	-105.528	565.8596	230.966	280.6895	4.777452	3.146835	3.62461	9,962073	40.58155	50,2944	97.45251	23
PF4U		7	-20.9541	-5.62166	-1.85491	-2.02253	-1.26121	23.72829	212.7378	627.7261	3.469023	2.425732	2805486	7.945925	33.84821	4241362	88.62468	-0.4
PFFSU		8	-28.6848	-3.85311	-0.76059	-0.79395	1.544408	2147726	-282.17\%	424.6766	4.236614	3.173215	3.681638	10.78068	47.32739	55.20375	1224856	1
PFIAL		9	-198.695	3.804616	2.347669	2.696043	7.155682	28.07676	36.00411	66.28371	1210.15	1136.579	568.9698	543.9357	378.4399	138.1348	160.6412	267199
PFIbL		10	-157.397	1.901317	1.191206	1.371427	3.673017	14.54969	18.51884	34.44841	-207.854	485.9706	653.2534	470.3278	232.2848	311	86.10798	1179007
PFId.		11	-70.456	1.570529	0.988095	1.137497	3.053017	1212415	15.40724	28.76454	-93.7075	-262.946	215.8956	512.	208.2836	6263991	72.91008	0.925334
PF2L		12	-44.0644	2.779106	1.770062	2.038865	5.508642	22.0197	27.76403	52.27964	-62.3647	-116.47	-193.273	412.6341	448.0633	115.7761	135.5235	1425789
PF3L		13	-30.4417	4.777581	3.146619	3.624912	9.96216	40.58142	50.29457	97.45247	-37.109	-27.459	-35.0377	-105.528	565.8595	230.9658	280.6894	909
PF4L		4	-20,9542	3.469044	2.425732	2.805465	7.9459	33.84815	4241362	88.62475	-5.62149	-1.85494	-2.02253	-126125	23.72825	212.7378	627.7261	-0.49808
PF5L		15	-22.6848	4.236657	3.173129	3.681724	10.78068	47.32743	55.20368	122.4857	-3.85294	-0.76046	-0.79373	1.544537	21.4773	-282.177	424.6765	-154005
ip		16	-0.92487	0.562782	0. 354065	0.406746	1.07032	4.22157	5.799981	9.388924	0.562782	0.354065	0.406746	107032	4.22157	5. 79998	9.388924	0.290278
	Fr		\cdots	Matric lis	coil													
OH		1	0.00E-00	143.5368	186.6282	124.1106	163.2246	79.3628	18.72713	17.79327	-143.536	-186.628	-124.11	-163.224	-79.3626	-187268	-17.79	63E-04
pfial		2	-142825	0.00E-00	542.5947	168.0264	109.5352	0.196807	-12.6597	-14.8275	-0.21261	-0.13498	-0.2115	-0.6+521	-2.94831	- 4.20846	7.38955	0.59161
PFibu		3	-185.61	-545.813	0.00E-00	19.56249	56.1118	3.57	-10.1355	-11.1813	-0.13644	-8.89E-02	-0. 13317	-0.40145	-1.83317	-2.62205	4.725	-0.30186
PFId		4	-123.954	-168.632	-19.5922	0.00E-00	95.769	-18.9773	-12.4388	-13.5705	-0.21043	-0.13065	-0.17622	-0.50765	-2.20534	-3.10303	5.6031	-0.3353
PF2U		5	-163.442	88	-50.2978	-96.336	0.00E-00	-97.6594	-38.0533	-40.4146	-0.64495	-0.39979	-0.50857	-142198	-6.01325	-8.37857	-15.3326	-0.77
Pfsu		6	-79,3972	-0.19704	13.5912	19,00645	97.7659	$0.00 \mathrm{E}-00$	-222.792	-211834	-2,94748	-1.69139	-2.20618	-6.01297	-24.8583	-34.6779	65.10	-232235
PF4U		T	-12.7248	1266487	10.1	124410	38.05385	222.8463	0.00E-00	-520.775	-1.17943	0.406045	-7.56E-02	-5.35045	-31.6527	-47.897	-95.1529	0.923
PF5U		${ }^{6}$	-17.7915	14.83193	11.1807	13.57267	40.41563	211856	524.1528	$0.00 \mathrm{E}-00$	-7,38911	-4.72331	-5,60429	-15.3333	-65.1114	98.18	-198.9	-216909
pfial		9	142.8253	0.212634	0. 134995	0.211554	0.645209	2948348	4.208483	7.389563	0.00E-00	-542.595	-168.026	-109.535	-0.19681	1265968	14.82749	0.591
PFIbL		10	135.6099	0.134959	8.74E-02	0.13167	0.399936	183167	2.6205	4.723474	54	0.00E-00	-19.5625	-50.1118	13.57397	10.13544	11.18127	0.301843
PFId		11	123.9535	0.211524	0.131741	0.17728	0.508729	2206463	3.104116	5.60425	168.632	19.59218	0.00E-00	95.7691	18.97726	1243884	3.570	0.335291
PF2L		12	153.4421	0.645032	0.399907	0.508697	1.422053	6.013358	8.378621	15.3327	109.8803	50.2979	96.33618	0.00E-00	97.6595	38.05326	40.41466	0.7782
PF3L		13	79.39692	294734	1.831281	2.205967	6.012919	24.8582	34.67775	65.10616	0.19689	-13.5914	-19.0066	97.7662	0.00E-00	222.7916	2118341	2322483
PF4L		14	ti 7249	4.207996	2.620535	3.104143	8.378935	34.6812	50.92426	98.1814	-12.6649	-10.1351	-12.4411	-38.0539	-222846	0.00E-00	520.775	0.9231
PF5L		15	17.79158	7.389003	4.723197	5.604276	15.33321	65.1113	98.17993	198.9966	-14.832	-111809	-13.5728	-40.4157	-211856	-524.153	0.00E-00	2169071
Ip		16	-2.20E-08	0.592064	0.30064	0.336698	0.778971		2.104052	2.16703	-0.59206	-0.30064	-0.3367	-0.7897	-2.32352	-2.10405	-2.16703	0.00E

Moment Influence Coefficients

			$\mathrm{OH} \quad \mathrm{P}$	PF1AU	PF1bu	PFicu	PF2U	PF3U	PF4U	PF5U P	PF1AL	PF1bL P	PFicL P	PF2L	PF3L P	PF4L	PF5L	
	MZ		Influence M	Matrix	in-lb/coil													
OH		1	$0.00 \mathrm{E}+00$	-321657	-157822	-84167.1	-89903.2	-62362.4	-20676.2	-19370	321656.8	821.7	84167.15	89903.32	62362.52	20676.36	19370	E-02
pFIAU		2	397.7406	$0.00 \mathrm{E}+00$	-4096.34	-1116.86	-595.338	-0.92864	58.44186	67.93596	2.444199	1.423487	1.561501	3.951034	14.81066	19.62181	34.139	12
PF1bu		3	25.03682	-361.363	$0.00 \mathrm{E}+00$	-26.802	-41.8351	8.151034	5.618644	6.158261	0.172254	0.10466	0.112964	0.281341	1.082232	1.468651	2.622284	0.137351
PF1cU		4	-2.22988	-63.6455	-16.6229	$0.00 \mathrm{E}+00$	-75.916	7.651491	4.222968	4.517146	0.112876	$6.52 \mathrm{E}-02$	7.51E-02	0.186888	0.749204	1.003491	1.818811	9.10E-02
PF2U		5	2.072851	1.806785	0.473095	-1.82446	$0.00 \mathrm{E}+00$	-1.62928	-0.52132	-0.5205	$1.08 \mathrm{E}-02$	$2.72 \mathrm{E}-02$	-1.42E-02	-1.48E-03	-3.24E-02	-6.05E-02	-0.16128	-2.96E-03
PF3U		6	1.826376	4.70E-03	-0.94109	-1.34819	-7.59144	$0.00 \mathrm{E}+00$	-10.7248	-9.80047	-7.53E-02	-3.42E-02	-6.82E-02	-0.1283	-0.65777	-0.98787	-2.00319	5.60E-04
PF4U		7	0.100596	0.807841	0.565928	0.700303	1.934912	11.58186	$0.00 \mathrm{E}+00$	93.76116	-4.84022	-4.83304	4.82831	-4.82088	4.64866	-4.22488	-3.06851	4.93602
PF5U		8	$3.33 \mathrm{E}-02$	0.132045	7.43E-02	$9.26 \mathrm{E}-02$	0.261356	1.182083	19.09991	$0.00 \mathrm{E}+00$	$2.20 \mathrm{E}-02$	5.15E-03	$1.29 \mathrm{E}-02$	3.26E-02	0.225394	0.246646	0.908687	3.50E-02
PF1AL		9	-397.733	-2.41395	-1.4274	-1.55944	-3.98945	-14.781	-19.6325	-34.1442	$0.00 \mathrm{E}+00$	4096.422	1116.913	595.3058	0.876383	-58.4543	-67.9422	-2.55193
PF1bL		10	-25.0447	-0.16964	-9.51E-02	-0.1107	-0.29508	-1.08845	-1.47231	-2.62085	361.3623	$0.00 \mathrm{E}+00$	26.81797	41.84433	-8.14722	-5.61095	-6.15559	-0.14611
PF1cL		11	2.22138	-0.10987	-6.13E-02	-7.48E-02	-0.1958	-0.74686	-1.00631	-1.8136	63.63967	16.61646	$0.00 \mathrm{E}+00$	75.91399	-7.63428	4.22323	4.52402	9.52E-02
PF2L		12	-2.05474	-1.93E-02	-2.21E-02	$2.51 \mathrm{E}-03$	-1.23E-02	$2.66 \mathrm{E}-02$	$6.56 \mathrm{E}-02$	0.142118	-1.78606	-0.4361	1.835042	$0.00 \mathrm{E}+00$	1.602775	0.504313	0.4839	1.27E-02
PF3L		13	-1.83614	6.95E-02	5.51E-02	5.81E-02	2.144168	0.694368	0.993703	2.012362	$1.76 \mathrm{E}-02$	0.894526	1.327448	7.569005	$0.00 \mathrm{E}+00$	10.74651	9.803458	$2.82 \mathrm{E}-03$
PF4L		14	-0.10234	-7.69E-03	-1.02E-02	-8.44E-03	-2.15E-02	-0.19217	-0.62038	-1.77811	-0.81144	-0.5678	-0.70574	-1.93624	-11.5836	$0.00 \mathrm{E}+00$	-93.7685	4.92904
PF5L		15	-3.17E-02	-1.81E-02	-5.44E-03	-2.72E-02	-5.53E-02	-0.21444	-0.24078	-0.879	-0.12985	-7.13E-02	-8.10E-02	-0.26365	-1.1841	-19.0401	$0.00 \mathrm{E}+00$	$2.85 \mathrm{E}-02$
Ip			-2.56E-08	-1.08623	-0.7352	-0.84979	-2.25193	-8.9979	-12.482	-14.891	1.0862	0.7352	0.8497	2.2519	8.9979	12.48235	14.891	. 00

Comparison with Bob Woolley's Moment Influence Coefficients (2011 Coil Build)

Titus: 14June2011	PF1AU PF1bU		PF1cU		PF1cL		PF1bL		PF1AL	
PF1AU	2	$0.00 \mathrm{E}+00$	-73.66362	-20.08421	$2.81 \mathrm{E}-02$	$2.56 \mathrm{E}-02$	$4.40 \mathrm{E}-02$	7.152492	$4.54 \mathrm{E}-02$	
PF1bU	3	-6.49832	$0.00 \mathrm{E}+00$	-0.4819759	$2.03 \mathrm{E}-03$	$1.88 \mathrm{E}-03$	$3.10 \mathrm{E}-03$	0.4502322	$2.47 \mathrm{E}-03$	
PF1cU	4	-1.144525	-0.2989268	$0.00 \mathrm{E}+00$	$1.35 \mathrm{E}-03$	$1.17 \mathrm{E}-03$	$2.03 \mathrm{E}-03$	$-4.01 \mathrm{E}-02$	$1.64 \mathrm{E}-03$	
PF1cL	11	$-1.98 \mathrm{E}-03$	$-1.10 \mathrm{E}-03$	$-1.35 \mathrm{E}-03$	$0.00 \mathrm{E}+00$	0.2988105	1.14442	$3.99 \mathrm{E}-02$	$-1.71 \mathrm{E}-03$	
PF1bL	10	$-3.05 \mathrm{E}-03$	$-1.71 \mathrm{E}-03$	$-1.99 \mathrm{E}-03$	0.4822623	$0.00 \mathrm{E}+00$	6.498307	-0.450373	$-2.63 \mathrm{E}-03$	
PF1AL	9	$-4.34 \mathrm{E}-02$	$-2.57 \mathrm{E}-02$	$-2.80 \mathrm{E}-02$	20.08523	73.66515	$0.00 \mathrm{E}+00$	-7.152351	$-4.59 \mathrm{E}-02$	
OH	1	-5784.291	-2838.073	-1513.561	1513.561	2838.077	5784.292	$0.00 \mathrm{E}+00$	$1.54 \mathrm{E}-03$	
Ip	16	$-1.95 \mathrm{E}-02$	$-1.32 \mathrm{E}-02$	$-1.53 \mathrm{E}-02$	$1.53 \mathrm{E}-02$	$1.32 \mathrm{E}-02$	$1.95 \mathrm{E}-02$	$-4.60 \mathrm{E}-10$	$0.000 \mathrm{E}+00$	

Woolley: 17December 2010

	PF1AU	PF1bU	PF1cU	PF1cL	PF1bL	PF1AL	OH	Ip
PF1AU	$2.732 \mathrm{E}-15$	$7.124 \mathrm{E}+01$	$1.957 \mathrm{E}+01$	-2.783E-02	-2.452E-02	-4.129E-02	$-7.094 \mathrm{E}+00$	-5.998E-02
PF1bU	$6.187 \mathrm{E}+00$	-2.774E-15	$4.882 \mathrm{E}-01$	-2.018E-03	-1.770E-03	-2.916E-03	-4.159E-01	-3.896E-03
PF1cU	$1.117 \mathrm{E}+00$	$3.054 \mathrm{E}-01$	-8.688E-16	-1.353E-03	$-1.184 \mathrm{E}-03$	$-1.934 \mathrm{E}-03$	$5.914 \mathrm{E}-02$	-2.492E-03
PF1cL	$1.934 \mathrm{E}-03$	$1.184 \mathrm{E}-03$	$1.353 \mathrm{E}-03$	-8.688E-16	-3.054E-01	$-1.117 \mathrm{E}+00$	$-5.914 \mathrm{E}-02$	$2.492 \mathrm{E}-03$
PF1bL	$2.916 \mathrm{E}-03$	$1.770 \mathrm{E}-03$	$2.018 \mathrm{E}-03$	-4.882E-01	-2.774E-15	$-6.187 \mathrm{E}+00$	4.159E-01	$3.896 \mathrm{E}-03$
PF1AL	$4.129 \mathrm{E}-02$	$2.452 \mathrm{E}-02$	$2.783 \mathrm{E}-02$	-1.957E+01	$-7.124 \mathrm{E}+01$	$2.732 \mathrm{E}-15$	$7.094 \mathrm{E}+00$	$5.998 \mathrm{E}-02$
OH	$5.763 \mathrm{E}+03$	$2.824 \mathrm{E}+03$	$1.508 \mathrm{E}+03$	$-1.508 \mathrm{E}+03$	$-2.824 \mathrm{E}+03$	$-5.763 \mathrm{E}+03$	8.050E-13	-9.994E-16
Ip	$3.579 \mathrm{E}-02$	$3.546 \mathrm{E}-02$	$4.378 \mathrm{E}-02$	-4.378E-02	-3.546E-02	-3.579E-02	-1.197E-17	-2.262E-19

Ratios=Titus/Woolley

Comparison with Ron Hatcher's Radial Influence Coefficients (2010 Coil Build)

(Titus)

FX	Influence OH	Matrix PF1AU	lb/coil/kA PF1bU	PF1	PF2U	PF3U	PF4U	PF5U	PF1AL	PF1bL	PF1cL	PF2L	PF3L	PF4L	F5L	
1	48286.48	2746.325	859.9474	784.5903	1305.204	1988.13	1277.38	1776.095	2746.336	859.9474	784.6454	1305.243	1988.141	1277.352	1776	2673.429
2	-97.565	275.8774	115.838	117.4871	166.6145	166.3844	60.38033	70.24693	0.716404	0.334667	0.599698	2.179581	12.22437	15.67624	28.87584	32.34988
3	-57.6236	0.11217	52.90043	114.077	110.8109	74.87416	23.47889	27.40892	0.260887	0.123932	0.222529	0.815751	4.620879	5.875896	10.94085	10.30711
4	-40.1177	-15.6223	-50.0426	58.41548	191.5191	105.8464	31.54342	36.73657	0.342076	0.163104	0.292742	1.074881	6.101841	7.749259	14.47587	12.90038
5	-35.9941	-18.4135	-29.6678	-76.4916	202.2312	313.6473	81.04058	94.86471	0.844124	0.40732	0.731168	2.698974	15.41392	19.43493	36.59594	27.94646
6	-35.4348	-16.4775	-9.07299	-18.0052	-73.8474	565.8593	230.9662	280.6903	2.077357	1.03745	1.860798	6.9724	40.5816	50.2947	97.4529	37.40968
7	-24.3918	-2.43067	-0.54534	-0.95842	-0.88568	23.72827	212.731	627.7262	1.513631	0.803541	1.44434	5.561359	33.84811	42.41364	88.62479	-13.9465
8	-33.3906	-1.65023	-0.19052	-0.33574	1.078615	21.47709	-282.177	424.716	1.854289	1.056847	1.902265	7.545006	47.32739	55.20401	122.4857	-43.1206
9	-97.5651	0.716383	0.334602	0.599676	2.179495	12.22435	15.6763	28.87582	275.8775	115.8378	117.4868	166.6143	166.3844	60.38029	70.2468	32.34971
10	-57.6236	0.260909	0.123943	0.222535	0.815761	4.620906	5.875912	10.94088	0.112186	52.90041	114.077	110.8109	74.87417	23.47893	27.40894	10.30715
11	-40.1176	0.342081	0.163093	0.292753	1.074903	6.101847	7.749259	14.47586	-15.6223	-50.0426	58.41547	191.5191	105.8464	31.5434	36.73655	12.90037
12	-35.9942	0.844168	0.407234	0.73106	2.698996	15.41388	19.43486	36.59594	-18.4134	-29.6678	-76.4916	202.2312	313.6472	81.04064	94.86464	27.94639
13	-35.435	2.077185	1.037364	1.86041	6.972702	40.5816	50.29483	97.45264	-16.4777	-9.07308	-18.0052	-73.8476	565.8595	230.9662	280.6898	37.40955
14	-24.3918	1.513544	0.803433	1.444232	5.561337	33.84815	42.4136	88.62475	-2.43056	-0.54545	-0.95844	-0.88568	23.72818	212.731	627.7263	-13.9465
15	-33.3906	1.854375	1.05702	1.902308	7.545135	47.32731	55.20388	122.4856	-1.65053	-0.19052	-0.33583	1.078788	21.47722	-282.177	424.7159	-43.1206
16	-30.1441	6.867763	3.246558	5.819321	20.97625	118.2041	162.3995	262.8898	6.867784	3.246515	5.819321	20.97625	118.2041	162.3996	262.8898	227.5779

(Hatcher ref [1])

	OH	1AU	18U	1 CU	2 U	3 U	4 U	50	1AL	18L	1CL	2L	3L	4L	5L
OH	47683	2736	856	780	1839	1909	1225	1690	2736	856	780	1839	1909	1225	1690
1AU	-134	266	115	117	236	162	58	66	1	0.28	1	3	10	14	26
1 BU	-68	-2	49	114	158	73	22	25	0.22	0.10	0.18	1	4	5	10
1 CU	-50	-17	-52	54	273	103	30	34	0.28	0.13	0.24	1	5	7	13
2 U	-78	-29	-44	-112	380	436	109	125	1	0.45	1	4	18	24	45
3 U	-67	-19	-10	-20	-116	495	219	263	2	1	1	7	32	43	84
4 U	-44	-3	-1	-2	-5	12	179	617	1	1	1	6	27	37	80
5 U	-61	-3	-1	-1	-3	6	-300	353	1	1	1	8	37	47	108
1AL	-134	1	0.28	1	3	10	14	26	266	115	117	236	162	58	66
1BL	-68	0.22	0.10	0.18	1	4	5	10	-2	49	114	158	73	22	25
1CL	-50	0.28	0.13	0.24	1	5	7	13	-17	-52	53	273	103	30	34
2L	-78	1	0.45	1	4	18	24	45	-29	-44	-113	382	436	109	125
3L	-67	2	1	1	7	32	43	84	-19	-10	-20	-116	495	219	263
4L	-44	1	1	1	6	27	37	80	-3	-1	-2	-5	12	178	617
5L	-61	1	1	1	8	37	47	108	-3	-1	-1	-3	6	-300	354

Titus Results for Axial Coefficients
FY infuence Martix B/collkA
OH PF1AU PF1bU PF1cU PF2U PF3U PF4U PF5U PF1AL PF1bL PF1cL PF2L PF3L PF4L PF5L Ip $\begin{array}{llllllllllllllllll}1 & 0.00 \mathrm{E}+00 & 66.64612 & 73.89371 & 74.0529 & 132.9881 & 92.38018 & 21.799 & 20.71244 & -66.6462 & -73.8939 & -74.0536 & -132.988 & -92.3903 & -21.7969 & -20.7122 & -5.32 \mathrm{E}-05\end{array}$

 $\left.\begin{array}{llllllllllllllll}2 & -6.258 & 0.00 \mathrm{E}+00 & 82.92657 & 42.05192 & 35.80358 & 8.84 \mathrm{E}-02 & -5.57602 & -6.50188 & -3.85 \mathrm{E}-02 & -1.98 \mathrm{E}-02 & -4.68 \mathrm{E}-02 & -0.19482 & -1.27565 & -1.82401 & -3.20804\end{array}\right)-7.10529$ $\begin{array}{lllllllllllllllllllllll}4 & -73.9737 & -42.1405 & 8.42 \mathrm{E}-06 & 0.00 \mathrm{E}+00 & 33.31788 & -10.4063 & -6.43702 & -7.00614 & -4.66 \mathrm{E}-02 & -2.24 \mathrm{E}-02 & -4.65 \mathrm{E}-02 & -0.18219 & -1.12868 & -1.58751 & -2.87004 & -4.75633\end{array}$ \begin{tabular}{lllllllllllllll}
4 \& -73.9737 \& -42.1405 \& $8.42 \mathrm{E}-06$ \& $0.00 \mathrm{E}+00$ \& 33.31788 \& -10.4063 \& -6.43702 \& -7.00614 \& $-4.66 \mathrm{E}-02$ \& $-2.24 \mathrm{E}-02$ \& $-4.65 \mathrm{E}-02$ \& -0.18219 \& -1.12868 \& -1.58751

5 \& -133.317 \& -36.0703 \& -9.97832 \& -34.0005 \& $0.00 \mathrm{E}+00$ \& -68.3974 \& -26.6338 \& -28.2862 \& -0.19458 \& $-9.22 \mathrm{E}-02$ \& -0.18216 \& -0.69652 \& -4.2084 \& -5.86372

6 \& -10.7307 \& -4.75633

\hline

6 \& -92.4214 \& $-8.87 \mathrm{E}-02$ \& 5.019825 \& 10.42003 \& 68.38245 \& $0.00 \mathrm{E}+00$ \& -222.792 \& -211.834 \& -1.27531 \& -0.60189 \& -1.1287 \& -4.20892 \& -24.8586 \& -34.6781

7 \& -21.7962 \& 5.577226 \& 3.392096 \& 6.437432 \& 26.63189 \& 222.8464 \& $0.00 \mathrm{E}+00$ \& -520.775 \& 1.204982 \& 2.168681 \& 1.441272 \& -2.83587 \& -31.6523 \& -47.8964

\hline 8 \& -20.7099 \& 6.503157 \& 3.727408 \& 7.006531 \& 28.28558 \& 211.8561 \& 524.153 \& $0.00 \mathrm{E}+00$ \& -3.20748 \& -1.55358 \& -285097 \& -55.923

\hline

8 \& -20.7099 \& 6.503157 \& 3.727408 \& 7.006531 \& 28.28558 \& 211.8561 \& 524.153 \& $0.00 \mathrm{E}+00$ \& -3.20748 \& -1.55358 \& -2.86979 \& -10.7316 \& -65.1111 \& -98.1797

9 \& 66.23981 \& $3.84 \mathrm{E}-02$ \& $1.93 \mathrm{E}-02$ \& $4.66 \mathrm{E}-02$ \& 0.194658 \& 1.275486 \& 1.823841 \& 3.207869 \& $0.00 \mathrm{E}+00$ \& -82.9266 \& -42.0519 \& -35.8636 \& $-8.84 \mathrm{E}-02$ \& 5.57603

\hline 6.501875 \& 7.105299

\hline

10 \& 73.5044 \& $1.93 E-02$ \& $9.77 \mathrm{E}-03$ \& $224 \mathrm{E}-02$ \& $9.23 \mathrm{E}-02$ \& 0.601911 \& 0.860187 \& 1.553854 \& 83.11672 \& $0.00 \mathrm{E}+00$ \& $9.09 \mathrm{E}-06$ \& -9.86554 \& 5.013825 \& 3.39191 \& 3.726894

\hline
\end{tabular} 2 .702686 $\begin{array}{lllllllllllllllll}11 & 73.97371 & 4.66 \mathrm{E}-02 & 2.24 \mathrm{E}-02 & 4.65 \mathrm{E}-02 & 0.182191 & 1.128668 & 1.587507 & 2.87004 & 42.14047 & 0.00 \mathrm{E}+00 & 0.00 \mathrm{E}+00 & -33.3179 & 10.40627 & 6.437025 & 7.006148 & 4.756346\end{array}$

13	92.42152	1.275601	0.602023	1.12885	4.209094	24.85861	34.67822	65.10667	$8.89 \mathrm{E}-02$	-5.01967	-10.42	-68.3822	$0.00 \mathrm{E}+00$	222.7915	211.8342
14	21.79631	1.823763	0.860134	1.58746	5.864709	34.6811	50.92421	98.1814	-5.57716	-3.39207	-6.4375	-26.6319	-222.847	$0.00 \mathrm{E}+00$	520.775
55.92292															

Hatcher Results for Axial Coefficients [1]

	$\mathbf{O H}$	$\mathbf{1 A U}$	$\mathbf{1 B U}$	$\mathbf{1 C U}$	$\mathbf{2 U}$	$\mathbf{3 U}$	$\mathbf{4 U}$	$\mathbf{5 U}$	$\mathbf{1 A L}$	1BL	1CL	2L	3L	4L	5L
$\mathbf{O H}$	6	73	77	78	201	98	23	22	-73	-78	-78	-201	-98	-23	-22
$\mathbf{1 A U}$	-73	-0.02	84	43	52	0	-6	-7	-0.11	-0.05	-0.08	-0.41	-2	-2	-4
1BU	-77	-84	0.10	-0.09	14	-5	-4	-4	-0.05	-0.02	-0.04	-0.18	-1	-1	-2
$\mathbf{1 C U}$	-78	-43	-0.02	1	48	-11	-7	-8	-0.08	-0.04	-0.07	-0.33	-1	-2	-3
2U	-203	-52	-14	-48	-1	-102	-40	-43	-0.42	-0.18	-0.33	-2	-7	-9	-17
3U	-104	-0.46	5	10	96	-7	-228	-219	-2	-1	-1	-6	-26	-36	-68
4U	-25	6	3	6	38	222	-3	-530	-2	-1	-2	-9	-35	-52	-100
5U	-25	7	4	7	40	210	527	-2	-3	-2	-3	-15	-65	-99	-201
1AL	73	0.11	0.05	0.08	0.41	2	2	4	0.36	-84	-43	-52	0.27	6	7
1BL	77	0.05	0.02	0.04	0.18	1	1	2	84	0.08	0.10	-14	5	4	4
1CL	78	0.08	0.04	0.07	0.33	1	2	3	43	0.03	-1	-48	11	7	8
2L	203	0.42	0.18	0.33	2	7	9	17	52	14	49	1	102	40	43
3L	104	2	1	1	6	26	36	68	0.46	-5	-10	-96	7	228	219
4L	25	2	1	2	9	35	52	100	-6	-3	-6	-38	-222	1	530
5L	25	3	2	3	15	65	99	201	-7	-4	-7	-40	-210	-526	2

	2184.633	337.0884	150.602	023	22		68.57568	95.35145	337.088	150.6022	85.24972	100	106.7212	68.57516	95.35179	
	-13.032	74.58116	70.85085	35.52862	33.98438	23.64041	8.633018	10.05266	0.237816	0.146751	0.168535	0.4473	1.75518	2.250726	4.143437	24
	-9.8630	-13.0077	30.0294								8.57E-02	0.22955 ?	0.909404			
	-1.90	-2.3		-2.	-6.6					0.1						
	-1.3099	-0.35	-0.1158	-0.1263	-7.89E-0	7874	13.28975	39.2435	0.2	0.151606	0.175344	0.496588		2.6	5.539451	4.06E-02
													957			
	-13.0															
	. 86	0.11	7.45	8.57	0.22		1.157487		-13.010	.						
	4241	9.81E-02	6.18	7.11	0.19079	0.75778	0.9	1.7	-5.86	-16.42	13.3616	31.	13.01482	. 9	4.557014	.01E-02
	-2.77527	0.17	11	0.12	0.3	37	1.7	3.26	-3.8	-7.3	-12.	25.	28.	7.23	8.470171	.58E-02
13	-1.9066	0.298	0.196		0.622	2.53		6.09		1.71882	-2.19335	-6.600	35.25877	4.42838		
	-1.30															
	-1.793	0.26481	0.19	0.2	0.67	2.95		7.65	-0.24064	-4.7	4.9	9.65E-02		-17.6072	26.26867	
16	88E-0	$2.04 \mathrm{E}-02$	194			0.27	0.306199	0.45396	2.14E-02	2.0	2.5		0.277376	0.307423	0.455098	
Influence Matrix lb/coil																
	0.00E+00	9.084172														
		.								-8.43E-03						
	-11.5449	-3	,00	1.215617	3.11825	-0.84	-0.63327	-0.69	-8.48E-03	-5.51E-0	-8	-2.	-0.11453	-0.16382	-0.29525	
	-7.73	-10.5	-1.22	0.00 E	5.	-1.1845	. 77	-0.	-1.	-8.2	-1.11	-3.1	-0.13792	2	-0.3	
	-10.2351	89	-3.16	-6.086		-6.1005	-2.37802	-2.52	-4.0180	-2.50	-3.1	-8.8	-0.37576	-0.52355	0.9581	
		-1.24				0.00 E	-13.9167			-0.11443	-0.13786				-4.06	
	-1.17	0.	0.633	0.	2.37	13.93	0.00	-3	0.498561	0.59	0.56751	0.2	-1.40619	-2.42129	-5.3	
		0.9	0.698	0.8483			32.		-0.46171	-0.	-0.3	-0.95821	4.06	-6.13612		
9	8.907958						0.26		0.00		-10	-6.81304	-1.2	0.7	0.9	
0	11.5	8.43E-03		8.23					34.	$0.00 \mathrm{E}+00$	-1.21562	-3.1182€		0.633268		
		$4.03 \mathrm{E}-02$							6.8	.	.	0.00	6.100593			
	4.966392	0.18		0.13	0.37		2.16	4.0		-0.85185	-1.1916	-6.1	0.00	.	13.23593	2
	1.17016	0.2	0.163	0.	0.52	2.16		6.13		-0.63351	-0.77767		-13.9304	0.00		
	1.11185	0.							-0.92722	-0.69884	-0.84838			-32		
	3.36	5.38E-02														
Influence Matrix in-lb/coil																
	$0.00 \mathrm{E}+00$	-20165.7	-9837.	-5246.0							,	,	168		20	1.582384
	24.48505	$0.00 \mathrm{E}+00$	-249	-68.251		-5.93E-02						0.24	0.91037			
			0.00							5.81 E	.06E-					
		. 91	-1.01	0.00												
			-3	27	0.00 E		-8.58	-7						6.7		
	9.0	1.22E-03	-3.92	-5.83	-0.33	$0.00 \mathrm{E}+00$	-0.4	-0.433	-1.60E-0	-1.95E-03	-2.38E-0	-5.77E-0	-2.91E-02	-4.36E-02	-8.77E-02	
		5.89E-02					0.00E+00									
								0.00 E								.1.
		-0.1				-0.9	-1.210	.	0.00	249	68.	36.	.	-3.59795	4.18141	-0.
	-1.5	-1.08	-6.81	-7.76E-03	-1.83	-6.74E-02	-9.01E-02	-0.1602	22.37	0.00E+	1.62306	2.53610	-0.4960	-0.3427	0.3751	1.4
	0.125455	-6.82E-03	4.15	4.44	-1.19	-4.57E-02	-6.13E-02	-0.110	3.91448	1.0154	$0.00 \mathrm{E}+0$	4.592257	-0.46678	-0.25859	0.27669	-8.80E-03
	-8.81E-02	-1.24E-03	-5.91	-8.94E-04	-9.79E-04	-1.72E-03	-1.09E-0	. 62	-3.37	.17	0.27992	$0.00 \mathrm{E}+$	$1.05 \mathrm{E}-02$	8.16E-03	7.37E-	-3.9
	-8.99	9.6		2.02E-03	11		14	8.6				0.333	0.00 E	7		
	-2.47E-02	3.76E-03	2.9	2.90	7.61E-03	$2.75 \mathrm{E}-02$	1.1	-7.64E-03	-5.89E-02	-3.94E-02	-4.82E-02	-0.12915	-0.7395	0.00E+00	4.72365	
	-3.0	-2.25E-03	-1.	-	-5.34E-03	-1.63E-02	-1.85E-02	-6.40E-02		-6.80E-03						
	-9.10E-03	-3.99E	-0.28	-0.3	-1.25	-4.40203	3.21	-3.18	0.120	0.328	0.44	1.31	4.390471	3.10	3.00	

Test Cases

Attachment A Influence Coefficient Subroutine

```
Subroutine Influence(numcoils)
    include 'scommon.blk'
    DIMENSION rinffx(50,50)
    DIMENSION rinffy(50,50)
    DIMENSION rinfmz (50,50)
        do 9 i=1,50
        do 9 j=1,50
        rinffx(i,j)=0
        rinffy(i,j)=0
        rinfmz(i,j)=0
    Continue
        do 10 i=1,numcoils
        do 10 j=1,numcoils
        call snal(0)
        call seal(O)
        ia1=1
        ia2=2
        ia3=3
        ia4=4
        ib1=0
        ib2=0
        ib3=0
        ib4=0
    CALL Sreal(i,i)
        CALL Sreal(j,i)
        call SNELEM(i,i)
    typekeydum=typekey
        typekey=7
        egrpkeydum=egrpkey
        egrpkey=7
    r=0.0
    Creating Current Elements from Quad Elements
    call CCUR(R,i,ia1,ia2,ia3,ia4,ib1,ib2,ib3,ib4)
    call stype(7,70)
    call snelem(70,70)
    call sfield(i)
        call snal(0)
        call seal(0)
    call stype(7,70)
        call gerase(70)
        call reduce
        CALL Sreal(i,i)
    call SNELEM(i,i)
        CALL Sreal(j,j)
    call SNELEM(j,j)
    call mfor(i,ia1,ia2,ia3,ia4,ib1,ib2,ib3,ib4)
        call mfsum(i,i,fxsum,fysum,xmzsum)
        rinffx(i,j)=fxsum
        rinffy(i,j)=fysum
        rinfmz(i,j)=xmzsum
        bxs=0.0
        bys=0.0
        byz=0.0
    call bscale(i,bxs,bys,bzs)
    call fscale(i,bxs,bys,bzs)
    call bscale(j,bxs,bys,bzs)
    call fscale(j,bxs,bys,bzs)
    CONTINUE
    CONTINUE
        do 15 i=1,numcoils
        do 15 j=1,numcoils
        if (i.ne.j) rinffx(i,j)=rinffx(i,j)-rinffx(i,i)
        rinffy(i,j)=rinffy(i,j)-rinffy(i,i)
        rinfmz(i,j)=rinfmz(i,j)-rinfmz(i,i)
    Continue
    write(7,*) 'FX Influence Matrix N/rad'
        do 11 i=1,numcoils
    write(7,*) i,rinffx(i,1),rinffx(i,2),rinffx(i,3),rinffx(i,4),
    c rinffx(i,5),rinffx(i,6),rinffx(i,7),rinffx(i,8),rinffx(i,9),
    c rinffx(i,10),rinffx(i,11),rinffx(i,12),rinffx(i,13),rinffx(i,14),
    c rinffx(i,15),rinffx(i,16),rinffx(i,17),rinffx(i,18),rinffx(i,19)
    continue
    write(7,*) 'FY Influence Matrix N/rad'
        do 12 i=1,numcoils
    write(7,*) i,rinffy(i,1),rinffy(i,2),rinffy(i,3),rinffy(i,4),
```

```
    c rinffy(i,5),rinffy(i,6),rinffy(i,7),rinffy(i, 8),rinffy(i,9),
    c rinffy(i,10),rinffy(i,11),rinffy(i,12),rinffy(i,13),rinffy(i,14),
    c rinffy(i,15),rinffy(i,16),rinffy(i,17),rinffy(i,18),rinffy(i,19)
    continue
        write(7,*) 'MZ Influence Matrix N-m/rad'
        do 13 i=1,numcoils
    write(7,*) i,rinfmz(i,1),rinfmz(i,2),rinfmz(i,3),rinfmz(i,4),
    c rinfmz(i,5),rinfmz(i,6),rinfmz(i,7),rinfmz (i,8),rinfmz(i,9),
    c rinfmz(i,10),rinfmz(i,11),rinfmz(i,12),rinfmz(i,13),rinfmz(i,14),
    c rinfmz(i,15),rinfmz(i,16),rinfmz(i,17),rinfmz(i,18),rinfmz(i,19)
    continue
```

 do 16 i=1,numcoils
 do \(16 \mathrm{j}=1\), numcoils
 \(\operatorname{rinffx}(i, j)=\operatorname{rinffx}(i, j) * .2248 * 2 * 3.1416\)
 \(\operatorname{rinffy}(i, j)=\operatorname{rinffy}(i, j) * .2248 * 2 * 3.1416\)
 \(\operatorname{rinfmz}(i, j)=r i n f m z(i, j) * .2248 * 2 * 3.1416 * 39.37\)
 Continue
 write (7,*) 'FX Influence Matrix lb/coil'
 do 17 i=1, numcoils
 write (\(7, *\)) \(i, r i n f f x(i, 1), r i n f f x(i, 2), \operatorname{rinffx}(i, 3), \operatorname{rinffx}(i, 4)\),
 c rinffx \((i, 5), \operatorname{rinffx}(i, 6), r i n f f x(i, 7), r i n f f x(i, 8), r i n f f x(i, 9), ~ ', ~\)
 c rinffx(i,10), rinffx(i,11),rinffx(i,12), rinffx(i,13), rinffx(i,14),
 c rinffx(i,15), rinffx(i,16), rinffx(i,17), rinffx(i,18),rinffx(i,19)
 continue
 write (\(7, *\)) 'FY Influence Matrix lb/coil'
 do 18 i=1, numcoils
 write (7,*) i, rinffy (i, 1), rinffy (i,2), rinffy (i, 3), rinffy (i, 4),
 c rinffy \((i, 5), r \operatorname{rinffy}(i, 6), r i n f f y(i, 7), r i n f f y(i, 8), r i n f f y(i, 9), ~, ~\)
 c rinffy(i,10), rinffy(i,11), rinffy(i,12), rinffy(i,13), rinffy(i,14),
 c rinffy(i,15), rinffy (i,16), rinffy(i,17), rinffy (i,18), rinffy (i, 19)
 continue
 write(7,*) 'MZ Influence Matrix in-lb/coil'
 do 19 i=1, numcoils
 write (7,*) i, rinfmz(i,1), rinfmz(i,2), rinfmz (i,3), rinfmz(i,4),
 \(c \operatorname{rinfmz}(i, 5), \operatorname{rinfmz}(i, 6), \operatorname{rinfmz}(i, 7), \operatorname{rinfmz}(i, 8), \operatorname{rinfmz}(i, 9)\),
 c \(\operatorname{rinfmz(i,10),~rinfmz(i,11),~rinfmz(i,12),~rinfmz(i,13),~rinfmz(i,14),~}\)
 c rinfmz(i,15), rinfmz(i,16), rinfmz(i,17), rinfmz(i,18),rinfmz(i,19)
 continue
 typekey=typekeydum
 egrpkey=egrpkeydum
 return
 end
 SUBROUTINE mFSUM(IGRPs,igrpe, fxsum, fysum, xmzsum)
 include 'scommon.blk'
 do 13 igrp=igrps,igrpe
 numn=0
 cent \(x=0\)
 centy=0
 FxSUM=0.
 FYSUM=0.
 xmzsum=0
 ymzsum=0
 FZSUM=0.
 DO \(12 \mathrm{I}=1\), N
 IF (NGROUP(I).EQ.IGRP) THEN
 numn=numn +1
 centx=centx+x (i)
 centy=centy+y(i)
 FXSUM=FXSUM+FX (I)
 FYSUM=FYSUM + FY (I)
 FZSUM \(=\) FZSUM + FZ (I)
 xMZSUM=xMZSUM-FX(I)*Y(I)
 \(y\) MZSUM \(=y\) MZSUM \(+F Y(I) * X(I)\)
 end if
 CONTINUE
 centx=centx/numn
 centy=centy/numn
 ymom \(=-\) xmzsum/fxsum
 xmom=ymzsum/fysum
 xMZSUM \(=-\) fxsum* (ymom-centy) + fysum * (xmom-centx)
 print*,igrp, fxsum, fysum, xmzsum
 write(7,*) igrp,',',fxsum,',',fysum,',',fzsum,',',
 cxmxsum,',',xmysum,',',xmzsum
 CONTINUE
 RETURN
 END
 Some of the subroutines in this subroutine may be called in scripts, the script commands are described below:
mfsu Prompts for the start and end node group
Calculates the x force sum, y force sum and moment sum about the centroid of nodes defined by node groups starting at igrps and ending at ,igrpe
mfor Calculates Lorentz forces on a brick or quad element from fields corner nodes, currents specified as real constants, and current directions specified by inputting an element nodal sequence that defines the brick element start and end face. For an axisymmetric analysis using, the connectivity specification is $1,2,3,4,0,0,0,0$. Forces computed for an axisymmetric analysis are per radian. For ANSYS analyses these loads need to be multiplied by 2*pi.
sfie Computes 2D fields using Elliptic Integrals from loops defined by type 7 elements.

Attachment B
 Influence Coefficient Matrix Script

```
zero
Influence Coefficient Matrix Test
read
ron2
divi
0,2,2,1
snal
1
merge
1,.0001
redu
rcoi
16
1,10,80,1029,250
2,4,7,28,250
3,2,5,10,250
4,2,5,10,250
5,4,10,28,250
6,3,10,30,250
7,1,17,17,250
8,4,6,24,250
9,4,7,28,250
10,2,5,10,250
11,2,5,10,250
12,4,10,28,250
13,3,10,30,250
14,1,17,17,250
15,4,6,24,250
16,6,8,28,250
infl
1 6
copt
r
pl
exit
```


