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PPPL Calculation Form

Calculation# NSTXU-CALC-133-03-00 Revision# 00 WP
#,0029,0037
(ENG-032)

Purpose of Calculation: (Define why the calculation is being performed.)

The purpose of this calculation is to qualify the new centerstack casing and lower support skirt for the
Upgrade loads. The stress contributions are generated in this calculation or gathered from other
calculations. A stress summation and summary for the centerstack casing is presented and compared
with allowables.

References (List any source of design information including computer program titles and revision levels.)
-See the reference list in the body of the calculation

Assumptions (Identify all assumptions made as part of this calculation.)

Referenced calculations include assumptions.

Calculation (Calculation is either documented here or attached)

Attached in the body of the calculation

Conclusion (Specify whether or not the purpose of the calculation was accomplished.)

Stress levels are below the static and fatigue allowables for the Inconel 625 shell. High strength bolts are
needed. ASTM A193 B8M class 2 bolts are recommended for all flange bolts, with appropriate preloading
(torqued to 75% vyield for conventional through bolts - less for the blind tapped holes in the PF1b mandrel).
Welds should be the full thickness of the thinner shell segment. The PF1b mandrel is in the main load path
that transfers the casing loads to the support skirt. In the fall of 2011, there were no spacers between flanges
connected by the studs, and the studs would not load in compression. The studs will not contribute
adequately to the moments and compression loads at the base of the casing. It is recommended that tubular
spacers be added to the studs. Bolt stresses at the lower casing flange and skirt flanges are significantly
stressed (60 to 70 ksi). These should be preloaded high strength bolts. These have an allowable of 62 ksi,
so0, they are slightly undersized. Peak stress is at the coax opening of the skirt. Increasing the bolt size on
either side of the opening should be considered. The shallow thread blind tapped bolt connection of the
PF1b mandrel connection to the PFla mandrel flange doesn't have adequate capacity to manage the last
round of Halo loads. Doubling the number of holes is recommended. High strength bolts are recommended
in the "softer" 316 flange - this allows a bit higher shear based on the Federal Screw Fasteners Standard.
They will also have to be preloaded to take the lateral load in friction and to develop a greater moment
carrying capacity. Welding on the high strength bolt threads would degrade their capacity. Use of Locktite
is recommended.

Loading from the CHI electrical connections have been included in the assessment of the net loads on the
casing, but the stresses in the CHI rod and the supports for this rod and the reactions from the bus bar
connections have not yet been analyzed because details of theses supports are lacking.

Cognizant Engineer’s printed name, signature, and date
Digitally signed by Irving Zatz

I rVi n g atz DN: cn=Irving Zatz, 0=PPPL, ou, email=zatz@pppl.gov,
; c=Us

Date: 2012.02.22 17:29:11 -05'00"

Irving Zatz (for Jim Chrzanowski)
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I have reviewed this calculation and, to my professional satisfaction, it is properly performed and
correct.

Checker’s printed name, signature, and date:
. g Art Brooks &

A. Brooks

H H Digitally signed by Ali Zolfaghari
I O a ar I DN: cn=Ali Zolfaghari, 0=PPPL, ou=Engineering, email=azolfagh@pppl.gov, c=US
Date: 2012.02.22 09:34:22 -0500" A Z I f h -
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3.0 Executive Summary

This is a collection of results from other
calculations intended to assess the total stress in
the centerstack casing. Some stress calculations
have been added beyond the references to
complete assessment of the load inventory. Figure
3.0-1 shows the PDR status of the qualification of
some of the elements of the casing structure. All of
these components and loads have been re-visited
in the final design.

The first component of normal operating stress
comes from the inner PF analyses [2]. The inner
PF coils, PF 1a and b upper are supported by the
casing. Net vertical loads for the upper coils PFla
and b may be found in the Design Point
spreadsheet [1], load combinations sheet. These
are also included in section 5.2 of this calculation.
Reference [2] calculates these independently from
the 96 equilibria. The TF coils indirectly load the

Centerstack Casing and

Initial Leg Casing Support
Design was

Overstressed

Halo Loads From Art Brooks

Lower Bellows and Ceramic Break
Stress with 50kip Halo Load

Crude Modeling Just Applies Net Halo
Uniformly at Mid Section

Figure 3.0-1 PDR Qualification of Casing Elements

casing as well because the casing is one of the redundant or statically indeterminant load paths that resist
the TF out-of-plane loads. The torsional shear stresses in the casing are quantified in the global model
calculation, ref [9] and are summarized in section 14.0. During a normal shot, the heat load on the tiles
heats up the casing, but there is active cooling at the flanged ends of the casing to protect the Viton seals
and PF1b which is very close to the flange. The thermal gradients in the casing and the conical sections of
the casing cause stresses that will superimpose on the PF Lorentz load stresses. The heat balance
calculation, reference [3], computes the heat transfer throughout the interior of the vessel from plasma
heating of tiles and exposed sections of the vessel. Heat is conducted through the centerstack tiles and the
inner divertor and reference [3] quantifies the casing temperature. A stress pass is included in the analysis
and provides the stress to be added to other loading components.

The Tall Narrow Centerstack Could Experience Excessive Lateral Loads If Peaking Factors are Sustained.

‘WBS 1.1.3 Magnet Systems, Halo Current
Analysis of Center Stack

NSTXU-CALC-133-05-00

Prepared By: Art Brooks, Reviewed by:

PeterTitus,
CognizantEngineer: Jim Chrzanowski

Figure 3.0-2 Stress due to Halo Currents
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Disruption loads are addressed in reference [4] for halo currents and reference [10] for the inductively
driven axisymmetric stresses in the casing wall. Inductive current stresses are less than 50 MPa. The halo
current loads represent a potentially complex set of loads that depend on the entry and exit points,
described in the GRD. They also depend on loading time durations that preclude resistive re-distribution of
the non-axisymmetric halo currents for very fast disruptions, and allow resistive re-distribution for slow
disruptions. The non-axisymmetric loading that results from the fast disruptions loads the casing
dynamically and is addressed by a transient structural calculation. The casing inertia and the spring restraint
provided by the bellows limits the stress in the casing. Tile weights used for the inertial components of the
model come from the tile stress calculation, ref [6], and the bellows analysis that provided the stiffness,
reference [5]. Loads at the bellows spring are a part of the bellows loading addressed in the bellows stress
calculation, reference [5]. The bellows spring rate and the cantilever stiffness of the centerstack is an
important component of the magnetic stability analysis performed in reference [7]. The centerstack casing
is vertically cantilevered from the pedestal. Stresses due to seismic overturning loads may be found in
reference [12].

Stress Due Thermal Distribution Stress Due to PF Loads

Peak Tresca Stress
280 MPa at Weld
{with refined mesh)

* Won Mises slightly
less : 261 MPa

EEDOEEEEEE
i

WBS 1.1.3 Structural Analysis of the PF1

— - N — Coils Leads and Supports, Rev1
WBS 1.1.1 Plasma Facing Components, NSTX-CALC-133-01-01

Global Thermal Analysis of Center Stack —
HeatBalance NSTX-CALC-11-01-00
Prepared By: Art Brooks, Reviewed by:
Han Zhang, Cognizant Engineer: Jim
Chrzanowski

S

Prepared By: Leonard Myatt, Reviewed by:
TBD, Cognizant Engineer: Jim Chrzanowski

NSTX Upgrade Centerstack Casing Stress Summary NSTXU-
CALC-133-03-00

Rev 0 May 2011 Prepared By: Peter Titus, PPPL Engineering
Analysis Branch, Contributing Authors: A. Brooks, L.Myatt
Reviewed By: Unassigned

Jim Chrzanowski, NSTX Cognizant Engineer

Candidate Incoloy 625LCF Actusl & Design-Basis Fatigue Curves
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Figure 3.0-3 FDR Presentation Showing Two of the Many Load Components on the Centerstack Casing.
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Table 3.0-1 Centerstack Casing Stress Summary (stresses in MPa)

Calc Ref Intersection Equatorial Intersection Intersection Midle of Flare
Section of1/a" Plane of1/4" of .438" with Stress
shell and 7/16 shell and 7/16 shell and 7/16 concentration of 3
Flare (Upper] Flare (Lower) Flare (Lower) for Coolant Tubes
Vacuum Pressure 7.1 6.3 6.3 6.3 6.3 3
Thermal 'S.D 63 1] 63 192 120
Halo Stress 3.0 16 48.7 16 16
Mid PIaneDisruption’lD.D 2 10 2 1
P1-P2 Disruption '11.0 1 1 1 1 1
Tile Moments '12.0 40 1] 40 38 38
PFla,bll Lorentz '13.1 [2] 45.2 27 45.2 27 18
Mormal Op EQ79 '14.0 14 18 14 14 3
Seismic '15.0 [12] 4 7 14 4 6
Totals 191.5 118 201.5 299.3 195
F.S based on 625 RT Bending
Allowable of 450 Mpa 2.349869452 3.8135593 2.23325062 1.503508186 2.307692308
F.S based on 625 RT
SM Allowable of 380 Mpa 1.984334204 3.220339  1.885836079 1.269629135 1.948717949

{See Figure 5.4-1)

For the FDR, an envelope of the stresses was presented and the sum was reported as 414 MPa, which
was close to the fatigue allowable for Inconel 625. In table 3.0-1, the stresses are summed at four locations
and the peak total is 299.3 MPa. This occurs at a weld in the casing, shown in Figure 5.5-3. The weld is a
full penetration through the thinner section and backed with a 1/16™-inch seal weld. The stress calculations
capture the stress in the full penetration weld. As long as this meets acceptance criteria, the 1/16” weld is
redundant.

The possibility of buckling the 1/4 inch casing shell is addressed in ref [2] and additionally in section
13.2 of this calculation.

Bolts at the lower casing flange and skirt flanges are significantly stressed (60 to 70 ksi). These should
be preloaded high strength bolts. ASTM A193 B8M class 2 bolts are recommended. These have an
allowable of 62.5 ksi, so, they are slightly undersized. Peak stress is at the coax opening of the skirt.
Increasing the bolt size on either side of the opening should be considered.

The PF1b mandrel is in the main load path that transfers the casing loads to the support skirt. Currently,
there are no spacers between flanges connected by the studs, and the studs will not load in compression.
The studs will not contribute adequately to the moments and compression loads at the base of the casing. It
is recommended that tubular spacers be added to the studs. Ref [7] calculates the stress due to an offset
between the magnetic and structural centers due to tolerances. From [7], the stress due to the manufacturing
tolerance would be a maximum of 0.43 MPa and the bellows stress would be 9.77 MPa.

Recent questions regarding the halo current loading on the centerstack casing highlights a design
weakness in the support of the casing. The upper bellows provides minimal lateral restraint, and the casing
is basically cantilevered from the lower structures and bolt circles. Halo Loads and, particularly, moments
were acceptable when credit was taken for mitigation of the peaking factor from dynamic effects and
resistive redistribution of the asymmetric currents. From October 2011 emails, there is a large uncertainty
in the halo loads - Art Brooks suggests enveloping the uncertainty by assuming the worst loading at the mid
plane of 50,000 Ibs. This would produce a moment of 50000*(1.6m*39.37+22in) = 4.2e6 in-lbs. The skirt
bolt pattern has a section modulus of 19 in”3 and the bolt stress would be 237,000 psi. The bolts to the g-10
ring, and to the inserts in the TF flags, and connection through the lower crown to the pedestal, would also
see high loads.

It was recommended that a lateral restraint be added at the upper bellows elevation - a slip ring or struts.
They would have to take half the 50000 Ib halo load. This would much reduce the moment at the base and
add needed margin against loading that probably won't be able to be quantified until the upgrade has
operated. Art Brooks recalculated the reaction loads and moments at the base (Appendix B).

Updated Halo loading of the lower G-10 ring and it's connections to the TF flags, is evaluated in ref [20].
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4.0 Digital Coil Protection System (DCPS) Input E2(bf) PE1aU+PF1bU

Min w/o Plasma -29865

Casing Stress: Min w/Plasma -67939
Most of the loading on the casing is either thermal or disruption loading. Min Post-Disrupt -35071
The DCPS typically is concerned mainly with coil Lorentz force derived Min -67939
stresses. Table 3.0-1 lists the Lorentz Force derived stress as 45 MPa. It Worst Case Min -182214
occurs at the intersection of the straight section and flare. This comes from L. Max wio Plasma 55989
Mlyatt's calculation of the casing stresses from the inner PF coils, ref [2]. The Max w/Plasma 48336
45 MPa will scale based on the net vertical load from PFla and b upper. Max pc[’;t'D'sr”pt 46450
. . ax 55989

Myatt used the worst of the 96 scenarios, which corresponds to the 67939 Ibs Worst Case Max 557587

from the design point spreadsheet - excerpt at right. The DCPS should
compute the casing Lorentz Stress from:

(Sum of PFla and b Vertical loading in Ibs ) * 45MPa /67939Ibs = Lorentz Stress

The max stress in the casing is 200 MPa for 96 equilibria, plus thermal and disruption loads. With the
Lorentz portion of the stress at 45 MPa, the "headroom” needed for Non-Lorentz Loads is 155 MPa.

The static allowable is 450 MPa so the Lorentz stress could go to 300 MPa, and still pass the static
allowable. The worst case Max load is 2575871bs - this would produce a casing stress of 257587/67939*45
=170 MPa - so there is only marginally a possibility that currents in their worst configuration could cause
an unacceptable stress - but the bolting in the lower flange will fail before this stress could be reached.

Lower Casing Support Bolts

Because they are sized to the worst halo loads, there isn't much margin to take anything more than the
total PF 1a,b upper and lower Lorentz launching load that was used in section 17 to qualify the bolts. This
is 25161 Ibs from Table 5.2-1. Maintaining the net PFla,b upper and lower summation below this value
will protect the bolting from halo loads during a disruption. If more margin is needed to allow a better
operating window, the halo loads on the bolts will have to be re-visited.

5.0 Design Input,

5.1 Criteria
Criteria may be found in reference [8], NSTX Structural Design Criteria Document, I. Zatz.

5.2 Design Point Spreadsheet Loads

Reference [2] addresses the stress in the centerstack due to the loads from PF1la and b upper. The bolting at
the lower end of the casing assembly is exposed to the net loads from PF1a, and b, upper and lower. This
summation is available in the Design Point spreadsheet, reference [1].

Centerstack Casing and Lower Skirt Stress Summary Page 8




Table 5.2-1 Net Vertical Loads on the Lower Connections of the Skirt

Fz(Ibf) (PF1aU+PF1bU)+(PF1aL+PF1bLlL)
Min w/o Plasma -30569
Min w/Plasma -44386
Min Post-Disrupt -31373
Min -44386
Worst Case Min -71465
Maxw/o Plasma 25161
Max w/Plasma 15513
Max Post-Disrupt 24002
Max 25161
Worst Case Max 363517
Table 5.2-2 Net Vertical Loads on the Lower Connections of the Skirt Plus OH Coil
Fz(lbf) (PF1AU+PF1BU+PF1BL+PF1AL+OH)
Min w/o Plasma -39635
Min w/Plasma -53445
Min Post-Disrupt -41843
Min -53445
Worst Case Min -375500
Max w/o Plasma 20397
Max w/Plasma 10748
Max Post-Disrupt 19630
Max 20397
Worst Case Max 375501
Fz(lbf) PF1aU+PF1bU
Min w/o Plasma -29865
Min w/Plasma -67939
Min Post-Disrupt -35071
Min -67939
Worst Case Min -182214
Max w/o Plasma 55989
Max w/Plasma 48336
Max Post-Disrupt 46450
Max 55989
Worst Case Max 257587

5.3 References
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5.4 Material Properties and Allowables

Centerstack Casing and Lower Skirt Stress Summary Page 10



Table 5.4-1 Tensile Properties for Stainless Steels

Material Yield, 292 deg K (MPa) Ultimate, 292 deg K
(MPa)
316 LN SST 275.8[17] 613[17]
316 LN SST Weld 324[17] (23.3ksi) 482[17]
553[17]
316 SST Sheet Annealed 275[18] 596[18]
316 SST Plate Annealed 579
304 Stainless Steel (Bar,annealed) | 234 640
33.6ksi 93ksi
304 SST 50% CW 1089 1241
180Ksi

Table 5.4-2 Coil Structure Room Temperature (292 K) Maximum Allowable Stresses, Sm = lesser of 1/3
ultimate or 2/3 yield, and bending allowable=1.5*Sm

Material Sm 1.5Sm

316 Stainless Steel | 184 MPa, 26.7 ksi 276 MPa

316 Weld 161 MPa 241 MPa

304 Stainless Steel | 156MPa(22.6ksi) 234 MPa (33.9ksi)
(Bar,annealed)

From the NSTX Criteria:

Weld Allowable

For welds in steel, the design Tresca stress shall be the lesser of:
2/3 of the minimum specified yield if the weld at temperature, or
1/3 of the minimum specified tensile strength of the weld at temperature.

From the AISC Criteria:

Eeference and Weld

Eod or weld wire

Parent Material

Allowable Stress
(Exclusive of Weld Efficiency)

ATSC Stress on cross
section of full
penetration Welds

All

Same as Base material

ATSC Shear Stress on
Effective Throat of
fillet weld

AWE A5 1 E60X

A36 -

21 kst

For shear on an effective throat of a fillet, For 304 Stainless, the weld metal is

annealed, or the base metal in the heat effected zone is annealed. and Estimate
241*21/36 = 140 MPa = 20 ksi {without weld efficiency)
This is consistent with NSTX Criteria of 2/3 yield or 2/3 of 30ksi for annealed 304

With a weld efficiency of .7 the allowable is 14ksi, or 96 MPa

For fillets divide weld area by sqrt(2)

Figure 5.4-1 Weld Allowable

Inconel 625 properties are shown below and in Figure 5.4.2-. Fatigue allowables from ref [2] are shown in
figure 5.4-3

Centerstack Casing and Lower Skirt Stress Summary
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ASTM A193 Bolt Specs from PortlandBolt.com

] B8 ‘ Class 2 Stainless steel, AISI 304, carbide solution treated, strain hardened

Mechanical Properties

Grade Size Tensile ksi, min Yield, ksi, min | Elong, %, min RA % min
Up to 3/4 125 100 12 35
7/18-1 115 80 15 35
B8 Class 2
1-1/8 - 1-1/4 105 65 20 35
1-3/8 - 1-1/2 100 50 28 45

The ASTM A193 B8M Class 2 5/8 inch Bolts would have a Stress Allowable of the lesser of 125/2 or

2/3*100 =62.5 ksi

From Ref 2

Center stack coil support structure is made from Inconel 625:

Sy~65 ksi, Sy~130 ksi
Sm~43 ksi (300 MPa)
Membrane + Bending Stress Limit at RT: (1.5)300=450 MPa
Max Cyclic Stress (58.5k cycles) = 375 MPa (R~0.05)

INCONEL 625
Test Ultimate Yield Elongation
Temperature, Tensile Strength in 2"
°F(°C) Strength, at 0.2% percent
offset, ksi
ksi (MPa) (MPa)
138.8 72.0
Room (957) (496) 38
1333 67.3
200 (919) (464) 41
129.4 62.2
400 (892) (429) 44
125.6 59.5
600 (866) (410) 45
122.2 59.2
800 (843) (408) 45

Figure 5.4-2 Inconel 625 Properties
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Candidate Incoloy 625LCF Actual & Design-Basis Fatigue Curves
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Figure 5.4-3 Inconel 625 Fatigue Properties
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5.5 Photos and Drawings of Components
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’\

Figure 5.5-6 Lower Mandrel Assembly (October 2011 version with 11 5/8 inch bolts in the lower flange)
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Figure 5.5-7 Lower Support Skirt (FDR vintage with 24 1/2 inch bolts at the lower flange)
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6.0 Analysis Models
The referenced calculations include a number of separate models for thermal and electromagnetic
modeling. The centerstack casing is included in the global calculation, ref[9].

ELEMENTS

Figure 6.0-2 Swept Mesh Model of the Centerstack Casing
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Figure 6.0-3 Swept Mesh Model of the Centerstack Casing Showing Displacement Constraints
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7.0 Pressure Loading

7.1 Normal Operating Vacuum Loading
Normal operating pressures on the casing come from atmospheric pressure on the inside of the casing

and produces hoop tension. The Tresca stress from this loading is 6.3 MPa.
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Figure 7.1.1 Operating Vacuum Load Pressure Surfaces, Hoop, and Tresca Stress

7.2 Test Vacuum Loading and Buckling

During final manufacturing tests, leak tests may be performed by closing off the top and bottom flanges
and drawing a vacuum on the casing. Helium is "sprayed" on the outside welds and a mass spectrometer is
used at the vacuum pumping duct. The casing must be stable with an atmosphere of external pressure. This
is the opposite loading experienced during normal operation.

Element Pressure

Radial Displacement (meters) | J Stress Intensity, Pascal

Surfaces DEC 13 2011 DEC 1 11
11:20:26 11:20:52
NODAL SOLUTION NODAL SOLUTION
STEP=1 STEP=1
SUB =1 SUB =1
TIME=1 TIME=1
X (AVG) SINT (AVGE)
REYS=5 PowerGraphics
FowerGraphics EFACET=1
EFACET=1 AVRE&=Mat
AVRES=Mat DMX =.331E-04
DMX =.331E-04 8MX =.A0AE+07
SMN =-.B846E-05
SMX =.211E-0S XV =1

Yv =1
HV =1 e vy =
o=l DIST=2.65634
v =3 YF =-.267308
DIST=2.65634 Z_BUFFER
YF =-.267308 0
Z-BUFFER Bl 55
-.846E-05 B i79g+07
Bl _ oge-0s = eopro
B _ si1g-05 [ R
[ . 494E-05 = . 359E+07
[ . 376B-05 I . 449E4+07
(] _ 2geE-05 = .538E+07
[ P = . 6ZAE+07
E3 - 2410 — .718E+07
B2 5335-06 .80BE+07
s
Vacuum Loading Vacuum Loading
| TestVacuumPressure (Radially Inward Atmospheric Pressure on the Casing) |

Figure 7.2-1 Test Vacuum Load Pressure Surfaces, Displacements, and Stress
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Shell stresses are small during the test vacuum.

Vacuum Loading

Figure 7.2-2 Buckling Modes 1 and 2
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The margin against buckling for this eigenvalue buckling calculation is 25.8; well beyond the factor of 5
required in the NSTX Structural Criteria Document.
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8.0 Heat Balance Results

These results are reproduced from Art Brooks’ heat balance calculation, ref [3].

ELEMENTS S====

— MAY 17 2011
/EXPANDED ==
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TMAX=2ZZ.001

W

AATRIRACHT

plus Lower Heat Flux at

RN

=== CSAS
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after 20 pulses

Fully Ratcheted ===

(Fully ) = Less Thermal Mass
plus Higher Heat Flux
at IBDvs

—————
48. 6842 87.1992 125.714 164,229 202.744
67.9417 106. 457 144,972 183. 487 222.001
NET¥ 14 MW DN emis=0.3, H Grafoil=4000 w/m2-C, H water=500

Figure 8.0-1 Temperature Distribution from the Heat Balance Calculation [3]
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Figure 8.0-2 Temperature Stress Distribution from the Heat Balance Calculation [3]

9.0 Halo Current Results

9.1 Halo Currents in the Casing
These results are reproduced from Art Brooks” Vessel and Internals Heat Balance Calculation, ref [4].
The Tall Narrow Centerstack Could Experience Excessive Lateral Loads If Peaking Factors are Sustained.

‘WBS 1.1.3 Magnet Systems, Halo Current
Analysis of Center Stack
NSTXU-CALC-133-05-00
Prepared By: Art Brooks, Reviewed by:
PeterTitus,
CognizantEngineer: Jim Chrzanowski
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Figure 9.1-1 Halo Disruption Stress Results from [4], presented at the FDR
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Figure 9.1-2 Halo Disruption Stress Results from [4]

9.2 Normal Operation and Halo Currents in the CHI Bus Connection

Currents flow in the CHI system during start-up and during a disruption. Normal operation for the upgrade
is expected to utilize 27 kKA of current [21] when the TF is at full field. This is planned to produce 1 MA of
plasma current. This occurs during start-up. The CHI can be used for current drive after the initiation. This
was done early in the NSTX program to demonstrate current drive but is not commonly used.

NSTX-U has the Potential for 1 MA CHI Start-up

From[21] Progress on CHland MGI Experiments on NSTXR. Raman, et. Al.
CHI Start-up Parameters in NSTX and NSTX-U

Parameters INSTX  [NSTXU
R/a (m) 0.86/0.68 093/0.62
Toroidal Field (T) 0.55 10
Planned Non-Inductive sustained Current (MA) 0.7 1.0
Poloidal flux (mWb) contained in the plasma at non- 132 2086

inductive sustained current with internal inductance
of 0.35 and at device major radius

Maximum available injector flux (mWb) 80 340
Maximum startup current potential (MA) 04 ~1
Req. Injector current for max. current potential (kA) 10 27

* HIT-Il routinely operated with 30kA injector current without impurity issues

FY 11 Results A. Raman, D. Mueller, TR. Jarboe et al. Phys. Plasmas 18, 092504 2011)
@NsTX E3rd APS.DPP Raman Wow 17,2011 "

Figure 9.2-1 Normal Operational Parameters Expected for NSTX Upgrade [21]
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CHI Operation and Halo Current Path Through the CHI Connections
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Figure 9.2-2 Layouts and Arrangement of the CHI Connections

NSTX BASE NSTX CSU
Ro m 0.854 0.934
A 100 1.3 1.5
Ip MA 1.0 2.0
Bt@Ro T 0.6 1.0
| =5e6*radius*Bt at Radius Amp 2.562e6 4.67e6
| per Turn = Amp 71166 129722

The toroidal field at the CHI Rod is .934*1.0/(18.31/39.36) = 2.008T. Normal operating current in the
CHI rods is 27 kA/3 = 9kA. The load in the rod over almost a meter of height is 9000*2T = 18000N or
2023 Ibs per rod, radially outward. The Halo loading is 7% of 2e6 amps*2T*1m/3 = 93333N = 20981 Ibs
per rod. One important observation is that the disruption considered in Art Brooks” simulation is a centered
disruption. The disruption that drives currents in the CHI bus is a quench after a VDE. So, the loading in
the CHI bus is not additive to those loads calculated by A. Brooks.

10.0 Mid Plane Disruption, Quench of P1

This was thought to be an interesting disruption case. At the mid plane, the centerstack casing is not
reinforced. The only structural strength comes from the 1/4 inch shell.

Centerstack Casing and Lower Skirt Stress Summary Page 26



. Hatcher-B, 000

-0.10

-0.21

-0.31

-0.42

-0.52

-0.63

073

180 2201 +38PH -0.84

Hatcher - B]_Im ax

-1.80

227 2010

Figure 10.0-1 Max Poloidal Fields for All 96 Equilibria

APR 20 2011
23:07:49
VECTOR
STEP=1%

SUB =1
TIME=100.012
JT
ELEM=38%44
MIN=29516
MAX=199769

=
]
=
—
(=]
furt

199769

1

AN

071
0.53
036
0.18
-0.00
200
-0.18
036
054
37 PM -0.72
APR 21 2011
07:23:41
VECTOR
STEP=15
SUB =1
TIME=10C.012
JT
ELEM=38944
MIN=29516
MAX=199769
W =1
v =1
V=3
DIST=2.622
YF =-.28715
Z-BUFFER
EDGE
29516
s
Wl 9:50
3 g6267
EE 105184
B 12s101
C 143018
L1 161935
0 1g0ss2
B 95760

Figure 10.0-2 Current Density Vectors for the Mid-Plane Disruption
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Figure 10.0-3 Lorentz Forces Resulting from Toroidal Currents (Figure 10.0-2) and the Poloidal Field
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History Plot in Figure 10.0-5
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Figure 10.0-5 Dynamic Time History Response of the Casing showing the largest deflection occurring at
100.007 seconds.
11.0 Translations and VDE's

11.1 Slow Mid Plane Translation and Quench P1 to P2

Reference [10] includes the mid plane translation and quench. The results are presented in this section. As
for the previous mid-plane disruption, the stresses are small.
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11.2 P1to P5 10 ms VDE Fast Quench at P5
Appendix | of reference [10] introduces another disruption simulation. Simulation of the passive plate
disruptions also includes other structures including the centerstack casing.
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Figure 11.2-1 Appendix | of Reference 10 Electromagnetic model
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Figure 11.2-2 Current Densities, P1-P5, 10ms VVDE (ends at Step 8) and Quench at P5

Centerstack Casing and Lower Skirt Stress Summary

Page 31



NSTX Pl to PS5 Then

Pl to PS Then NSTH

Quench ZMA NSTX Pl to B5 Th NSTX Pl te PS Then NSTX

TIME=105.01 .sec Quench ZMA Quench 2ZMA Quench 2MA
sTPEP=7 SINT TIME=105. 011 Sec TIME=105.012 sec TIME=105.013 Sec
mm 152408 sTER=8 SINT STEP=10 SINT sTEP=12 SINT
3807, 92 525,633 4357.71

m aeeaer TR e [ ETTIvT
B 795372 B 12966 B i798+07 B isip+07
EE | 1p6e+07 B3 767545 B3 ze9e+07 B 227e+07
B 33zg+07 B2 1028+07 E3 | 3s9e+07 2 s0ze+07
C 1see+07 B 1285407 ES 449g+07 B s7se+07
3 | 185e+07 B3 | 1s3z+07 3 s3se+07 C is3e+07
B zizero7 L 179s+07 L1 | ezse+07 T s20E+07
B o55ei07 E cogzeor [ [ e B odrtos
L -230E+07 L . B08E+07 [ .680E+07

Figure 11.2-2 Tresca Stress, P1-P5, 10ms VDE (ends at step 8) and Quench at P5

This Disruption Simulation produces nothing more than 8.08 MPa.

12.0 Tile Moments

Pl to PS5 Then

Quench ZMA
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STEP=14 SINT

SE00ROTEN
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The tile eddy currents will produce net moments about the vertical axis and net to zero moment radially.

* Tile layout
— Reduced overall tile number, increased size
where possible
« ~900 - ~700 tiles

— IBD HS Tiles kept the same size due to
thermal constraints

— Designed diagnostic slots and wire
channels

+ Mirnov, Rogowski, Langmuir, Thermocouple

1

«IBD HS (U)

*IBD VS (U]

-IBDAS (U)

*CS V5=

*IBDAS (L)

-IBD VS (L)
-IBD HS (L)

Figure 12.0-1 Tile Inventory from Kelsey Tresemer's FDR Presentation
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From Ref [16]:

CSFW Tiles

There are two types of CSFW tiles: fixed tiles and floating tiles. The fixed tiles are held in place vertically
and radially by four pins that run through the entire tile horizontally. Horizontally, they are held by a
mounting bracket as well as two locating pins. However, the locating pins have a large tolerance and are
unlikely to be a real constraint.

Mounting Bracket - \

TN T TN eI v AT o un T muvauaamumemmm

Mounting Bracket
Mounting Bracket

\‘\ | : 1M //— Tile

Pin —___

Figure 1. Top, side, and isometric views of the fixed CSFW tile.

The images above are simplified models of the tile. These images are not to scale and are used only as
similar geometries. The mounting bracket is screwed into the centerstack using bolts that are behind the
tile and are tightened through small holes in the surface of the tiles.

The CSFW floating tiles are similar to the fixed tiles in shape. However, they are freer to translate. The
tiles are held radially and vertically by the ends of the pins that hold the fixed tiles in place. Horizontally,
they are held by fixed tiles on either side. The fixed and floating tiles are placed in an alternating pattern to
allow this mounting method. For both the fixed and floating tiles, the following dimensions, loads, or
parameters were used in the ANSY'S qualification script.
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Variable Name Value Units

Material 7 (Thermagard) None
Tile width 34 inches
Tile height 5.8 inches
Tile thickness 0.75 inches
T1 0.5 inches
T2 0.5 inches
T3 0.0625 inches
T4 0.0625 inches
Heat flux 0.13 x 10° W/m?
B across face horizontally 0 Tls

B across face vertically 590 Tis

B normal to face 160 Tis

B field across face horizontally 2.97 Tesla
B field across face vertically -0.37 Tesla
B field normal to face 0.07 Tesla
Halo current density across face horizontally 0 A/m?
Halo current density across face vertically 7.76 x 10° Alm?
Halo current density normal to face 2 x10° Alm?
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From Art Brooks Tile Moment Estimator:
Based on linear scaling of SPARK model results

Time Constant

Note: Yellow Fields for Inputs

Width(in) 3.4 in
Height(in) 5.8 in
radius r 0.063637372 m Equivalent radius
diameter d 0.127274744 m
thickness t 0.01905 m
resitivity rho 1.17E-05 ohm-m  ATJ Graphite
time constant tau 2.47E-05 s
Field Change
Inductive dB 059 T
Ramp Time dt 0.001 s Note: Inductive for dt << tau, Resistive for dt >> tau
Resistive dBdt 590 TI/s
Induced current
Inductive |_ind 37546.0494 amps Note: Linear Scaling From SPARK Analysis
Resistive |_res 973 amps Note: Linear Scaling From SPARK Analysis
|_ind*EXP(-dt/tau) 0 amps
|_res*(1-EXP(-dt/tau)) 973 amps
Forces and Moments
Dipole Current |_dp 973 amps
Dipole area a 0.012722555 m2
amps- Over estimate for resistive solution, reasonable for
Dipole Moment m 12.37371058 m2 inductive
2888.56443
Field Btf 297 T
Bpf 037 T
Torque = mxB Mpol 36.75 N-m 325 in-lbs 27 ft-lbs
Mtor 458 N-m 41 in-lbs 3 ft-lbs
Dipole moment is normal to tile
Torques are about poloidal and toroidal axes thru tile
Centerstack Casing and Lower Skirt Stress Summary Page 35



The central sleeve of the casing is 89 inches long and 23 inches in diameter. The number of tiles on this
section of the casing is 89*23.29*3.1416/3.4/5.8 = 330 tiles. The net moment acting on the thin part of the
casing is 27*330*12 = 106,920. The moment will be reacted by the lower flanges and the upper and lower
bellows. The moment will be split between the upper and lower ends of the shell. The shear stress is then
106,920 in-1bs/23.29/pi/.25/2 = 2922.6 psi (20.15 MPa) shear. Tresca stress is 40.3 MPa. At the top and
bottom flanges, torques from all 700 tiles must be reacted. Assuming that all the tiles are similar to the
CSFW tiles, the total moment is 27*700*12 = 226,800 in-Ibs. This is reacted in the heavier cylindrical
sections at each end of the casing. These are 30 inches in diameter and 0.438 inches thick. The torsional
shear is then 226800/2/30/pi/.438 = 2747 psi = 19 MPa Shear or 38 MPa Tresca.

13.0 PF Loading Results

13.1 Stress Results from Ref [2]
e The 2D model identifies EQ31 (PF_Currents_Forces) as producing the max vertical tensile stress
in the structure, as PF1a/b upper and PF1a/b lower pull away from the mid-plane with 56 Kip.
* Inthis top-half symmetry model, 12.7 and 43.3 kip are applied to the PFla and PF1b upper
flanges, respectively.
Notice that the max stress of 45 MPa also appears in the center column to transition piece weld, which is
comparable to the 50 MPa 2D result (<<300 MPa)

ANSYS 13.0
JUN 17 2011
11:12:38
pflabu_casing3di2
NODAL SOLUTION
STEP=2

SUB =1

TIME=2

SINT (AVG)
DMX =.227E-03
SMN =518.166
SMX =.454E+08
518.166
A54E+07
.908E+07
A136E+08
.182E+08
.227E+08
.272E+08
.318E+08
.363E+08
408E+08
454E+08

J0OB00NE

=
)

Figure 13.1-1 Stress Results from [2]
13.2 Buckling

L. Myatt did a buckling calculation based on the compressive load from the upper inner PF coils. This
showed a large margin. Buckling will be aggravated by the thermal expansion of the central region of the
casing, and possibly any tolerance or other geometric imperfections introduced during manufacture,
assembly or operation.
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Center Tube Buckling Stability

» Loads from E1 produce a compressive load in the 74"
thick central tube of 86 kip, which raises the concern over
buckling.

» Roark’s equation for the critical stress (') in thin
cylindrical tubes is:
— o'= E(YR)A3"2(1-v2)12}
— o'= (29Msi)(0.25/11.64)/{3"2(1-0.32) 12} = 380 ksi
* The average stress in the central tube:
— Oupe=(86 Kip)/(2111.64"x0.25") = 4.7 ksi
« The ratio of critical stress to max stress is ~80 (>>5%)
Figure 13.2-1 L. Myatt's buckling calculations
L. Myatt's calculations are based on Roark handbook calculations and do not include lateral loading from
magnetic misalignments or differential thermal expansion. An Eigenvalue buckling analysis of the
centerstack casing was performed. The thermal expansion of the central region was approximated by

selecting +/- 1 meter from the equatorial plane and applying 200 degrees C. The ANSYS instructions say
that you should do a static solution first. This was done with the thermal plus Lorentz loading.

finput,cas6,mod

bf.all,temp,30
=+ EIGENVALUES (LOAD MULTIPLIERSFOR esel mat 40
BUCKLING) a0
** FROM BLOCK LANCZOS ITERATION *** esel mat 41
nelem
SHAPE NUMBER LOADMULTIPLIER e
nsel,y,-1,1
1 1.9606716 o emp 200
2 1.9651602
3 1.9651725
4 1.9791568 EIGENVALUES AT CURRENT LANCZOS CYCLE
5 1.9791584 1 0.19606716E+01 2 0.19651602E+01 3 0.19651725E+01
5 19840488 4 010791568E+01 5 019791584E+01 6 0.19840488E+01
; 19879713 7 019879713E+01 8 019879753E+01 O 0.19944995E +01
: 10 0.19986775E+01 11 0.10986867E+01 12 0.20001489E+01
8 1.9879753 13 0.20001529E+01
9 1.9944995
10 1.9986775 numberofsteps 12

eigenvaluesfound @ 13
total no. eigenvalues: 13
1

Figure 13.2-2 Buckling Results with the Thermal Loading as a Part of the Load Vector
When ANSYS reports the load factors they are based on the full load vector in the initial static analysis.

The results for the casing showed only load factors of 2 when the Euler buckling hand calculations showed
factors of 50.
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Figure 13.2-3 Eigenvalue Buckling modes and Load Factors with No Thermal Distortions

The Eigenvalue buckling was rerun without the thermal loading and the load factors went up to 160 to 170.

Lorentz Forces, With Thermal Distortion Modeled as a Geometric Alteration
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Figure 13.2-4 Eigenvalue Buckling modes and Load Factors with Thermal geometric Distortions

The thermal distortions were input with an initial geometric distortion so that the thermal effects would be
considered a geometric imperfection rather than a part of the load. The load factors reduced but not by a
substantial amount. The first mode factor went from 159 down to 158.
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NLGEO Nominal Initial Geometry, Thermal
«» Expansion Applied, but not Scaled

ftitle factor=1
solve
save
*do,Id, 1,100

TIME=36

fscale, (1+4 0%1d)/(1+4 .0%(1d-1))
solve

save

*enddo

fitle, Factor="%(1+4.0"1d)% Fscale=%(1+4.0%d)/(1+4.0*(1d-1))%

Load Step 35
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Figure 13.2-5 Non-Linear Geometry Solution - Radial Displacement as a Function of Load

The NLGEO results show factors of 141. The NLGEO analysis kept the thermal loads static and the

Lorentz loads were stepped up.

NLGEO Nominal Geometry, Thermal Expansion Applied, butnot Scaled, Additional LowerHalf Oval by 1mm
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Figure 13.2-6 NLGEO Nominal Geometry, Thermal Expansion Displacement Applied, but not Scaled,
Additional Lower Half Oval by 1mm (Representing Fabrication Tolerance)
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14.0 Torsional Loading from TF OOP loads
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Figure 14.0-1 Torsional shear stresses
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There is a torque from the TF out-of plane (OOP) loading that is transmitted through the bolted and
welded connections. This has to be derived from the global modeling of the tokamak. The torsional shear
stress in the casing is 6.4 MPa . Based on uniform shear flow, this would be a torque of
6.4e6/6895*.25*%22.29*2*pi = 32499 in-Ib.
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15.0 Seismic Loading Results

More detailed seismic analysis may be found in Reference [12]. In ref [12] , both response spectra and
static analyses were used. The results are approximately equivalent in terms of the magnitude of stresses.
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Figure 15.0-1 Casing Results for 0.5¢g lateral static accelerations, Global model run #32

Figure 15.0-1 shows the stresses for a later global model analysis, run#32, with a static lateral

acceleration of 0.5 g's applied. The centerstack casing s
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Figure 15.0-2 Skirt Results for 0.5g lateral static accelerations, Global model run #32

16.0 Lower Skirt Normal Operating Stress
The skirt is a bolted assembly. It is included in the global model in a fully merged approximate manner.

The stress levels are not large and it is assumed that the local details of the skirt will not add significantly to
the stresses found in the global model. Figure 16.0-1 shows the general arrangement. Figure 16.0-2 shows

the treatment of the skirt in the global model.

| CENTERCASE AND SUPPORTASSEMBLY W/OH COIL

i |||

Figure 16.0-2 Views of the Lower Skirt and Penetrations for Services

CS Casing Support
Structure
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Figure 16.0-3 Lower Skirt Modeling in the Global Model

Thicknesses and flange details are represented in the global model. This design represents a major
improvement in the original design of the centerstack casing support. Initially, support was via three legs
which experienced excessive bending. These were replaced with the skirt assembly which had a

substantially increased load carrying capability.

ngtxlU, Therm+TFON, data set #nw79, 1T

AN

‘I{X

Mat 18

AUG 13 2011

22:12:41
NODAL SOLUTION
STEP=1
SUE =1
TIME=1
SINT (AVE)
PowerGraphics
EFACET=1
AVEES=Mat
DMX =.186E-03
SMN =585728
SMX =. 422E+08
HW =1
¥ =1
2V =3

*DTST=. 369980

*XF =-.005673

*YF  =-2.22597

*7F =—.008553
Z-BUFFEER

585728
oo
B os53p407
O 144m+08
O io1p408
B os37p408
1 =2g3E+08
C 1 z3zoE408
C 376m+08
B oopi0s

Figure 16.0-4 Lower Skirt EQ79 Stress from in the Global Model Run#34
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Figure 16.0-5 Lower Skirt Stress from the Global Model Run#32 for 96 no-plasma equilibria and about half
off the with-plasma equilibria

17.0 Lower Casing and Skirt Bolt Stress

The lower casing support elements are loaded by the net loads from the PF Lorentz forces and
occasionally from disruption halo loads imposed on the casing. Bellows loads from the expansion of the
casing put compressive loads on the lower structures. This section is mainly concerned with tensile loads
on the bolts and welds. The bellows compression offsets the bolt and weld tension and is conservatively
ignored. There is a torque from the TF out-of plane (OOP) loading that is transmitted through the bolted
and welded connections. This has to be derived from the global modeling of the tokamak and is discussed
in section 14 of this calculation. The torsional shear stress in the casing is 6.4 MPa. Based on uniform shear
flow, this would be a torque of 6.4e6/6895*.25*22.29*2*pi = 32499 in-Ib.

Lower PF Mandrel Assembl
T —
—
Upper Skirt Bolt Circl 2

Figure 17.0-1 Three Bolt Circles are of Interest
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Figure 17.0-2 Another Atfempt to Trace the Load Path of the Casing Supports

17.1 Upper Pflbl Mandrel Bolting and ~{
Weld ' — B33 . e

The casing flange or divertor flange sits on the
PF1b mandrel. The flange and mandrel are
welded together and that weld is the primary load
carrying element that supports the casing loads.
As of August 16, 2011, this weld hadn't been
detailed.  Additionally, there are studs that
connect across the outside of the mandrel that
provide a redundant load path. Spacers were
added between flanges connected by the studs
and the studs will not load in compression. The
studs act to reduce mandrel flange motion under
the case loads, and share loads with the welds.

PF Mandrel Assembly Bolting — i e — -
Figure 17.1-1 Lower PF Mandrel Assembly

In the following spreadsheet calculation, two

calculations are presented. The first assumed the studs take the moment and tensile loads. The second
assumes the weld takes the loads. The weld is the stronger and stiffer of the two load paths and will take

most of the loading. The studs and spacers are mainly intended to minimize flexure of the mandrel that
might load the coil.
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Upper PF1b Flange Bolt Pattern and Weld to the Casing

Bodt Diameter

Boltarea
0 0
1 15
2 30
3 45
4 60
5 75
[ 90
7 105
8 120
9 135
10 150
1 165
12 180
13 195
14 210
15 225
16 240
17 255
18 270
19 285
20 300
21 315
22 330
23 345

1
0.965326
0.866025
0.707105
0.499398
0.258816

-3.7E-06
-0.25882
-0.5
-0.70711
-0.86603
-0.96593
-1
-0.96592
-0.86602
-0.7071
-0.4399%
-0.25881
1.1E-05
0.25883
0.500011
0.707116
0.866032
0.965929

0.375
0.110446875

Bolt Diameter
Inches

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

Halo Moment =

Halo Lateral Force =

Halo Vertical Force =

Design Point Vertical =

DesignPointFz

Mom due to TF OOP

Bolt Stress Area

Inches~2

]

0.0773
0.0773
0.0773
0.0772
0.0773
0.0773
0.0773
0.0772
0.0773
0.0773
0.0773
0.0772
0.0773
0.0773
0.0773
0.0772
0.0773
0.0773
0.0773
0.0772
0.0773
0.0773
0.0773

Moment of Inertia

Section Mod

If Only Bolts take Load

Bolt Stress due to Moment (psi)
Bolt Stress due to Vertical Halo+Design Point Load

infin-lbs

25161
32499
Radius
inches

15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025
15.4025

N/N-m
95000 N-m
125000 N-m
60000 N
111926.1566 N
Ibs

(r*cos)*2%da

o
17.10937372
13.75379599
9.169176611
4.584566255

1.22341318
2.4743E-10
1.228480541
4.584682928
9.169311333
13.75391266
17.11004108
18.33842058
17.10930636
13.75367932
9.16904185
4.584449584
1.22834582
2.22687E-09
1.228547903
4.584799601
9.169446054
13.75402933
17.11010844
201.7231292
13.09677339

64197.90385 psi
21738.56797 in-lbs

Figure 17.1-1 Upper PF Mandrel Flange and Weld Calculations
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Weld Radius 15.25
Welt Thickneess 0.25
weld area 23.9%47
Weld Section Modulus = 182.6546

If Only Weld Takes Loads

Weld Stress due to Moment (psi)
Weld Stress due to Vertical Load
Weld Stress due to Shear (psi)

The weld stresses are low. The load path for the vertical tensile loads that result from the moment and
Design Point Lorentz loads is more direct than the studs and spacers. The stud loads are overestimated in
this calculation. The weld will also take the TF OOP torsional shear stress. This will be less than the 6.4
MPa (928 psi) discussed in section 14 because the PF1b Mandrel diameter is less than the central region of
the casing for which the stress was quoted, and the weld thickness (1/4 inch) is the same as the casing wall
thickness. Weld stresses are well below the 14 ksi allowable discussed in Figure 5.4-1.
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17.2 Pf1bl Mandrel Lower Flange Bolting
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Figure 17.2-1 Lower PF Mandrel Assembly
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PF1b mandrel is shown in figure 5.5-5 and 17.2-1. The blind hole studs are used to connect the PF1lb
mandrel into the PFla flange, which in turn is connected to the skirt flange. Below, the PF1b mandrel
bolting is evaluated as though there are only 23 bolts. Doubling this is recommended. The female thread
shear stress is evaluated using the Federal Screw standards [22] for high strength bolting in a lower strength
female thread. The Sm allowable for 316 SST is 26.7 ksi (Table 5.4-2).

From [8] 2.4.1.4.2 Special Stress Limits: The average primary shear stress across a section loaded under design conditions in pure

shear (e.g., keys, shear rings, screw threads) shall be limited to 0.6 Sm.

Lower PF1b to PFla Flange Bolt Pattern (Threaded Blind Hole, 1/4 inch Thread Engagement)

NfN-m infin-lbs

Balt Diameter 0.5 Mx 3000 B407HS.T2

Bolt area 0.19635 My L] 0
Boli Diameter  Bolt Stress Area Radius  (r"cos)*2%da cos “da
Inches Inchesn2 inches
0 0 1 0 0 154025 0 0
1 15 0.965926 0.3 01416 154025 3134246157 Q1367751
2 30 0.866025 0.8 01416 154028 75.19433423 0.1226791
3 45 0.707105 0s 0.1416 154035 1679631635 0.1001261
4 B 0499998 0.5 0.1416 154015 639811878 0.0007997
5 75 0.258816 os 01416 154025 2.250236821 0.0366484
& 90 -3.7E-06 s 0.1416 154025 4.5)248E-10 5.200E-07
7 05 035882 o5 01416 154015 2250360114 0036645
2 120 0.5 05 0.1416 154025 3393332504 0.0708008
9 135 -0.70711 0s 0.1416 154035 16.79656513 0.1001269
10 150 -0.86603 o5 00416 154015 3519474817 0177679
n 185 -0.96593 05 0.1416 154025 3134258486 0.1367733
12 is0 -1 (2] 1416 154025 33.59276008 0.1416
13 195 -0.96592 X3 00416 154025 3134233617 01367748
14 210 -0.86602 o5 0.1416 154025 2518432072 0.1226285
is 25 0N s 0.1416 154025 16.79607156 0.1001254
16 240 049999 o5 01416 154005 3397905059 00707988
17 255 -0.25881 05 0.1416 154025 225011343 0.0365474
18 70 L1E05 (%) 01416 154025 4.07923E-09  1.5GE-O6
13 85 025883 X3 01416 154005 225038361 00366504
20 300 0.500011 05 0.1416 154025 8398545229 0.0708015
an 315 0.707116 o5 0.1416 154025 16.796811%2 0.1001276
7] 130 0886032 o8 01416 15,403 2518496159 01226302
23 345 0.965929 05 0.1416 154025 3134270835 0.1367756
Mament of inertia 369.521282 1.0095215
Section Mod 219909958 5D.'h|u{_“_‘
Bolt Stress due to Mament [psi) 35045, 8890 Iﬂbl:}-r“"--._
Baolt Stress Due to Halo and PF Lorentz Vertical Tension 11867.17023  11867.17
Total Tensile Stress 46913.05983 39031641

Halo Mament = 95000 N-m
Halo Lateral Force = 165000 N-m
Halo Vertical Force G000 N

Design foint Vertica 111926.2 N

37092 s

2798174
1f there is a Weld:
1/2in Bolt pitch Dia 0.45 Weld Diameter = 05
Thread engagement 0.5 Bevel Leg 0.06
Thread Shear Area 0.265073 Ref22"  WeldSheararea  [0.0G66&33
Thread Shear Stress 20850.45 82944 67
* High Strength Balts in
Low Strength Female Thread
Holt Load Due 1o Malo Moment 1845489 bs
Bolt Load Due to Halo and PF Lorentz Vertical Tension 1680.391 ibs
Tatal Bolt Tensile Load 5526.88 Ibs
Shear Capacity at Mu=3, 23 Bolts 38135.47 Ibs
=T
—— T
T— T sectModif All Prefoaded to Calculated Stress

T sectMod with noPreload

Figure 17.2-2 Lower PF Mandrel Bolt Pattern Calculations

In shear, the allowable is 0.6*Sm or 16 ksi. The calculated shear stress is 20 ksi. The tensile stress is
39,031 psi, below the allowable of 62.5 ksi for the high strength bolts. Because of the thread shear, more
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bolts are needed. The shear capacity of the threads would actually be degraded if the welds were used. It is
recommended that Locktite be used instead.

The following is an email exchange between Lew Morris and Peter Titus supporting the need for additional
bolts:

Peter,

I've gone ahead and added additonal studs in the available locations on the Upper and
Lower PF-1B Winding Mandrels. The number of studs have increased from 21 to 34 on
the Lower Mandrel and from 22 to 36 on the Upper Mandrel. Do you need the drawings
for specific locations of the studs?

In lieu of Loc-tite on the threads, Jim would like to incorporate a tack weld. This should
have no effect on the integrity of the High-strength bolts/studs. Do you agree?

Thanks. Lew

I calculated 20,800 shear for the threads in the lower PF1b flange. | must have mis-
counted but | had 23 studs. The allowable for the 316 flange is 16 ksi. The shear area was
based on a strong bolt in a soft hole. | have been recommending ASTM A193 B8M class
2 bolts which are a work hardened 304 bolt, so with corrections on bolt numbers, the
shear would be 20,800*23/34 = 14 ksi; so 34 bolts is OK. But if the weld softens the
stud, I lose on the shear area. The fed screw fasteners standard allows 0.75 of the hole
shear area for strong studs in soft holes vs. 0.5 for soft studs in soft holes. If the whole
stud was annealed, stresses would not be acceptable. A tack weld shouldn't anneal much
of the stud but I am not sure. | have seen tack welds on nuts outside the stressed thread
region, but never near a stressed region of a threaded fastener. | would definitely prefer
Locktite. Also at installation, the studs need to be preloaded to improve the moment
carrying capacity. With the 34 screws, the studs should be preloaded to 3000 Ibs. Peter
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17.3 Upper Skirt Bolt (section of a ) Circle
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1

Secrvion Properties for Group Number: 1
AREA= 2.398921 IXX = 238.9492 IYY = 23235.8500
MAX DISTANCE TO EXTREME FILER CcY= 13.18384

RINX= 217.82320 RAD OF GYR= &.005369
RINY = 235.8500 25.48181 FAD QOF GYR= 9.938921
PRODUCT OF INERTIA ABOUT O BEIEY] T1805324E-02

PRODUCT OF INERTIA ABOUT NEUTRAL AXIS=IXYN = -9.1812603E-02

ROTATION ANGLE TO FRINCIPAL MOMENTS OF INERTIA = 4.4863363ZE-02

COORDINATES ©F THE CENTROID, XBAR= -2.493210S5 YBAR= -8.S5902792E-07

.37633 in square
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stress area of 1/2 bolts

NTER agp m—

85 degree
missing
boltcircle
at OH Coax

Section Modulus of
“Upper Skirt Bolt Circle

Figure 17.3-2 Section Modulus Calculations for the Upper Skirt Bolt Circle
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Element Group for which Secvion Fropsrvies are o be Calculaved

ies for Group Numbes: 1
X = 238.9497 1YY = 395.5500
azg €

Upper Skirt Bolt Pattern

1 X!
EXTREME T
o

English sl
Halo Moment= 840785.7 95000 N RoDyC ABoUT sty 15
Halo Lateral Force = 28100 125000 N RORATEOH ARGLE 70 ERINCIDAL AT OF IHERTIA & 4. 4452958 02
Halo Vertical Force = 13488 60000 N MRS ot smoRnazEmen
Design Point Vertical = 25161 111926.16 N 37633 1n square
Mom due to TF 00P 32499 144568.51 representing 1416 sq.in.
Bolt Diamater 0.5 inA3 stressarea of 1/2 bolts
Bolt Array Area 3.398 in"2
Section Modulus from Figure 16.665 int3 =
N e
85d ' '
Bolt Stress due to Moment 50452.19 ws::;«
Stress due to Vertical Loads 11374.04 boltcircle 7
Total Tensile Stress 61826.23 . AOHCoa -
Section Modulus of 4
Frictional Capacity 63025.66 |bs Upper Skirt Bott Circle

The ASTM A193 B8M Class 2, 5/8-inch bolts would have a stress allowable of the lesser of 125/2 or
2/3*100 = 62.5 ksi, so they are just acceptable for this bolt pattern. The bolts should be preloaded to 75%
yield, and this increases the effective section modulus of the bolt pattern. The preloaded bolt friction
capacity was calculated based on a friction factor of 0.3 and there is a factor of safety of 63,025/28,100
=2.24 against slippage due to the lateral halo loading.

17.4 Lower Skirt Bolt (section of a ) Circle
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Figure 17.4-1 Layout of the Lower Skirt Flange

The skirt bolting is missing a 60-degree section corresponding to the 40-degree opening provided for the
OH coax connection. In the initial set of reaction forces provided by Art Brooks, the halo loads were
applied at the top of the skirt and had to be translated to the lower bolted flange section which is 22.096
inches below the upper flange. In the latest transmittal of loads (Appendix B, ref [19] ) the loads are
provided at the base of the skirt. In this transmittal, the lateral load is 160,000N or 36,000 Ibs. The lower
bolt pattern of the skirt is different than the upper pattern. There are 11, 5/8-inch bolts in the lower circle.
ASTM A193 B8M class 2 bolts with 100 ksi yield are recommended. The bolts should be pre-tensioned to
75% yield. 5/8-inch bolts have a stress area of .2256 in”2 so this would be a load of 16,920 Ibs each. Based
on a friction factor of 0.3, 11 bolts would have a shear capacity of 11*.3*16,920 = 55,836 Ibs, well in
excess of the 37,092 Ibs applied shear.

So far, the peak halo vertical tensile forces have been considered to act concurrently with the peak halo
moment. A review of Art Brooks plots (Appendix B) shows that the peak moment occurs after the peak
vertical load.
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Figure 17.4-2 Section Modulus of the Lower Skirt Flange Bolting
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Figure 17.4-3 Lower Skirt Flange Bolt Stress Calculations
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17.5 Bolt Loads on the Lower TF Flag Keys

The G-10 ring on top of the TF flags in the bottom of the machine is attached using countersunk bolts
and thread inserts to the TF flags. The centerstack skirt and the OH bottom cage flange are, in turn,
attached to the G-10 using bolts and thread inserts into the G-10 ring at a more radially-outward bolt
pattern. Figure 17.5-1 and 2 show this interface.

| CENTERCASE AND SUPPORTASSEMBLY W/OH COIL

Figure 17.5-1

Lower CS-Skirt/OH-Cage/TF_Flag Area

OH Cage Flange
G-10

Figure 17.5-2

The OH Coax Box is analyzed in ref [23]. The OH rests on a "cage" that also is bolted into the stacked

flanges above the TF flag keys. The OH is not loaded laterally. Ref [20] considers the net vertical Design

Point combined OH and Inner PF loading. Additional loads from the lateral and vertical halo loading on the

casing must be considered in ref [20]. The stack up of flanges, the structure around the coax, and the OH

support cage are assumed to bridge the open section of the skirt.
Lower Flag Key Bolt Pattern

Bolt Diameter 0625 Halo Moment = 25000 B40785.72

Nominal Bolt area 0306796875 Halo Lateral Force = 165000 37092
Hale Vertical Force = B0000 17984
Design Point Vertical = 0 25161
Mom due to TF 00P 0
Bolt Diameter 0.615
Baolt Array Area 4.08
Section Modulus from Figure »

336314288

336314288 25870.33
10626.84729 10626.847
4425827609 16497.177
9924 657086 £233.7632

Figure 17.5-3 Lower Flag Key Loading

The bolt load at the lower flag key is calculated to be 9984 Ibs without taking credit for the preload moment
capacity. This is less than the 12000 Ibs considered in ref [20].
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Appendix A - Email Data

From A Brooks Sept 19 2011
Peter,

The latest dynamic reaction loads to the support are significantly different from what you have
(see the updated calculation of Halo Currents | sent you last week). The peak reaction loads are
(from figures 23 and 24 for Fast Quench):

Fx (Lateral force) 150,000 N
Fz (Vertical force) 110,000 N
My (Moment about base) 90,000 N-m

The vertical force appears to come from a Poisson effect with the large radial forces and
resulting hoop stresses in the mid section of the CS. This produces large Sz (vertical stress) which
reacts at the base during the dynamic response.

The lateral force is still lower than the 50,000 Ibs (222,000 N) Mark was using.
Art
Peter,

Comments on the Centerstack Casing Stress Summary Calc:

1) Peak stressesin CS from Halo are now reported to be 43.7MPa, down from previous
59.6 MPa
2) Peak Thermal Stress has dropped to 192 MPa from 280 MPa

Art

Attached is an update to the forces and moments on the CS Base Support and Bellows. The net
applied load is 250 kN, up from the 140 kN previously reported. This is due to the guidance
from Stefan to adjust the TPF at the strike point such that the TPF at the midplane is 1.35 ( the
strike point needed to be increased to 1.60). The 250 kN is very close to the estimated value
obtained by assuming a constant TPF of 1.35 over the +/- 0.6m height.

The peak moment is now 130 kN-m and the peak reaction load is 250 kN at the base support.
There is also a sizeable reaction at the bellows/bumper, 220 kN, though it is not in phase with
the reaction load at the base (see last two figures in attached).
Art
Thu 3/11/2010 8:21 AM
Peter,
Summing up the applied halo forces for the resistive distribution

scenario (for the strike at z=+/-0.6m) with PF and TF (1/R) fields 1
get:

Applied Load Sum on CS
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Fx
Mx

-30695.6 N, Fy=Fz=0
80400.7 N-m, My=Mz=0

I ran these thru a stress pass constraining all the points on the top
and bottom flanges and looked at the reaction loads:

Reaction Loads on CS when Upper & Lower Flanges Fully Constrained

Fx, N Fy Fz Mx, N-m My
Mz
Up 15347. 32464. 44662. -40200.9 56846.7 -201.8
Low  15349. -32463. -44661. -40199.6 -56848.9 201.8

The sum of the Up and Low values do add to negative the applied loads
as expected. It just highlights the need to look at the reaction
moments as well when considering support design loads.

Art
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Appendix B
Halo reaction loads for the base skirt with the compliance of the G-10 flange modeled.

Peter, Dec 19 2011

I've extracted the forces and moments at the interface of the base of the CS and top of the
lower support. The peak vertical load is lower (~60 kN) than at the bottom of the lower
support (~80 kN). The moments are about the same (~95 kN-m) but occur at different
times. The numbers are extracted using fsum on the interface nodes with the lower
support elements and are the total force (static + inertial + damping).

Art

In response to a request for the load at the PF1b mandrel elevation:
Peter, Dec 22 2011

The lateral load at that elevation is ~125 kN. The plots | sent contain the transient
behavior of each of the three load and moment directions.

Art
Peter,

Adding the compliant G10 plate and structure sitting on the TF flags has reduced the
moment (now measure at the G10, z=-2.7m) to a peak of 95 kN-m during the dynamic
response. The net lateral force has dropped to 160 kN. The bellows/bumper reaction drop
slightly to 200 kN and again is not in phase with the reaction load at the base (see
attached plots).

Art

---------- Forwarded message ----------
From: Arthur Brooks <abrooks@pppl.gov>
Date: Tue, Nov 1, 2011 at 12:31 PM
Subject: Halo Reaction Forces with Bumper
To: Peter Titus <ptitus@pppl.gov>

Peter,
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