

NSTX

Stress Analysis of ATJ Center Stack Tiles and Fasteners

NSTXU-CALC-11-03-00

May 9, 2011
Prepared By:
Art Brooks, Engineering Analyst
Reviewed By:
Len Myatt, Consultant
Approved By:
Kelsey Tresemer Cognizant Engineer

PPPL Calculation Form

	Calculation #	NSTXU-CALC-11-03-00	Revision #00	WP#, if any 1	(ENG-032)
	Purpose of Calc	ulation: (Define why the calculation	n is being performed)	
	Stress Analysis	of the ATJ Tiles and Supports			
	References (List a	any source of design information incl	uding computer prog	ram titles and revisi	on levels.)
	See attached rep	ort			
	Assumptions (Ide	entify all assumptions made as part of	f this calculation.)		
	See attached rep	ort			
	Calculation (Calc	culation is either documented here or	attached)		
	See attached rep	ort			
GR bar Ver	e Center Stack Til D heat flux requir supports for the C tical (IBDvs) Tild port the tiles agai	es for the NSTX-CSU progra rements using the prescribed A CS Angle Section (CSAS) Tile es, and the tray support for the nst the anticipated thermal, ec	m are shown to be ATJ graphite. The sand the Inboare Center Stack Fi	be capable of with the tile mounting of the divertor Hori rst Wall (CSFW	scheme, consisting of T- zontal (IBDhs) and () Tiles is adequate to
	Cognizant Engir	neer's printed name, signature	, and date		
	Kelsey	Tresemer			
	I have reviewed correct.	l this calculation and, to my	professional sa	tisfaction, it is p	properly performed and
	Checker's printe	ed name, signature, and date			

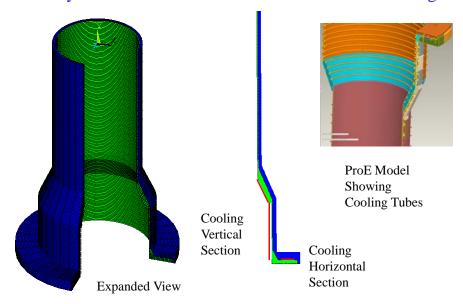
Executive Summary

The Center Stack Tiles for the NSTX-CSU program are shown to be capable of withstanding the original GRD heat flux requirements using the prescribed ATJ graphite. The tile mounting scheme, consisting of T-bar supports for the CS Angle Section (CSAS) Tiles and the Inboard Divertor Horizontal (IBDhs) and Vertical (IBDvs) Tiles, and the tray support for the Center Stack First Wall (CSFW) Tiles is adequate to support the tiles against the anticipated thermal, eddy current and halo current loads with acceptable bolt loads.

This is premised on the poloidal flowing halo current's interaction with the TF field always results in tile forces which are away from the plasma, regardless of the plasma current and TF field directions as observed in NSTX operation. While the interaction of toroidal flowing halo currents, which will be in both directions due to the Toroidal Peaking, with the PF field produce forces both toward and away from the plasma, they are shown to be small relative to the poloidal current forces and result in net forces away from the plasma. If net forces were reversed, halo currents from a 2 MA plasma may not be tolerable due to high tensile stresses in the ATJ.

The analysis shows that the inclusion of Grafoil under the CSAS, IBDvs and IBDhs combined with the active cooling will significantly limit the thermal ratcheting of the tiles whether Li coated (with assumed emissivity of 0.3) or uncoated (with assumed emissivity of 0.7). The active cooling also offers adequate protection of the neighboring PF and OH coils and reduces the heating of the CS Casing. The flow rate and back pressure are high enough to avoid boiling of the water.

The Grafoil is shown to be structural compliant to allow relatively free thermal expansion of the tiles provided the bolts are only lightly preloaded and do not over compress the Grafoil.


Tile Thermal and EM Stresses are within acceptable limits for ATJ graphite.

Introduction

The Center Stack Casing (CSC) Plasma Facing Components (PFC) tiles are designed to protect the Center Stack from the high heat fluxes of the plasma. They are divided into four sections of tiles referred to in the General Requirements Document (GRD) as the Inboard Divertor Horizontal (IBDhs) and Vertical (IBDvs) Tiles, the CS Angle Section (CSAS) Tiles, and the Center Stack First Wall (CSFW) Tiles. The GRD requires all CSC PFC tiles be designed using high-grade graphite material. The use of carbon fiber composites is not permitted due to Lithium retention of the coarse weave. The available tile thickness is also dictated by the GRD. As a result the goal of the analysis is to establish safe operating limits up to the GRD desired level. Tile mounting details have been optimized within these constraints to enhance the thermal performance while withstanding the electromagnetic loading from plasma disruption induced eddy currents and halo currents.

Heat is removed from the CSAS, IBDhs and IBDvs tiles by radiation to cooled outboard components (OD, PP & VV) and by the CSC water cooling system. The CSFW tiles are only radiation cooled since the CSC cooling does not extend up between the Casing and the OH coils. One of the design decisions resulting from this analysis is the use of a thermal interface material – Grafoil – between the tiles and the CSC. The original plan was to limit the heat transfer between the tiles and the CSC by not using Grafoil and relying on radiation only, out of concern about over heating the water. There are now four CSC cooling circuits in the design (two on top and two on the bottom) where there are dedicated circuits for the high heat flux IBDhs. Analysis has shown them to be adequate to safely remove the heat during the transient. The result is the water cooled tiles do not thermally ratchet with repeated pulsing. There will be ratcheting of the uncooled CSFW but the incident heat fluxes are low as would be the peak temperatures.

Axisymmetric Thermal Model of CS Tiles and Casing

Assumptions

The tile mounting schemes are designed to permit relatively free thermal expansion, minimizing thermal stresses. The CSAS, IBDhs and IBDvs tiles use T-bar supports held by bolts with Belleville washers and with compliant Grafoil underneath. The bolts are lightly loaded (500 N or 112 lbs) to permit bowing of the tiles under thermal gradients. Tolerances are set to assure the load path for EM forces is directly into the Grafoil and not the bending the tile over the T-Bar.

The analysis assumes the poloidal flowing halo current's interaction with the TF field always results in tile forces which are away from the plasma, regardless of the plasma current and TF field directions as observed in NSTX operation. While the interaction of

toroidal flowing halo currents, which will be in both directions due to the Toroidal Peaking, with the PF field produce forces both toward and away from the plasma, they are shown to be small relative to the poloidal current forces and result in net forces away from the plasma. If net forces were reversed, halo currents from a 2 MA plasma may not be tolerable due to high tensile stresses in the ATJ.

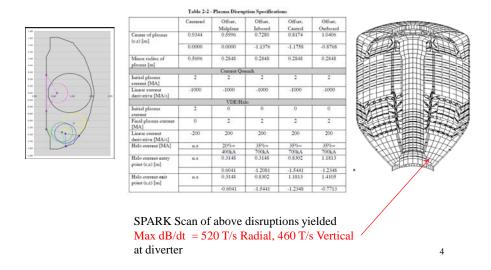
The analysis is done using the average heat fluxes associated with a 14 MW plasma of 5 second duration pulse with 1200 second rep rate.

Method of Analysis

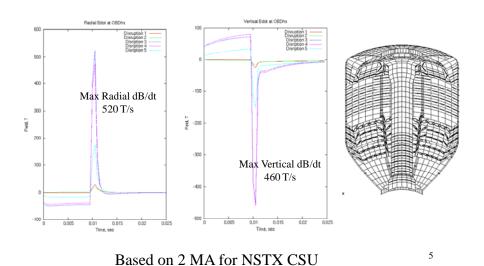
ANSYS models were used to analyze the thermal and structural response of each of the four tile types. ProE models of the tile and supports were imported into ANSYS Classic. A thermal transient was run to generate the temperature distribution on the ATJ tiles.

GRD Requirements – Heat Flux

Table 3-2 - Heat Flux and Power Flux Width on PFCs


	CSFW	IBDAS,	IBDHS
		IBDVS	
Single Null Divertor, T _{pulse} = as			
determined to be allowable			
Average Heat Flux q _{avg} [MW/m ²]	0.1	4.0	9.8
Peak Heat Flux q _{peak} [MW/m ²]	0.2	6.3	15.5
Power Flux Width λ [m]	n.a.	0.3	0.3
Double Null Divertor, T _{pulse} =5.0s			
Average Heat Flux q _{avg} [MW/m ²]	0.1	1.6	5.2
Peak Heat Flux q _{peak} [MW/m ²]	0.2	2.5	8.3
Power Flux Width λ [m]	n.a.	0.3	0.3

Heat Flux applied to Plasma Facing Surface of Tiles For IBDhs this includes vertical surface


3

Eddy currents were calculated using max values of dB/dt (vertical and radial) at the tile locations found from scanning the 5 disruption scenarios given in Table 2.2 of the GRD. The scans were done using the SPARK code with previously generated models of the VV, CS and PP.

Requirements – EM Loads Eddy Currents

dB/dt scan from Plasma at Horizontal Inboard Diverter During Disruptions

The background maximum field values were obtained by scanning thru the 96 operating scenarios specified in the Design Point Spreadsheet "NSTX_CS_Upgrade_100504.xls" using a FORTRAN code built on the Magnetics Library routine FICOI. This was found to be in agreement with results generated by others using the OPERA code.

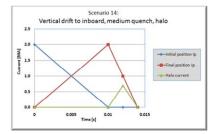
Requirements – Peak Background Fields

Coil	R (center)	dR	Z (center)	Z (center) dZ		nΖ	Turns	Fill
	(cm)	(cm)	(cm)	(cm)				0.0000
OH (half-plane)	24.2083	6.9340	106.0400	212.0800	4.0	110	442	0.7013
PF1a	31.9300	5.9268	159.0600	46.3533	4.0	16	64	0.8594
PF1b	40.0380	3.3600	180.4200	18.1167	2.0	16	32	0.7938
PF1c	55.0520	3.7258	181.3600	16.6379	2.0	10	20	0.8560
PF2a	79.9998	16.2712	193.3473	6.7970	7.0	2	14	0.7409
PF2b	79.9998	16.2712	185.2600	6.7970	7.0	2	14	0.7409
PF3a	149.4460	18.6436	163.3474	6.7970	7.5	2	15	0.6928
PF3b	149.4460	18.6436	155.2600	6.7970	7.5	2	15	0.6928
PF4b	179.4612	9.1542	80.7212	6.7970	2.0	4	8	0.7525
PF4c	180.6473	11.5265	88.8086	6.7970	4.5	2	9	0.6723
PF5a	201.2798	13.5331	65.2069	6.8580	6.0	2	12	0.7733
PF5b	201.2798	13.5331	57.8002	6.8580	6.0	2	12	0.7733

Btf = 1T at 0.9344m

PF Configuration from NSTX_CS_Upgrade_100504.xls Scan of 96 scenarios in same spreadsheet used to establish max fields:

Max Br = 0.5 T Max Bz = -0.57 T

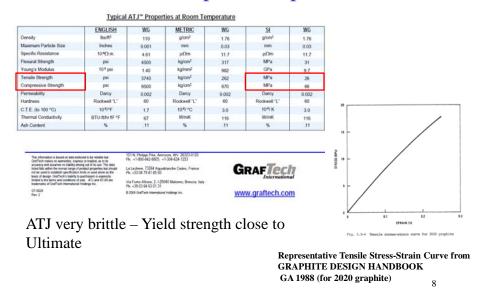

Avg Btf ~ 2 T at IBDhs Max Btf ~ 3 T at CS

7

Halo currents in the tiles are based on the resistive sharing of poloidal currents with the CSC. While the tiles themselves are not poloidally continuous, it is postulated that during a halo current strike plasma fills the gaps between the participating tiles and shorts them out. At an estimate temperature of 10ev, plasma resistivity is comparable to ATJ graphite.

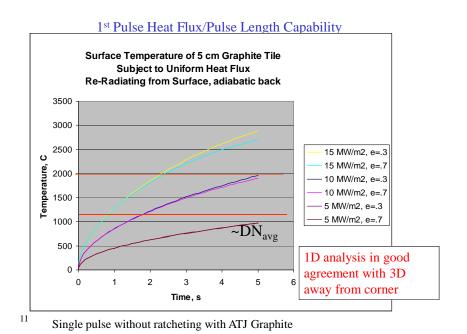
Requirements - Halo

Analysis Priority [1=high]	index and	Scenario category	Disruption scenario description		Initial position index	Final position index	Drift time [s]	Quench time [s]	Ip quench rate [GA/s]	Halo fraction f _h
1	1	1	Centered disruption, fast quench	2	1	1	0.01	0.001	2	0
1	2	2	Initiated shifted to CS, fast quench, no halo	2	2	2	0.01	0.001	2	0
1	6	2	Inward drift to CS, very slow quench, halo	2	1	2	0.01	0.1	0.02	0.2
1	3	3	Initiated shifted down to inboard, fast quench, no halo	2	3	3	0.01	0.001	2	0
1	7	3	Vertical drift to inboard, very slow quench, halo	2	1	3	0.01	0.1	0.02	0.35
1	4	4	Initiated shifted down to middle, fast quench, no halo	2	4	4	0.01	0.001	2	0
1	8	4	Vertical drift to middle, very slow quench, halo	2	1	4	0.01	0.1	0.02	0.35
1	5	5	Initiated shifted down to outboard, fast quench, no halo	2	5	5	0.01	0.001	2	0
1	9	5	Vertical drift to outboard, very slow quench, halo	2	1	5	0.01	0.1	0.02	0.35

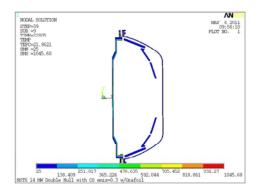

Excepted from Disruption_scenario_currents_v2.xlsx

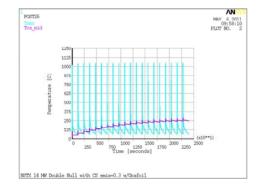
For IBDhs, Halo = **35 kA** per 15 deg Tile (2MA/24Tiles*.35HCF*1.2TPF)

Halo current assumed to take longest path across TF for worse case loading unless justification can be made not $t\delta$.

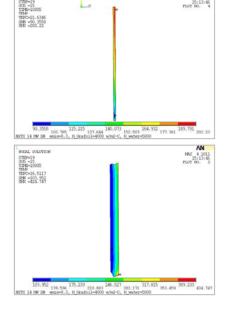

The tile thermal and structural performance is based on the use of ATJ graphite who's properties are given below.

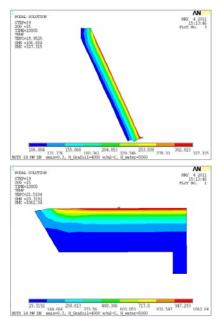
ATJ Graphite Properties

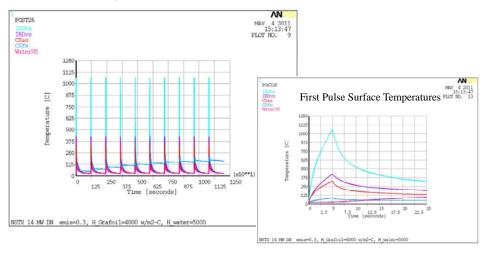



Results

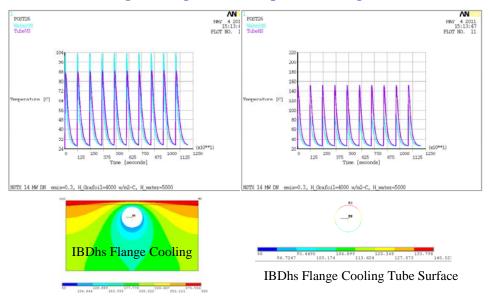
A 1-D thermal performance of ATJ Graphite was generated at heat fluxes varying from 5 15 MW/m2 (DN) to 15 MW/m2 (SN) for comparison. It suggests that the design which is governed per the GRD by the DN operation for 5 sec would limit single null operation to under 1 sec.




A 2-D axisymetric thermal model to the previously run was modified to reflect the use of Grafoil under the tiles. The model was also modified to include the effect of water transport (using ANSYS fluid116 elements) instead of just using an effective film coefficient as used in earlier analyses. This limited the thermal ratcheting while still providing adequate limits on the water temperature rise as shown below.

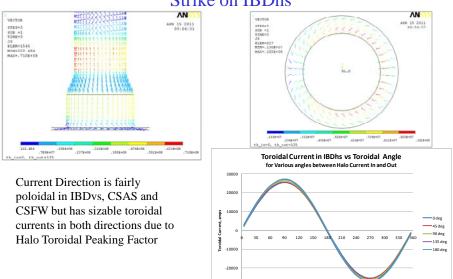


Tile Ratcheted Temperatures



No Ratcheting on Water Cooled Tiles Only on Radiation Cooled CSFW

Water in Cooling Loops stays below ~100 C Neighboring Case Temperature Higher



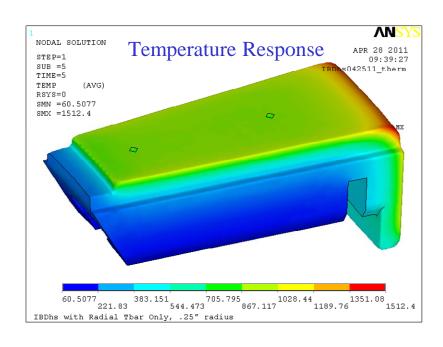
A halo current distribution model was also created to investigate the direction of forces on the tile. This was crucial to the structural performance. Results show that forces are always away from the plasma and into the supporting CSC which limits the tile stresses since the tile is effective supported off it base and not the thin sections at the T-Bar.

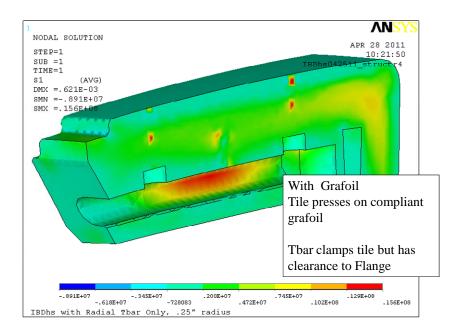
Halo Currents and Force Directions in the CS

- The halo currents and associated Lorentz forces & directions are based on the following:
 - Halo Currents are resistively distributed.
 - Halo Currents are predominantly poloidal
 - Studies show this to be true even with large toroidal peaking (TPF) with in and out strike points at different toroidal angles
 - The exception is near the strike points where current quickly redistributes
 - The tiles are assumed shorted to each other (at least locally) by plasma filling the gaps
 - It is estimated that at a temperature of 10ev, the plasma electrical resistivity is very close to ATJ graphite (thou it may not penetrate very deep into the gap)
 - As a result of the above, there is current sharing between the tiles and CS casing based on the relative resistance
- Per Stefan Gerhardt, the interaction of the halo currents with the TF is always such as to press tiles toward VV wall or CS Casing
 - This is this is true even when the TF direction is opposite the plasma current.
- The interaction with the PF should result in some forces pulling tiles away from the wall where there is a component of halo current flowing in opposite toroidal directions (see next slide)

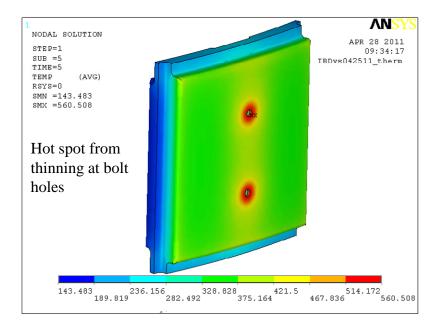
Halo Current Distribution with TPF=1.5 Strike on IBDhs

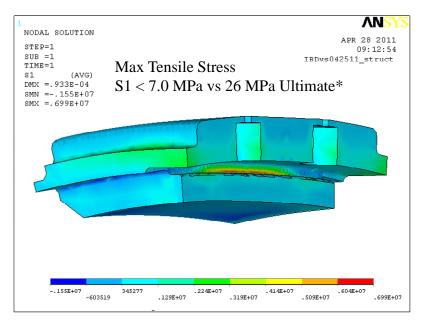
As a result of Toroidal Peak, there is a resistive redistribution of current primary in the low resistance section of the IBDhs. When crossed with the radial PF this will cause some tiles to experience forces into the wall and others away from the wall. The IBDhs current toroidal distribution is driven more by the TPF than by the assumed toroidal angle between strike in and out. Peak toroidal current in IBDhs is 27.3 kA of which 4.9 kA flows thru the ATJ tile assuming a resistive distribution between tile and casing.

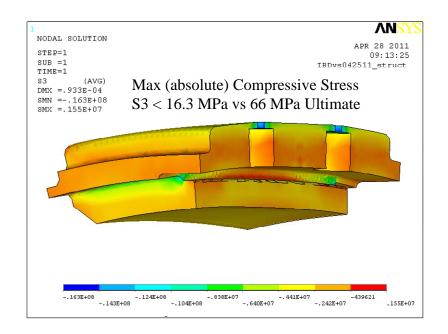

Current Sharing and Tile Forces

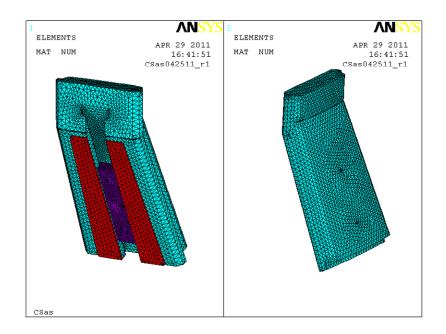

- Tiles share less than 30% of Halo currents based on relative resistance
- Forces due to the toroidal flow of halo currents are small compared to the poloidal component.
- Net Forces will remain into the VV/CS

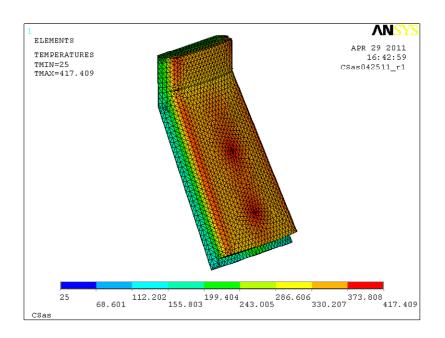
Keiative I	Resitivity	ana Halo	curren	t Snarinį	g in CS Ti	ies/Ca
Res_inc	1.3	microOhn	n-m	Iplas	2	Ma
Res_atj	11.7	microOhn	n-m	HCF	0.35	
				TPF	1.2	
	CSFW	CSAS	IBDvs	IBDhs		
ntiles tor	24	24	24	24		
t_inc	0.25	1.27	0.25	1.00	in	
t_atj	0.67	0.85	0.94	2.00	in	
I_atj/I_tot	0.23	0.07	0.29	0.18		
I_tot, KA	35	35	35	35		
I_atj, KA	8.01	2.43	10.31	6.36		
	CSFW	CSAS	IBDvs	IBDhs		
Ipol	8.01	2.43		6.36	ĿΛ	
Rtf	2.97			1.92		
tile pol len	0.15			0.17		
F	3565.3					
	801.5			468.0		
	001.5	413.3	012.4	400.0	103	
Surf Area	0.0123622	0.027134	0.015708	0.021612	m2	
Equiv Pres	288405.28		230064.4			
Force Esti	imate Per	Tile (Ito	r x Bpol	into or	out of V	V)
		•				
	CSFW	CSAS	IBDvs	IBDhs		
Itor, model	11.50	10.00	3.00	27.30		
Itor, tile	2.63	0.69	0.88	4.96	kA	
Bpf	0.57	0.57	0.57	0.50	Т	
tile tor len	0.082	0.094	0.105	0.127	m	
F	123.6	37.0	52.8	315.5	N	
	27.8	8.3	11.9		lbs	

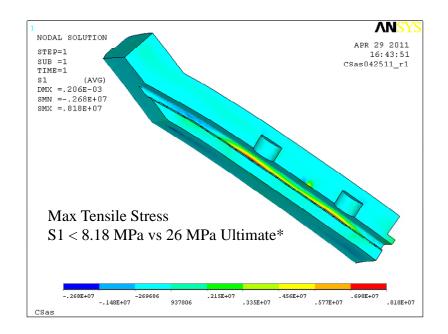

Results for Individual Tiles:

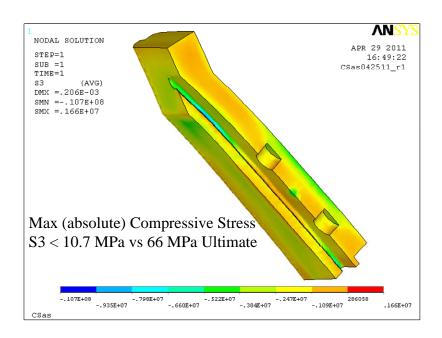

IBDhs

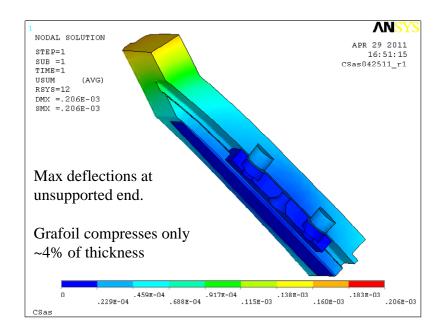


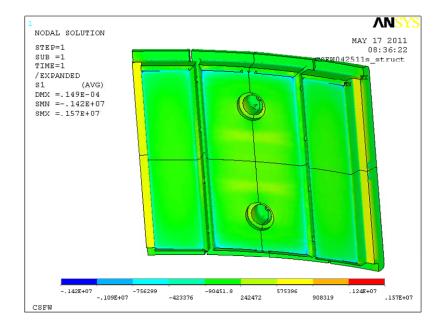

IBDvs

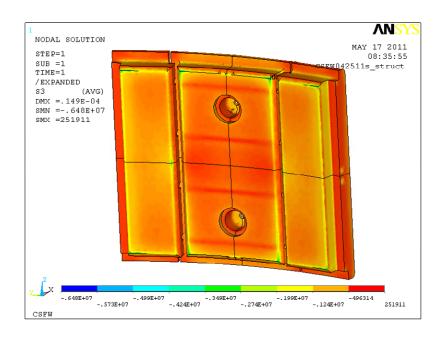





*ATJ stated value. Testing suggest limits may be less







CSFW

Summary

The tables below summarize the peak temperatures and stresses from the analysis for the given heat load:

	Summary of	ummary of Tile Thermal Structural Response							
	Heat Flux	Ratcheted Temperatur	Peak Tensile Principal	Peak Compress Principal Stress,					
	for 5s	е	Stress, S1	S3	Deflection				
	mw/m2	С	MPa		mm				
IBDhs, surface	5.0	1062	15.6	-58.0	0.6				
Hot Spot at Corne	er	1512							
IBDvs, surface	1.6	425	7.0	-16.3	0.1				
Hot Spot at Hole		560							
CSAS, surface	1.6	327	8.2	-10.7	0.2				
Hot Spot at Hole		417							
CSFW	0.2	260	1.6	-6.5	0.01				

The Center Stack Tiles for the NSTX-CSU program are shown to be capable of withstanding the original GRD heat flux requirements using the prescribed ATJ graphite with Tensile Strength of 26 MPa and Compressive Strength of 66 MPa. Results are based

on average Tile surface heating. The IBDhs shows a hot spot at the corner of the tile closest to the X-point due to assumed heating from both faces which may be (or may not be) conservative.

The tile mounting scheme, consisting of T-bar supports for the CS Angle Section (CSAS) Tiles and the Inboard Divertor Horizontal (IBDhs) and Vertical (IBDvs) Tiles, and the tray support for the Center Stack First Wall (CSFW) Tiles is adequate to support the tiles against the anticipated thermal, eddy current and halo current loads with acceptable bolt loads. The load paths are such as to dump the net tile forces from Halo and Eddy Currents directly into the CSC. The supports offer flexible constraint on the tile thermal expansion without carrying significant load.

To repeat what was said earlier, the EM load direction is premised on the poloidal flowing halo current's interaction with the TF field always results in tile forces which are away from the plasma, regardless of the plasma current and TF field directions as observed in NSTX operation. While the interaction of toroidal flowing halo currents, which will be in both directions due to the Toroidal Peaking, with the PF field produce forces both toward and away from the plasma, they are shown to be small relative to the poloidal current forces and result in net forces away from the plasma. If net forces were reversed, halo currents from a 2 MA plasma may not be tolerable due to high tensile stresses in the ATJ.

The analysis shows that the inclusion of Grafoil under the CSAS, IBDvs and IBDhs combined with the active cooling will significantly limit the thermal ratcheting of the tiles whether Li coated (with assumed emissivity of 0.3) or uncoated (with assumed emissivity of 0.7). The active cooling also offers adequate protection of the neighboring PF and OH coils and reduces the heating of the CS Casing. The flow rate and back pressure are high enough to avoid boiling of the water.

The Grafoil is shown to be structural compliant to allow relatively free thermal expansion of the tiles provided the bolts are only lightly preloaded and do not over compress the Grafoil.

IBhs and IBDvs (top) and CSAS and CSFW (bot) Thermal and EM Stresses are within acceptable limits for ATJ graphite.

References

- 1) NSTX CSU-RQMTS-GRD General Requirements Documents, Rev 3
- 2) Design Point Spreadsheet "NSTX_CS_Upgrade_100504.xls"
- 3) NSTXU-Calc-11-01-00 Global Thermal Analysis of Center Stack Heat Balance, Dated February 15, 2011
- 4) ProE Model of Center Stack Tiles aj_center_case_analysis_rev2.asm
- 5) Spreadsheet of Disruption Data Disruption_scenario_currents_v2.xlsx, by Jon Menard, received 7/2/2010
- 6) Discussions with Stefan Gerhardt on modeling of halo currents for NSTX